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Ensemble filters: Updating additional prior stadeiables.

Two primary error sources:

1. Sampling error due to noise.
Even if linear relation, sample regression coefficient imprecise.

2. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation over range of prior
(see section 10).

May need to address both issues for good performance.
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Suppose unobserved
state variable is known to
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observed variables.

Finite samples from joint

distribution will have
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence

After Obs. 41

N W
2
i
O
o¢]
o

AFek
* *

Il o ek

B gk k *

Unobserved State Variable
(@)

Sample Correl. = 0.01

| e

-2 0 2
Observed Variable

Anderson: Ensemble Tutorial 6

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable
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i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.
Expected change in |SD|

IS negative for any non-
zero sample correlation!

9/8/06



Regression sampling error and filter divergence
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Estimates of unobs.

| become too confident

| Give progressively less
I weight to any meaningful

observations.

1 End result can be that

meaningful obs. are
essentially ignored.
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Ignoring meaningful observations due to overconfidence is one type o
FILTER DIVERGENCE.

This was seen in the initial Lorenz_96 (40-variable) experiment.
The spread became small => the filter thought it had a good estimate.

The error stayed large because good observations were being ignhoret
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Plot shows expected
absolute value of sample
correlation vs. true
correlation.

For negligible true
correlations, errors are
still undesirably large
even for 80 member
ensembles.
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Ways to deal with igression sampling error:

1. Ignore it: if number of unrelated observations is small
and there is some way of maintaining variance in priors.
(We did this in the 3 and 9 variable models).

2. Use larger ensembles to limit sampling error.
(This can get expensive for big problems).
Try modifyingens_sizen filter_nmi(try 40, 80).
3. Use additional a priori information about relation between
observations and state variables.
(Don't let an obs. impact state if they are know to be unrelated)

4. Try to determine the amount of sampling error and correct for it.
(There are many ways to do this; some are simple, some complex
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
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. Distance from Observation (Km?)
Atmospheric assimilation problems.

Weight regression as function of horizordatancefrom observation.
Gaspari-Cohn: 5th order compactly supported polynomial.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Halfwidth

Regression Weight
o
O1

—1000 0 1000 2000
Distance from Observation (Km?)
Can use other functions to weight regression.

Unclear whatlistancemeans for some obs./state variable pairs.
Referred to aEOCALIZATION.

—2%00
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DART provides sgeral localization options:

1. Different shapes for the localization function are available.
Controlled byselect_localizationn cov_cutoff nml.

o : 5 : :
1=> Gaspari-Cohn 5,  / N\o
=
3550 —10;00 5 1(_);00 5500
Dis’ ’ ~" rvation
1t
2=>Boxcar =3
=
9000 —1(_)} 1(_);00 2000
Dis arvation
1f- : : :
3:>Ramped Boxcar §05
96501000 5 1000 5000

Distance from Observation

2. Halfwidth of localization function set bgutoffin assim_tools _nml
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Experimenting with Lorenz_96:
The Lorenz_96 domain is mapped to a [0, 1] periodic range.
Try a variety of half widths for a Gaspari Cohn localization.
(First changeens_sizen filter_nmlback to 20)
Changecutoffin assim_tools _nml
We already know that a very large localization half-width diverges.
What happens for a very small value?

What happens with intermediate values?

Can also try changing the shape:
Try option 2 or 3 foiselect_localizationn cov_cutoff_nml
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Ways to deal with igression sampling error:

4. Try to determine the amount of sampling error and correct for it.
Many ways to do this. DART implements one naive way:
1. Take set of increments from a given observation,
2. Suppose this observation and a state variable are not correlatec
3. Compute the expected decrease in spread given not correlated,
4. Add this amount of spread back into the state variable.

The expected decrease in spread is computed by off-line Monte Carlo
Results of off-line simulation are tabulated and applied.

(This can be a very useful technigue when you're analytically clueless)

Try this algorithm: se$pread_restoratiom assim_tools_nntb true.

Anderson: Ensemble Tutorial 18 9/8/06



