Ensemble Filters for Geoghical Data Assimilation: A dtorial

Jeffrey Anderson
NCAR Data Assimilation Initiative

Obijective: Provide a simple but clear introduction to ensemble filters.

Phase 1: Single variable and observation of that variable.
Phase 2: Single observed variable, single unobserved variable.
Phase 3: Generalize to geophysical models and observations.

Phase 4: Quick look at a real atmospheric application.
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A:. Prior estimate based on all greus information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional obsetion.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(BJAC)P(AIC) _ pP(BJACQ)P(AIC)
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B[AQP(AC) _ p(BAC)p(A|C)
p(B| C) [P(B[x)p(x| C)dx
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B[AQP(AC) _ p(B|AC)p(A|C)
p(B| C) [P(B[x)p(x| C)dx
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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Consistent Color Scheme Throughoutdrial

Green = Prior

Red = Obsewation

Blue = Rosterior
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. _ P(BIACQP(AIC) _ p(B[AC)P(AC)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(H1 21)N(Hg, 25) = CN(W, 2)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-
Mean: h = (Zil + Zil)_l(zilul + Zill‘J'Z)

_ 1
(2|‘|)d/2‘21 +

_— 01 _ U
Weight: ¢ 1/2expm—§[(u2—u1)T(Zl+Zg) Yy -1yl
Zz\ L] []

We’'ll ignore the weight unless noted since we immediately normalize
products to be PDFs.
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
L ~ 1 01 _ U
Weight: ¢ = (2I'I)d/2‘21 " 22‘ 1/26Xp%1—§[(|12_ H1)T(Zl +3,) 1(“2_ Hy)] E

Easy to derive for 1-D Gaussians; just do products of exponentials.
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. _ P(BIAQP(AC) _ P(BJAC)P(AC)
payes rulep(A BO p(BIC) [p(B[¥)P(x C)dx

This product is closed for Gaussian distributions.
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There are other families of functions for which it is closed...
But, for general distributions, there’s no analytical product.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
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There are other families of functions for which it is closed...
But, for general distributions, there’s no analytical product.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
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There are other families of functions for which it is closed...
But, for general distributions, there’s no analytical product.

Anderson: Ensemble Tutorial 16 1/19/05



P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)

Bayes rulep(A/ BC) =

p(B| C) [P(B[x)p(x| C)dx
Ensemble filtersPrior is aailable as finite sample.
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Don’t know much about properties of this sample.

May naively assume it is random draw from ‘truth’.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

How can we take product of sample with continuous likelihood?
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Fit a continuous (Gaussian for now) distribution to sample.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Observation likelihood usually continuous (nearly always Gaussian).
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If Obs. Likelihood isn’'t Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.
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Sampling Posterior PDF:

1. Just draw a random sample.
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Sampling Posterior PDF:

1. Just draw a random sample.
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Can ‘play games’ with this sample to improve (modify) its properties.

Example: Adjust the mean of sample to be exact.
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Sampling Posterior PDF:

1. Just draw a random sample.
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Can ‘play games’ with this sample to improve (modify) its properties.

Example: Adjust the mean of sample to be exact.
Can also adjust the variance to be exact.
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Sampling Posterior PDF:

1. Just draw a random sample.
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Might also want to eliminate rare extreme outliers.

NOTE: Properties of these adjusted samples can be quite different.
How these properties interact with rest of assimilation is open question
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Sampling Posterior PDF:

2. Construct a ‘deterministic’ sample with certain features.
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For instance: Sample could have exact mean and variance.

This is insufficient to constrain ensemble, need other constraints.
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Sampling Posterior PDF:

2. Construct a ‘deterministic’ sample with certain features.
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Example: Exact sample mean and variance.
Sample kurtosis is 3 (expected value for Gaussian in large sample limit
(Constructed by starting uniformly spaced and adjusting quadratically)
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Sampling Posterior PDF:

2. Construct a ‘deterministic’ sample with certain feature.
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Example: Exact sample mean and variance.
Sample kurtosis 2: less extreme outliers, less dense near mean.

Avoiding outliers might be nice in certain applications.
Sampling heavily near mean might be nice.
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Sampling Posterior PDF:

First two methods depend only on mean and variance of prior sample
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Example: Suppose prior sample is (significantly) bimodal?
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Sampling Posterior PDF:

First two methods depend only on mean and variance of prior sample
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Example: Suppose prior sample is (significantly) bimodal?

Might want to retain additional information from prior.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Compute posterior PDF (same as previous algorithms).
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
Posterior PD
B Q.4 e N
o)
©
@)
O
O QL2 s N
-4 -2 0 2 4

Use deterministic algorithm to ‘adjust’ ensemble.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
Second, use linear contraction to have exact variance of posterior.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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x: = (xX*=xP)Qo"/6) +x" i=1,.., ensemble size.
p is prior,  uis update (posterior), overbar is ensemble mean,
o is standard deviation.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Bimodality maintained, but not appropriately positioned or weighted.
No problem with random outliers.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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There are a variety of other ways to deterministically adjust ensemble
Class of algorithms sometimes called deterministic square root filters.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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‘Classical’ Monte Carlo Algorithm for Data Assimilation.

Warning: earliest refs have incorrect algorithm (more in a minute).
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Again, fit a Gaussian to sample.
Are there ways to do this without computing prior sample stats?
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Generate a random draw from the obs. likelihood.
Associate it with the first sample of prior ensemble.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Proceed to associate a random draw from obs. with each prior sample
This has been called ‘perturbed’ observations.

Algorithm sometimes called ‘perturbed obs.” ensemble Kalman filter.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Proceed to associate a random draw from obs. with each prior sampile

This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.” ensemble Kalman filter.

Anderson: Ensemble Tutorial 45 1/19/05



Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Proceed to associate a random draw from obs. with each prior sample
Earliest publications associated mean of obs. likelihood with each priol
This resulted in insufficient variance in posterior.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Have sample of joint prior distribution for observation and prior MEAN
Adjusting the mean of obs. sample to be exact improves performance
Adjusting the variance may further improve performance.

Outliers are potential problem, but can be removed.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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For each prior mean/obs. pair, find mean of posterior PDF.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Prior sample standard deviation still measures uncertainty of prior mean estimats
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Prior sample standard deviation still measures uncertainty of prior mean estimats

Obs. likelihood standard deviation measures uncertainty of obs. estimate.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Take product of the prior/obs distributions for first sample.

This Is standard Gaussian product.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Mean of product is random sample of posterior.
Product of random samples is random sample of product.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

0.6

................................................................................

o
N

Probability

O
N

O = 0
Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).
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Posterior sample maintains much of prior sample structure.

(This is more apparent for larger ensemble sizes).
Posterior sample mean and variance converge to ‘exact’ for large sample
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Can retain more correct information about non-Gaussian priors.

Can also be used for obs. likelihood term in product (not shown here).
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Usually, kernel widths are a function of the sample variance.
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Usually, kernel widths are a function of the sample variance.
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Example Kernels: Half as Wide as Prior PDF

206 NN N S :
3
S 0.4 Obs. Likelihood -
E_ :

—
N

O _
—4
Estimate of prior is normalized sum of all kernels.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :
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-------- Obs. Likelihood:-
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Apply distributive law to take product.
Product of sum is sum of products.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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-------- Obs. Likelihood:-
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Compute product of first kernel with Obs. Likelihood.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :

++++++++++++++++++ -

-------- Obs. Likelihood:-

O
o

Probability
o
N

—
N

0

—4 4
But, can no longer ignore the weight term for product of Gaussians.
Kernels with mean further from observation get less weight.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8} |

Probability
o o
N O

—
N

O B
-4 2
Continue to take products for each kernel in turn.
More distant kernels have small impact on posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :

++++++++++++++++++ -

-------- Obs. Likelihood:-

O
o

Probability
o
N

—
N

0

-4
Continue to take products for each kernel in turn.
More distant kernels have small impact on posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8f A e e :

Probability
o o
N O

—
N

O B
-4 2
Continue to take products for each kernel in turn.
More distant kernels have small impact on posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :

++++++++++++++++++ -

-------- Obs. Likelihood:-

O
o

Probability
o
N

—
N

I
_hC)
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8t

Probability
o o
N O

O
N

o

0 /2/&
-4 -2 0
Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :

mmmmmmmmmmmmmmmmm —

Obs. Likelihood:-

O
o

Probability
o
N

O
N

0

-4 2
Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8t

Probability
o o
N O

O
N

0
-4
Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :

Probability
o o
N O

O
N

0
-4
Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
0.8 e e e :

Probability
o o
N O

—
N

0
-4
Final posterior is weight-normalized sum of kernel products.

Posterior is somewhat different than for ensemble adjustment or
ensemble Kalman filter (much less density in left lobe).
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

0.8 e e e :
2 0-%Normalized Sum of Posterig
Q ; :
S04 e
053 Posterior Eng
0.2 s %
0
—4

Forming sample of the posterior can be problematic.

Random sample is simple.
Deterministic sampling is much more tricky here (few results available)
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Ensemble Filter Algorithms:
6. Particle filter methods:
These are ‘classical’ ensemble methods from statistical literature.
Size of ensembles required scales hyper-exponentially with model size
Ensembles > 1000 required for models with > 4 degrees of freedom.
This rules out naive application to any meaningful atmospheric model.

At present, nobody knows ways to attack this so no details here.
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Phase 2: Single obs@&w \ariable, single unobsezd \ariable

So far, have known observation likelihood for single variable.
Now, suppose prior has an additional variable.

Will examine how ensemble methods update additional variable.
Basic method generalizes to any number of additional variables.

Methods related to Kalman filter in some sense, but not done here.
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable

5
o ¥*
| S R —
o1 x ¥
At
o ¥
1| ST PR S S
% . 3 * ¥ %*
-2 0 2 4

Observed Variable

Anderson: Ensemble Tutorial 82

Assume that all we know
IS prior joint distribution.

One variable is observed.

What should happen to
unobserved variable?
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Ensemble filters: Updating additional prior state variables

Assume that all we know

. § . .

%4.2 T S * | is prior joint distribution.

£35 ~ -

3 * One variable is observed.
| Update observed
variable with one of
| previous methods.
3 ¥ ¥
2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

Unobs.

W B
WUIRUIUT

One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

Unobs.

W B
WUIRUIUT

One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

0 4% | | * | is prior joint distribution
O 4 e T
| | One variable Is observed.
*xk *  *
| Compute increments for
, | prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

%4.2% T S * | is prior joint distribution.
£ 35 |
- '3 * i One variable is observed.
KRk ok
| Compute increments for
, | prior ensemble members
1 of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know
IS prior joint distribution.

W A

Unobs.

WO1RO101
£ FW¥
%*
%*
%*
%*

One variable is observed.

| Using only increments

% | guarantees that if

| observation had no

e * Impact on observed

Increments 1 variable, unobserved
_ variable is unchanged

1 (highly desirable).

¥ %

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable

%

Ichem'ents *;* S
e ———% *

—2 0 2 4

Observed Variable

Anderson: Ensemble Tutorial 92

Assume that all we know
IS prior joint distribution.

How should the
unobserved variable be
Impacted?

First choice: least squares

Equivalent to linear
regression.

| Same as assuming

binormal prior.
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Ensemble filters: Updating additional prior state variables

5— . | Have joint prior
distribution of two
variables.

How should the
unobserved variable be
Impacted?

First choice: least squares

Unobserved State Variable
AN

Begin by findingeast

31*' . *

: : squares fit.
Increments  #*—% S '
% " % ue* " ]
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints =« ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —*_ ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 —% i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) O* 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable

Anderson: Ensemble Tutorial 102 1/19/05



Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Now have an updated

)
% | (posterior) ensemble for
S x ¥ | the unobserved variable.
S * e
~ 4.5 -
&)
S X \
n 4 |
S | x 4
(b
c !
? 3.5 * o
@) ‘
: !
5 L
-20 24

Obs.
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Ensemble filters: Updating additional prior state variables

Now have an updated

)
% | (posterior) ensemble for
© x ¥ | the unobserved variable.
S 4.5 : |
Q : Fitting Gaussians shows
it | that mean and variance
2 4'* l[ | have changed.
> |
235 * It
O Prior State Fit |
Dl 4

3 oy

-2024

Obs.
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Ensemble filters: Updating additional prior state variables

| | Now have an updated
Posterior Fit | | (posterior) ensemble for
| the unobserved variable.

Ol

P
ol

Fitting Gaussians shows
| that mean and variance
- 4| | have changed.

| Other features of the

Unobserved State Variable
D

3.5 -
Prior State Eit | prior distribution may
l also have changed.
3
e
2024

Obs.
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Ensemble filters: Updating additional prior state variables

CRITICAL POINT:

> _Posterior Fit, |
* ¥ | Since impact on
4.5 : | unobserved variable is
. simply a linear

| regression, can do this
' 1 | INDEPENDENTLY for
| any number of

| unobserved variables!

o
CL

Prior State Fit |
:L Could also do many at

- once using matrix
*ﬁ:’g algebra as in traditional
2024 Kalman Filter.

Obs.

Unobserved State Variable
D

w
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Ensemble filters: Updating additional prior state variables
Two primary error sources:

1. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation over range of prior.

2. Sampling error due to noise.
Even if linear relation, sample regression coefficient imprecise.

May need to address both issues for good performance.
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Nonlinear relations between variables; sorting increments

Suppose prior sample has
NO noise.

N
o

D
O
©
f>5 15}, But, relation between
[ un/observed variables is
o non-lineatr.
" 10
D
E 3
S 5
i ®)
@)
C
D

0

.3 %* .3 ¥ .3
-2 0 2 4

Observed Variable
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Nonlinear relations between variables; sorting increments

- 20
10

Unobs

Suppose prior sample has

NO noise.

But, relation between
¥ % * W un/observed variables iIs
non-linear.

Update observed sample
and compute increments.

Increments

2 0 2 4

Observed Variable
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Nonlinear relations between variables; sorting increments

Suppose prior sample has
NO noise.

N
o

151'*_ But, relation between
un/observed variables iIs
non-linear.

™ Regression error varies

| with value of observed
variable.

Unobserved State Variable
-

-

Observed Variable
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Nonlinear relations between variables; sorting increments

Suppose prior sample has
NO noise.

N
o

151'*_ But, relation between
un/observed variables iIs
non-linear.

™ Regression error varies

| with value of observed
variable.

Unobserved State Variable
-

-

Smaller increments have
1 smaller expected errors.

Observed Variable
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Nonlinear relations between variables; sorting increments

. 20 | | Suppose prior sample has
(7)) - .
O NO noise.
o 10
- 0 But, relation between

un/observed variables iIs
non-linear.

Increments

Pairing between prior
—% and posterior sample of
observed variable can be

_* viewed as arbitrary.
Posterior is same sample
5 0 5 4 No matter how it is

Observed Variable paired.
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Nonlinear relations between variables; sorting increments

320
glO
-2 0
Increments —* *
»
o=
e B 3
¥ S
2 0 2

Observed Variable
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Suppose prior sample has
NO noise.

But, relation between
un/observed variables iIs
non-linear.

Can minimize increments
by changing pairing.

Sorting prior and
posterior and pairing
samples minimizes one
norm of increment size
(could do other methods)
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Nonlinear relations between variables; sorting increments

3 20
o 10
-2 0
Increments * *
| —
* %
* %
2 0 2

Observed Variable

Anderson: Ensemble Tutorial

115

Suppose prior sample has
NO noise.

But, relation between
un/observed variables iIs
non-linear.

Can minimize increments
by changing pairing.

Sorting prior and
posterior and pairing
samples minimizes one
norm of increment size
(could do other methods)
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Nonlinear relations between variables; sorting increments

Suppose prior sample has
NO noise.

N
o

15}, Sorting prior and
posterior and pairing
samples minimizes one

| norm of increment size.
b

Resulting regression
error is minimized.

Unobserved State Variable
-

-

: : Impact of sorting can be
Increments W P J .
: * o 1 very large when posterior
¥ ,

5 0 5 4 selected by ‘random

Observed Variable algorithms.
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Nonlinear relations between variables; sorting increments

Suppose prior sample has
NO noise.

N
o

15}, Sorting prior and
posterior and pairing
samples minimizes one

| norm of increment size.
b

Resulting regression
error is minimized.

Unobserved State Variable
-

-

: : Impact of sorting can be
Increments W P J .
: * o 1 very large when posterior
¥ ,

5 0 5 4 selected by ‘random

Observed Variable algorithms.
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Nonlinear relations between variables: Local regression

Prior sample is noisy.

oo

N | — 80 Member Ensemblg,
| Un/observed relation is
non-linear.

o

Doing global regression
would be BAD here.

Can do regression only
for points that lie in range
of update increment.

Unobserved State Variable
N N

Could also pick local sets
In other ways.

-2 0 2
Observed Variable
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Nonlinear relations between variables; Local regression

oo

— 80 Member Ensemble
--=-- 40 Member Ensemblef

o

Unobserved State Variable
N

N
BEEE. E . 22 3K X Koo

-

-2 0 2
Observed Variable
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Prior sample is noisy.

Un/observed relation Is
non-linear.

For larger ensembles,
local regressions can
work well.

Error is largest where
signal is weakest (near
bottom of parabola here).
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Nonlinear relations between variables; Local regression

Prior sample is noisy.

oo

— 80 Member Ensemble
"r2 59 Member Ensemble) - yn/observed relation is
R non-linear.

o

As sample size
decreases, error grows.

(Except where it was
rotten to start).

Unobserved State Variable

o

Applications where local
regression is useful are
unknown to me.

B EEEEEEEERAEEEEREEERER

-2 0 2
Observed Variable
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Nonlinear relations between variables; Local regression

Prior sample is noisy.

oo

— 80 Member Ensemble
"r2 59 Member Ensemble) - yn/observed relation is
R non-linear.

o

Serious issues may exist
If local regression is used
with multiple unobserved
state variables.

Unobserved State Variable

-

B EEEEEEEERAEEEEREEERER

-2 0 2
Observed Variable
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Regression sampling error and filter divergence

| | | | Suppose unobserved
VIR state variable is known to

o | ! be unrelated to set of

observed variables.

N W

Unobserved variable
1 should remain
| unchanged.

Unobserved State Variable
(@)

-2 0 2
Observed Variable
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Regression sampling error and filter divergence

Anderson: Ensemble Tutorial

o S[SD-0.88 |[After Obs. 1
= MN=0.12

s of i *
E %

> e T
% *
© * % ¥y K
5 ¥y ¥ o
2 * ¥

5 * *

@ * *

@)

-

-

Sample Correl. = 0.49

i

-2 0 2
Observed Variable

123

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Finite samples from joint

| distribution will have
| non-zero correlation

(expected |corr| = 0.19

! for 20 samples).

After one observation,

1 unobs. variable mean and

S.D. change.
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Regression sampling error and filter divergence

Unobserved State Variable

Anderson: Ensemble Tutorial

After Obs. 21

Sample Correl. = -0.24

—2 0 2

Observed Variable

124

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

Unobserved mean
| follows a random walk as

more obs. are used.
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Regression sampling error and filter divergence

3[SD-088 |[After Obs. 41

¥k

|| * * %
Feofe

e opk ok x

Unobserved State Variable

Sample Correl. = 0.01

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

should remain unchanged

| Unobserved standard
1 deviation is persistently

decreased.
Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

_ - _ Suppose unobserved
VIKERE Aiter Obs. 61 state variable is known to
*

w

1 be unrelated to set of

N

observed variables.

! %* ¥
B 3
ay‘*;ﬁ*g* Unobserved variable
HoHk % | should remain unchanged

| Unobserved standard
1 deviation is persistently
decreased.

Unobserved State Variable
o

Sample Correl. = 0.26

| ;* 'HHEI % { Expected change in |SD|

_2 0 5 IS negative for any non-
Observed Variable Z€ro sample correlation!
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Regression sampling error and filter divergence

w

D=0.88 |[After Obs. 81

N
k3

¥

. .
** Il %

% **zk* %k *
g ; R o

Unobserved State Variable
o

Sample Correl. = 0.25

fommmims s

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
1 deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

w

D=0.88 |[After Obs. 101

N
k3

#¥;**“

* ¥
. o,
Hyiil

¥*
¥*

Unobserved State Variable
o

Sample Correl. = -0.29

[

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Estimates of unobs.

| become too confident

| Give progressively less
1 weight to any meaningful

observations.

1 End result can be that

meaningful obs. are
essentially ignored.
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Regression sampling error and filter divergence

Plot shows expected
absolute value of sample
: correlation vs. true
g correlation.

O
o0

Errors decrease with
sample size and for large
Ireal correlations].

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

O
o))

o
N

Expected |Sample Correlation|

10 Members
02k—"A 20 Members |
40 Members
0 80 Members
0 0.5 1

True Correlation
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Regression sampling error and filter divergence

Plot shows expected
absolute value of sample
: : : : correlation vs. true
""""""""" ezt e correlation.

O
o

O
1N

For negligible true
correlations, errors are
still significant even for

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

O
0

Expected |[Sample Correlation|

0.2 A S o 80 member ensembles.
: — 10 Members
0.1k [ — 20 Members |
: — 40 Members
5 — 80 Members
OO 01 0.2 03 04

True Correlation
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Ways to deal with igression sampling error:

1. Ignore it: if number of unrelated observations is small
and there is some way of maintaining variance in priors.

2. Use larger ensembles to limit sampling error.

3. Use additional a priori information about relation between
observations and state variables.

4. Try to determine the amount of sampling error and correct for it.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
o1

—2(8)00 —1000 0 1000 2000
. Distance from Observation (Km?)
Atmospheric assimilation problems.

Weight regression as function of horizordatancefrom observation.
Gaspari-Cohn: 5th order compactly supported polynomial.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
o1

—2(8)00 —-1000 0 1000 2000
Distance from Observation (Km?)
Can use other functions to weight regression.

Unclear whatlistancemeans for some obs./state variable pairs.
Referred to aEOCALIZATION.
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Ways to deal with igression sampling error:

4. Try to determine the amount of sampling error and correct for it:

A. Could weight regressions based on sample correlation.
Limited success in tests.
For small true correlations, can still get large sample correl.

B. Do bootstrap with sample correlation to measure sampling errol
Limited success.
Repeatedly compute sample correlation with a sample removed

C. Use hierarchical Monte Carlo.

Have a ‘sample’ of samples.
Compute expected error in regression coefficients and weight.
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Ways to deal with igression sampling error:
4C. Use hierarchical Monte Carlo: ensemble of ensembles.

Split ensemble into M independent groups.
For instance, 80 ensemble members becomes 4 groups of 20.

With M groups get M estimates of regression coefficignt,

Find regression confidence facto(weight) that minimizes:

M M 5
> > [O‘Bi—Bj]
j=1 i=11i#]

Minimizes RMS error in the regression (and state increments).
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Ways to deal with igression sampling error:

4C. Use hierarchical Monte Carlo: ensemble of ensembles.

— Grolup Size 2 ] .
croup Size 4 | YWelght regression by.

= Group Size 8
= = Group Size 16 |

| If one has repeated

| observations, can

| generate sample mean or
median statistics fau.

| Meana can be used in
1 subsequent assimilations
1as a localization.

Regression Confidence Factor, a

Q: Ratio of sample standard deviation to mean

a is function of M andQ = ZB/B (sample SD / sample mean regression)
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Phase 3: Generalize to gegpltal models and obse&twons

Dynamical system governed by (stochastic) Difference Equation:

dxt = f(xt, t) + G(xt, t)dBt, t=>0 (1)
Observations at discrete times:
yk:h(xk,tk)+vk; k=1 2 ...; e+ 1> 2ty (2)

Observational error white in time and Gaussian (nice, not essential).

Vi — N(O,Ry) (3)
Complete history of observations is:

Yo =4y 41 (4)
Goal: Find probability distrilstion for state at time t:

p(x 1] Y}) (5)
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Phase 3: Generalize to gegpltal models and obse&twons

State between observation times obtained from Difference Equation.
Need to update state given new observation:

p(X tk‘Ytk) = p(x, tk‘yk’ Ytk—l) (6)
Apply Bayes rule:
LY. ) = p(yk‘xk,Y )p(X, tk‘Ytk . -
k‘ 2 p(yk‘Ytk .
Noise is white in time (3) so:
p(yk‘xk, Ytk—l) = p(yk‘xk) (8)

Integrate numerator to get normalizing denominator:

PO Ve, 07 [ POKPIPO §Yy Jdx (©)
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Phase 3: Generalize to gegpltal models and obse&twons

Probability after new observation:
p(yk‘x) p(x t ‘Y

t
%’ K| Y tkD Ip(y &Pty | Yy E

(10)

Exactly analogous to earlier derivation except that x and y are vectors.

EXCEPT, no guarantee we have prior sample for each observation.

SO, let's make sure we have priors by ‘extending’ state vector.
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Phase 3: Generalize to gegpltal models and obse&twons

Extending the state vector to joint state-observation vector.

Recall: Yy = h(xk, tk) V) k=1 2 ... tk+ 1>tk2t0 (2)

Applying h to x at a given time gives expected values of observations.
Get prior sample of obs. by applying h to each sample of state vector x.

Let z = [X, y] be the combined vector of state and observations.
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Phase 3: Generalize to gegpltal models and obse&twons

NOW, we have a prior for each observation:

p(yk‘z) p(Z, tk‘ tk
Vg = _
P %Y, 0 J'p(yk\é)p(&tk\Ytk_l

(10.ext)

Anderson: Ensemble Tutorial 141 1/19/05



Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8ety

Let vy, be composed of s subsets of observatiogg: = {y&, yﬁ, yi}

Observational errors for obs. in set | independent of those In set |.

Then:p(y(2) - 1 P(%(2
=1

Can rewrite (10.ext) as series of products and normalizations.
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8et y

Implication: can assimilate observation subsets sequentially.

If subsets are scalar (individual obs. have mutually independent error
distributions), can assimilate each observation sequentially.

If not, have two options:
1. Repeat everything above with matrix algebra.

2. Do singular value decomposition; diagonalize obs. error covariance
Assimilate observations sequentially in rotated space.
Rotate result back to original space.

Good news: Most geophysical obs. have independent errors!
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

1. Use model to advanessembl€3 members here)
to time at which next observation becomes available.

Ensemble state Ensemble state at
estimate after using time of next obser-
previous observation vation (orior).

(analysi3. /

/ *
N By
*
t i1
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.

y Theory: observations’

from instruments with
uncorrelated errors can
\be done sequentially.)

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

3. Getobserved valuandobservational error distribution

from observing system.

*
*e
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

N TN

< i | — - : — :

>y

(Note: Difference between
different flavors of ensent-
ble filters is primarily in

@bservation Increment. y

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

?
|

(Theory: impact of
observation increments on
each state variable can be
handled sequentially!

s 4 \_

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. h errors; s _ 4. Sampling Error;
Replresentateness '- L=~ "7 7" Gaussian Assumption
\ r 7
| *4@»
\ 1 1
\ : v y — - - Y

1. Model Error 5. Sampling Error;”
Assuming Linear
Statistical Relation
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Dealing Wth Ensemble Filter Errors

Fix 1, 2, 3 independently

'3. Gross Obs. Errors

HARD but ongoing.

5. Sampling Error,"
Assuming Linear
Statistical Relation

1. Model Efror

2. h errors; ’ 4. Sampling Error;
Representateness # = T =Gaussian Assumpti
1
. y
1 L
' A
\
.
* ‘ -— .y,

DnOften, ensemble filters...
1-4: Covariance inflation,
Increase prior uncertainty
to give obs more impact.

5. ‘Localization’: only let

obs. impact a set of
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‘nearby’ state variables.
Often smoothly decrease

Impact to 0 as function of
distance.
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Model/Filter Error; Filter Drergence and Ga@riance Inflation

1. Model imperfections lead to erroneous prior distributions.
2. Filter sampling errors lead to too little variance in priors.
3. Covariance inflation one way to attack this.

Bjior

Distributions for
State Variable x

Inflated Prior

Mean,x
- —— -
- - - - X

4. Inflated variance I8 times raw variance.
5. For ensemble membeiinflate(x) = JA(x —X) + X
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Physical Space Gariance Inflation

Capabilities:
1. Can be very effective for a variety of models.
2. Can maintain linear balances.
3. Stays on local flat manifolds.
4. Simple and inexpensive.

Liabilities:
1. State variables not constrained by observations can ‘blow up’.
For instance unobserved regions near the top of AGCMs.
2. Magnitude oA normally selected by trial and error.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
L Observation in red.
Prior ensemble in green.

Observing all three state
variables.

ODbs. error variance = 4.0.

4 20-member ensembles.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.

Observation In red.

e Prior ensemble in green.

.
TRt
P A
N

-

&
:
.
4

L
te g
R

N
T
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

3

Observation In red.

PR AR

- o -
. R ,
.o .,
e . e RN =,
. D w e . o - , -
t" .. N - - -
P O N o B . ‘.
. M Ce Tt 0 - ‘., ' ‘. . .
s R R TS : ., : .
L SRR ST RN R * . - ‘, - ‘.
L IR IR S . ) ., - -,
e PR 'ﬂ'-‘:“‘ O e _ .ol S .
R LA AT T AR Cha PR . LY, ‘. N ‘.
N e ey tee i g : '
|, b W U e e T g, . ™ ) T -
AR S AL TP S I S : ’ i - .
PR I A ERAEE PSR N et - ., PP
LI 2 Cegt, - e T Pl W N - B - . ., -
. . o8 oo LA . * R . z LV
.O‘-”'l' A . 3 Toze PR3 e - ., N [y .‘o‘ .-0{ .
PR AR . N ‘¢ ‘ - s et N, .
. - - o PR PO TP IR . .
‘e Xl N . Py - - . w7, -
AR e o - T RLCT S vet s
R . . “r RN Voo ‘”".;02,-,.'.
s 2 . <. R LA
. vty *, . . .
R T3 ,&”‘ . . BT I A
-.’:.- & ,"Q-“ .o, - -
. e -, “, LTS
RN TRE o ,':-.'-' "oyt
. Ql‘z‘ e, k.' ey .
’..'-‘0 R 0‘:-:-"7': . "
A M . . * N
AL
d s * '8?3 A S et
e ¢ * . - .
oLl DR
. L S o 4 Tl
RIRARY ORI
* o
S Se el
N * "
P * * e,y -
- ’ .
R . .
B . .,
B . . = N -
N TR X . . J + N
o -~ .y . Ll R N
: b ey " v‘\‘-.-..,yt 4 ey . .

Anderson: Ensemble Tutori

al

158 1/19/05



Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

= Observation in red.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

I Observation in red.
Prior ensemble in green.
The prior is not linear here.

Standard regression might be
pretty bad.

Covariance inflation might
also be bad, pushing
ensemble off the attractor.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

= Observation in red.
Prior ensemble in green.
The prior is not linear here.
On the other hand...

20 Hard to contrive examples
this bad.

Behavior like this not
apparent in real assimilations.
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Phase 4. Quick look at a real atmospheric application

Results from CAM Assimilation: Januar2003

Model:
CAM 2.0 T42L26.
U,V, T, Q and PS state variables impacted by observations.
Land model (CLM 2.0) not impacted by observations.
Observed SSTs.

Assimilation / Prediction Experiments:
Uses observations used in reanalysis
(Radiosondes, ACARS, Satellite Winds..., no surface obs.).
Initial tests for January, 2003.
Assimilated every 6 hours; +/- 1.5 hour window for obs.
Run on CGD linux cluster Anchorage.
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Northern Hemisphere Temperature: Bias and RMSE
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Pressure(hPa)
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Northern Hemisphere Winds
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Pressure(hPa)
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North America Winds
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12 GMT 4 January, 2003, CAM Analysis
Specific Humidity (kg/kg)

latitude (degrees_north)

jla Thu Jun 24 09:26:03 2004

longitude (degrees_east)
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Ensemble filters: What'net?

. Adaptive error correction.

. Parameter estimation for models.

. Better understanding of error characteristics.

. Understanding ensemble size requirements for given problem.
. Dealing with complicated forward observation operators.

. Ensemble smoothers (using data from the future).

~N OO O B~ W DN P

. Many, many, many exotic applications.
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Data Assimilation Researclestbed (IART)

Software to do everything here (and more) is in DART.
Requires FO0 compiler, Matlab.

Avalilable from www.cgd.ucar.edu/DAl/.
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