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Ensemble filters: Updating additional prior statear

Two primary error sources:

1. Sampling error due to noise.
Even if linear relation, sample regression

2. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation 
(see section 10).

May need to address both issues for good perfo
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence

Suppo
state v
be un
obser

Unobs
should

Unobs
deviat
decre

Expec
is neg
zero s

−3

−2

−1

0

1

2

3

U
no

bs
er

ve
d 

S
ta

te
 V

ar
ia

bl
e SD=0.88

MN=0.12

SD=0.40
MN=0.12

After Obs. 61

Sample Correl. = 0.26

−2 0 2
Observed Variable



9/8/06

se unobserved
ariable is known to

related to set of
ved variables.

erved variable
remain unchanged

erved standard
ion is persistently
ased.

ted change in |SD|
ative for any non-
ample correlation!
Anderson: Ensemble Tutorial 8

Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Ignoring meaningful observations due to overco
FILTER DIVERGENCE.

This was seen in the initial Lorenz_96 (40-varia

The spread became small => the filter thought 

The error stayed large because good observati
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Ways to deal with regression samplin

1. Ignore it: if number of unrelated observations
and there is some way of maintaining varian
(We did this in the 3 and 9 variable models).

2. Use larger ensembles to limit sampling error.
(This can get expensive for big problems).
Try modifyingens_size in filter_nml (try 40, 80

3. Use additional a priori information about rela
observations and state variables.
(Don’t let an obs. impact state if they are kn

4. Try to determine the amount of sampling erro
(There are many ways to do this; some are 
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Atmospheric assimilation problems.
Weight regression as function of horizontaldistanc
Gaspari-Cohn: 5th order compactly supported p
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Can use other functions to weight regression.
Unclear whatdistance means for some obs./state
Referred to asLOCALIZATION.
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are available.
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assim_tools_nml
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DART provides several localization options:

1. Different shapes for the localization function 
Controlled byselect_localization in cov_cutoff_

2. Halfwidth of localization function set bycutoff in

1=> Gaspari-Cohn

2=>Boxcar

3=>Ramped Boxcar
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Experimenting with Lorenz_96:

The Lorenz_96 domain is mapped to a [0, 1] pe

Try a variety of half widths for a Gaspari Cohn l
(First changeens_size in filter_nml back to 20)
Changecutoff in assim_tools_nml

We already know that a very large localization h

What happens for a very small value?

What happens with intermediate values?

Can also try changing the shape:
Try option 2 or 3 forselect_localization in cov_
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Ways to deal with regression samplin

4. Try to determine the amount of sampling erro

Many ways to do this. DART implements one na
1. Take set of increments from a given obse
2. Suppose this observation and a state var
3. Compute the expected decrease in sprea
4. Add this amount of spread back into the s

The expected decrease in spread is computed 
Results of off-line simulation are tabulated and 

(This can be a very useful technique when you’r

Try this algorithm: setspread_restoration in assim_


