
 1 

 
 
 
 
 
 

Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation 

 

Jeffrey L. Anderson and Nancy Collins 

NCAR Data Assimilation Research Section 

P.O. Box 3000 

Boulder, CO  80307-3000 

jla@ucar.edu 

Revised for Journal of Atmospheric and Oceanic Technology-A 

12 November, 2006 

 

 

 

 

 

 

 

 

 

  

 



 2 

Abstract 

A variant of a least squares ensemble (Kalman) filter that is suitable for implementation 

on parallel architectures is presented. This parallel ensemble filter produces results that 

are identical to those from sequential algorithms already described in the literature when 

forward observation operators that relate the model state vector to the expected value of 

observations are linear (although actual results may differ due to floating point arithmetic 

round-off error). For non-linear forward observation operators, the sequential and parallel 

algorithms solve different linear approximations to the full problem but produce 

qualitatively similar results. The parallel algorithm can be implemented to produce 

identical answers with the state variable prior ensembles arbitrarily partitioned onto a set 

of processors for the assimilation step (no caveat on round-off is needed for this result).   

 

Example implementations of the parallel algorithm are described for environments with 

low (high) communication latency and cost. Hybrids of these implementations and the 

traditional sequential ensemble filter can be designed to optimize performance for a 

variety of parallel computing environments. For large models on machines with good 

communications, it is possible to implement the parallel algorithm to scale efficiently to 

thousands of processors while bit-wise reproducing the results from a single processor 

implementation. Timing results on several linux clusters are presented from an 

implementation appropriate for machines with low-latency communication. 

 

Most ensemble Kalman filter variants that have appeared in the literature differ only in 

the details of how a prior ensemble estimate of a scalar observation is updated given an 



 3 

observed value and the observational error distribution. These details do not impact other 

parts of either the sequential or parallel filter algorithms here, so a variety of ensemble 

filters including ensemble square root and perturbed observations filters can be used with 

all the implementations described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

1. Introduction 

 Ensemble (Kalman) filters are becoming increasingly popular tools for doing data 

assimilation in ocean and atmospheric applications. These methods can be derived as 

ensemble extensions to classical Kalman filters (Kalman 1960, Evensen 1994, 

Houtekamer and Mitchell 1998, Whitaker and Hamill 2002) or as Monte Carlo 

approximations to the Bayesian filtering problem (Jazwinski 1970, Anderson and 

Anderson 1999). Anderson (2003; A03 hereafter) presented a sequential least squares 

framework for implementing most variants of ensemble filters that have been described 

in the literature. In this framework, it is possible to completely describe an ensemble filter 

by discussing only the impact of a single scalar observation on a single state variable. 

Several filters have been implemented using this framework in both idealized and large 

models (Zhang et al 2005). However, the sequential nature of the algorithm has led to 

concerns that it cannot be practically implemented for large problems on massively 

parallel computers. Several other methods for parallelizing filters have been presented 

(Ott et al 2004, Keppenne and Rienecker 2002, Houtekamer and Mitchell 2001). Here, a 

parallel algorithm is developed in the least squares framework. When forward 

observation operators are linear, the sequential algorithm in A03 and the parallel 

algorithm are proved to be identical although actual results may differ due to round-off 

error from finite precision arithmetic. An important feature of the parallel algorithm is 

that prior ensembles of state variables can be partitioned onto any number of processors 

in an arbitrary fashion for assimilation and produce identical answers (even with finite 

precision) to those from a single processor implementation. This is particularly useful 



 5 

when developing filters for large models with sensitive dependence on initial conditions 

where bit-wise differences can lead to large differences later in an assimilation. 

 The simplicity of the least squares framework is maintained making 

embellishments such as quality control, sampling error correction and localization 

(Houtekamer and Mitchell 2001, Mitchell et al 2002), and covariance inflation (Anderson 

and Anderson 1999) straightforward to implement in the parallel algorithm. The 

flexibility in partitioning prior state variable ensembles allows implementations that are 

efficient on a variety of parallel architectures. Two sample implementations of the 

parallel algorithm are discussed, one for low latency cheap communication and another 

for high latency expensive communication. The low latency algorithm is implemented as 

part of the Data Assimilation Research Testbed facility at NCAR and scaling results are 

presented for large models using this algorithm. 

 The parallel algorithm can also be advantageous for single processor 

implementations. It may be expensive in large, complicated models to compute forward 

observation operators individually as required by the sequential algorithm. For instance, 

observations of 6-hour accumulated precipitation could technically require re-running an 

ensemble of model integrations for 6-hours before computing each rainfall forward 

operator. The parallel algorithm allows all forward operators for the same time to be 

computed at once. The algorithm an even be extended to allow observation operators 

from different times to be computed at one time. This capability is already a central 

feature of a number of other filter implementations where it is primarily important for 

time interpolation of operators (Houtekamer et al. 2005, Houtekamer and Mitchell 2005, 

Ott et al 2004, Hamill and Whitaker 2005) 



 6 

 Section 2 reviews the least squares framework for assimilation while section 3 

reviews the sequential algorithm and introduces the parallel algorithm. Section 4 outlines 

two implementations of the parallel algorithm and discusses computational cost and 

section 5 presents conclusions. 

 

2. A probabilistic framework for data assimilation 

 The ensemble filter assimilation methods described in A03 are Monte Carlo 

approximations to a general filtering algorithm developed using Bayes theorem 

(Tarantola 1987). The probability distribution of a model state is approximated by an N-

member sample (ensemble) of M-dimensional state vectors, 

 N,,1, K=n
n
x          (2.1) 

where N is the ensemble size, and each 
n
x  is an M-vector. The set of all observations 

available by time 
1!at  is 

! 

Y
a"1

 and an additional set of K scalar observations, 

  

! 

ya = y
1
,y

2
,K,y

K{ } becomes available at 
a
t . Ensemble filters compute an updated 

(posterior) sample at 
a
t ,

! 

p(x,ta |Ya"1,ya ) , given the posterior distribution at 
1!at , 

! 

p(x,ta"1 |Ya"1) .  

 First, posterior samples at 
1!at  are advanced to time 

a
t  with a model 

 N,,1),,,(),,(),,( 1,11,11,1, K=+== !!!!!! nttgttfttF aanaaanaaanana xxxx  (2.2) 

where f is a determinisitic function and g is a stochastic function in which a different 

realization of the stochastic components is used to advance each ensemble member. The 

first subscript on x in (2.2) indexes the time and the second the ensemble member. The 

time-integrated sample (2.2) is an ensemble approximation of the prior distribution at 
a
t , 



 7 

! 

p(x,ta |Ya"1) . (Throughout this report, k, m, and n are reserved to index observations, 

state variable components, and ensemble members respectively.)  

 Observations in 

! 

y
a
 are related to the model state vector by forward observation 

operators, 

! 

y
k

= hk (x) + " k ,  k = 1, ..., K       (2.3) 

where the observational error distribution, a function of both the observing system and 

the model, through representativeness error (Hamill and Whitaker 2005), is  

 ( )2

,
,0

kok
Normal !" = .        (2.4) 

If observational errors in (2.3) are independent of all previous observations, an 

application of Bayes theorem leads to 

! 

p(x,ta |Ya"1,ya ) = p(ya | x)p(x,ta |Ya"1) /norm .    (2.5) 

The denominator is a normalization so that (2.5) is a probability distribution but is not 

explicitly computed in the ensemble algorithms described here. 

  Further assuming that the 
k

!  for the observations in set 

! 

y
a
 are mutually 

independent allows sequential assimilation of observations (Houtekamer and Mitchell 

2001)  

K,,1,/),()|(),( ,1, K==+ knormtpyptp ka

k

ka xxx     (2.6) 

with 

 
  

! 

p(x,ta,k ) " p(x,ta |Ya#1,{y
j
, j < k}), k =1,K,K +1.    (2.7)  

 Equation (2.6) computes the posterior distribution after assimilating the kth 

observation in 

! 

y
a
. This posterior is the product of the observation likelihood (first term in 

the numerator) times the prior distribution conditioned on all observations before the kth 



 8 

(second term in the numerator). Given the assumptions above, an ensemble method for 

solving (2.6) along with a model to advance state estimates in time (2.2) is sufficient for 

building an ensemble filter. Ensemble methods can be applied sequentially to assimilate 

any number of sets of observations. 

 

3. Two ensemble filter algorithms 

 a. Sequential algorithm 

Figure 1 is a schematic depiction of the A03 algorithm showing how observations 

available at a single time can be assimilated sequentially. The kth observation is 

assimilated by applying the forward observation operator 
k
h  to each ensemble sample of 

the state vector k
x̂  that has been updated by all observations before the kth; k

x̂  is an 

ensemble representation of (2.7) for a given k. The hat on the state vector in Fig. 1 serves 

to distinguish these from state estimates in the parallel algorithm (Figs. 2 and 3). This 

yields a prior ensemble estimate of the observation ky  

 N,,1),ˆ( K== nhy k

nk

k

n x        (3.1) 

where n indexes the ensemble member, and each k

n
x̂  is an M-vector.  

 The algorithm next computes an ensemble of increments, k
y! , for ky  given the 

prior ensemble, the observed value ky~ , and the observational error variance 2

,ko
! . (The 

use of ky~  instead of o

ky  and other deviations from the recommendations in Ide et al 

(1997) are an attempt to clarify the notation used for the parallel ensemble algorithm 

below).  



 9 

 For instance, the Ensemble Adjustment Filter (Anderson 2001) computes 

increments by approximating ky  as ),( 2

k

kyNormal !  where ky and 2

k
!  are the ensemble 

mean and variance. The product of ),( 2

k

kyNormal !  and the observation likelihood, here 

assumed to be ),~( 2

,ko

kyNormal ! , in the numerator of (2.6) is ),( 2

u

uyNormal !  with 

 

! 

"
u

2 = "
k

2( )
#1

+ "
o,k

2( )
#1

[ ]
#1

       (3.2) 

and 

 

! 

y 
u =" u

2 " k

2( )
#1

y 
k + " o,k

2( )
#1

˜ y 
k( ).      (3.3) 

The observation prior ensemble is shifted and linearly compacted giving an updated 

ensemble with sample statistics u
y and 2

u
! . Increments are   

 ( ) Nnyyyyy k

n

ukk

nku

k

n ,...,1,
22 =!+!=" ## .    (3.4) 

 Many other ensemble filters algorithms differ only in the details of the way in 

which these increments are computed. Computation of the observation space increments 

for the kth observation can be written 

 ),~,( 2

,ko

kkk yD !yy ="        (3.5) 

where D is an N-vector function and k
y  and k

y!  are vectors containing all ensemble 

members for the prior and the increments respectively. The perturbed observation 

approach of the ensemble Kalman filter (Houtekamer and Mitchell 1998, Burgers et al 

1998) is an example of an algorithm that uses an alternate increment function, D. Other 

ensemble filter methods (Tippett et al 2003, Pham 2001) are also directly compatible with 

both the parallel and sequential algorithms developed in this section since D can be 

replaced by an alternative without impacting the rest of the algorithms. 



 10 

 Increments for each prior state vector component are computed by linearly 

regressing using the prior joint sample statistics. The increments from the kth observation 

are 

 N,...,1,M,...,1,)ˆ,(ˆˆ
, ==!=! nmyx k

n

k

m

kk

nm xy"     (3.6) 

where k
y  and k

m
x̂  are ensemble size vectors. The sample regression operator is 

( ) ( ) ( ) )()(ˆ

1

2

11

aba, Sbaaaabaa
n

N

n

n

N

n

nn

N

n

n !!!
===

"=""#$    (3.7) 

where a and b are N-vectors and the bar is an ensemble mean. 

 It is convenient to define the M-vector of regression coefficients  

 
  

! 

ˆ " 
M

y
k
, ˆ x 

k( ) = ˆ " (y
k
, ˆ x 

1

k
), ˆ " (y k

, ˆ x 
2

k
),K, ˆ " (y k

, ˆ x 
M

k
)( )     (3.8) 

where k

m
x̂  is an N-vector composed of the ensemble samples of the mth component of the 

state vector. 

 Finally, the increments in (3.6) are added to k
x̂  to generate 1

ˆ
+k

x , represented by 

the plus in Fig. 1, 

 .N,,1,M,,1,ˆˆˆ
,,

1

,
KK ==!+=

+
nmxxx

k

nm

k

nm

k

nm
    (3.9) 

The steps above are then repeated for each subsequent observation until all have been 

used. 

 b. Parallel algorithm 

Figure 2 depicts a parallel algorithm for ensemble filters. First, the prior ensembles for all 

observations at this time are computed (see also Houtekamer et al. 2005 and works in 

press, Anderson 2001) by applying the forward observation operators to each ensemble 

sample of 1
x  (three observations are shown in Fig. 2) 



 11 

 N,,1),( 1

,0 K== nhy nk

k

n x .       (3.10) 

Additional notation is required for the parallel algorithm. Terms like k

jy  (an N-vector) 

are ensemble samples of the kth observation after it has been impacted by the first j 

observations;  k

ny ,0
in (3.10) refers to the nth ensemble member of the kth observation 

before it has been impacted by any other observations. 

 The algorithm computes increments, 

! 

"y
o

1 , for the first observation and uses 

regression to update both the state variable estimate, 

! 

x
1, and the prior ensemble estimates 

for all subsequent observations,   

! 

y
o

2
,y

o

3
,K, as shown in Figs. 2 and 3. Next, the updated 

prior, 

! 

x
2 in Fig. 2, observed value, 

! 

˜ y 
2, and observational error variance, 

! 

"
o,2

2 , for the 

second observation are used to compute increments. Regression is used to update the 

state estimate, 

! 

x
2, and the prior ensembles for the third and all subsequent observations. 

The process is repeated for the prior ensemble of the third observation updated by the 

first and second observations as shown in Fig. 3. Again, the prior, observed value and 

observation variance are used to compute increments for the third observation and 

regressed increments are computed for the state and for the priors for observations 4 and 

above. The procedure is repeated until increments for all observations have been 

computed and applied via regression. 

 A more formal inductive description of the parallel algorithm follows. Assume 

that increments for all observations before the kth have been computed and used so that 

k

ky 1! , the prior ensemble estimate of the kth observation conditioned on all previous 

observations, is available.  Increments for k

k 1!y  are computed as 

 ),~,( 2

,11 ko

kk

k

k

k yD !"" =# yy        (3.11) 



 12 

where D is defined in (3.5). Increments for the state estimates are computed as 

N,...,1,M,...,1,),(ˆ ,11, ==!=! "" nmyx k

nk

k

m

k

k

k

nm xy#    (3.12) 

and added to the state vector ensemble k
x . 

 Increments due to the assimilation of the kth observation are also computed and 

added to all subsequent observation prior ensemble estimates: 

 N,...,1,K,...,1,),(ˆ ,111,1, =+=!+= """" nkjyyy k

nk

j

k

k

k

j

nk

j

nk yy#   (3.13) 

The algorithm repeats until all K observations have been used. 

 c. Comparison of sequential and parallel algorithms  

 The key modification in the parallel algorithm is that the observation prior 

ensembles are updated exactly like the state variables by regression using sample 

statistics. This entails added computation to do the regressions of each observation 

variable's increments onto all subsequent observations at a cost of O(K2). 

 Even on a single processor, the parallel algorithm can lead to substantial 

computational savings and simplified implementation when the formulation of models 

makes it easier to apply forward observation operators all at once, rather than sequentially 

after intermediate state updates. This is also used to do time interpolation of forward 

observation operators in many ensemble filtering systems (Houtekamer et al. 2005, Ott et 

al. 2004). A good example involves the assimilation of 6-hour accumulated rainfall 

observations in an atmospheric GCM. Rainfall is generally the sum of an output of a 

physical parameterization package over a sequence of model timesteps. In the sequential 

algorithm, this requires that the ensemble of model advances be rerun over the 6-hour 

interval in order to compute a prior ensemble of rainfall values for each individual 

rainfall observation. This is clearly impractical in large models. More subtle examples 



 13 

occur when conversion of model state variables to another grid or a non-state variable 

type are part of forward operators. In such cases, computing a large set of observations at 

once may be much cheaper than computing them independently.  

 d. Localization of observation impact 

A number of enhancements are used to improve ensemble filter performance. Errors in 

ensemble filters tend to produce a systematic underestimate of ensemble variance that can 

lead to poor filter performance or filter divergence (Chui and Chen 1987). This can be 

ameliorated by covariance inflation (Anderson and Anderson 1999) that adds variance to 

prior ensemble estimates by linearly 'inflating' ensemble members around the ensemble 

mean. Application of inflation is identical in the sequential and parallel algorithms. 

Inflation is applied immediately after the ensemble members are advanced by the model 

but before assimilation begins. 

 The ensemble sample regression coefficients in (3.12 and 3.13) are subject to 

sampling error that increases as the absolute value of the correlation between an 

observation and a state variable (or another observation) becomes small. The amount of 

information available from an observation that is weakly correlated with a state variable 

is also expected to be small. To reduce error and computation, the regression coefficients 

in (3.12 and 3.13) can be multiplied by a function of the expected correlation between the 

observation and the state (or other observed) variable. If the expected absolute value of 

the correlation is small enough, this weight can be set to zero and the regression need not 

be performed. The expected correlation is not generally known a priori. However, in 

many dynamical models there is reason to believe that the correlations become smaller as 

a function of the physical distance from the observation (Mitchell and Houtekamer 2000, 



 14 

Hamill et al 2001). When the regression of increments from an observation located at zo 

onto a state variable (or observation prior) at zs is performed with (3.12, 3.13), the 

regression coefficient can be multiplied by ζ(d, c) where d is the distance between zs and 

zo and c specifies how rapidly the correlation is believed to fall off as a function of 

distance. In the atmospheric and ocean literature, the most common ζ is the piecewise 

continuous compactly supported function of Gaspari and Cohn (1999) with half-width c. 

For cd 2! , the observation has no impact on the state variable. For d<2c, ζ 

approximates a gaussian. More recently, algorithms for adaptively computing the 

required localization (Anderson 2007) have been developed and these are also compatible 

with both the parallel and sequential algorithm. 

4. Implementations of the parallel algorithm 

This section examines implementing the parallel algorithm on P processors. K is the 

number of observations available at a given time, M is the size of the state vector, and N 

is the ensemble size. 

 Although implementing the parallel algorithm on a single processor requires 

additional computation, it is more scalable than the sequential one. When ensemble 

members are being advanced in time, the entire state vector for one ensemble is on a 

single (set of) processors; this is referred to as state-complete. When computing 

observation increments and regressions during the assimilation step, all ensemble 

members of a given state vector element are on a single processor so that ensemble 

means and variances can be computed without communication; this is referred to as 

ensemble-complete. Transposing ensembles of state vectors between state-complete and 

ensemble-complete requires communicating O(MN) real values. The sequential 



 15 

algorithm is not amenable to a multi-processor implementation in this way; direct 

implementation would require a pair of transposes for the assimilation of each scalar 

observation. 

 The parallel algorithm allows all forward operators for a set to be computed in 

parallel immediately after the model advance while storage is state-complete (Fig. 2). A 

single transpose to ensemble-complete is required before assimilating. In this case, the 

observation prior ensembles must also be transposed to ensemble-complete, necessitating 

communication of an additional O(KN) reals.  

 Both implementations also require advancing models and computing forward 

observation operators. Model advances are easily parallelized up to the number of 

ensemble members, N, and to QN if a single model integration can be parallelized across 

Q processors (although this implicitly involves additional communication). Forward 

observation operators are trivially parallel across N processors but may require additional 

communication to be parallelized on more than N processors.  

 a. Low latency implementation 

Details of interprocessor communication capabilities can motivate a variety of 

distributions of ensemble-complete state vector components and observation priors on 

processors. The first implementation of the parallel algorithm assumes that 

communication latency is low and speed is high and proceeds as follows: 

  

1. Model ensembles are advanced to the time of the next observation set. 

2. Each of the K forward observation operators is applied to each of the N ensemble 

estimates (Fig. 2). 



 16 

3. The state ensembles and the observation prior ensembles are transposed to ensemble-

complete. Each processor gets M/P randomly selected state vector components and K/P 

randomly selected observation priors. The observed value and observational error 

standard deviation are placed on the processor with the corresponding prior observation 

ensemble. 

4. For each observation in turn: 

i. The processor with this observation prior computes the observation increments 

(3.11) at cost O(N) and broadcasts the observation prior distribution and the 

increments, O(N) reals. 

ii. Each processor uses the increments to update each of its state vector (3.12) and 

observation prior (3.13) ensembles. Number of operations per processor is 

O(NM/P + NK/P). This step scales to a total of M+K processors if each has only a 

single ensemble of a state variable or observation prior.  

5. The updated state vector ensembles are transposed to state-complete by 

communicating of O(NM) reals. 

 

 The rate limiting step in the assimilation portion is the sequential computation of 

the observation increments, a total of O(KN) operations, plus the communication of 

O(KN) reals. If localization is being used, it is possible to compute prior increments in 

parallel for observations that are separated by distance d>2c. As observation density gets 

large, one could also adaptively reduce the cutoff distance c as a method of observation 

‘thinning’ (Bormann et al 2003). This would allow more observation increments to be 

computed in parallel as the number of observations increased.  



 17 

 To minimize waiting, when the information for observation k is broadcast, the 

processor with the prior distribution for observation k+1 can first compute the update for 

observation k+1 and broadcast the increments before updating the rest of its state variable 

components and observations. The random distribution of the state vector components 

and observations on processors addresses issues related to load balancing if the number 

of state variables and observations close to a given observation is not uniform and if 

localization is being used to limit the impact of an observation to some 'nearby' region. 

 b. A very high latency implementation 

If the latency cost associated with communications is very large, a different 

implementation of the parallel algorithm can allow more limited speed-up on smaller 

numbers of processors. This algorithm can be useful on commodity clusters in which 

communication between processors is through a slow interconnect or a shared file 

system. It assumes that any communication between processors outside of the transposes 

is prohibitively expensive. 

 

Steps 1 and 2 are identical to the low latency implementation. 

3. In the transpose, each processor is given ensembles for a set of state variable 

components that are 'close' to each other for localization purposes. For simplicity, assume 

that load balancing is not an issue and each processor receives M/P state variable 

components. Each processor also receives the observation prior ensembles for all 

observations that are 'close' to any of its state variables; the number is bounded above by 

K. 

4. Each processor sequentially processes its set of observations as follows: 



 18 

i. The observation increments are computed at cost of O(N). 

ii. Each state variable component and unassimilated observation prior on the 

processor are updated by regression at cost O(NM/P + NK/P).  

The total cost for step 4 is O(KN + KNM/P + NK2/P) 

5. Reverse transpose is identical to low latency implementation.   

 

 Load balancing problems can exist if the observation density is not uniform across 

the state variable domains assigned to different processors in step 3. More sophisticated 

implementations could have fewer model state variables on a processor if they were 

associated with larger numbers of observations. For instance, in an NWP application with 

in situ observations, larger sets of variables from over the southern ocean would be 

placed on a single processor as compared to state variables from over the much more 

densely observed North America. 

 c. Bit-wise reproducibility 

The low-latency implementation of the parallel algorithm can be coded so that the results 

are reproducible no matter how the problem is partitioned on an arbitrary number of 

processors and for arbitrary ensemble initial conditions and observation operators. The 

observations are always processed in the same order, so the observation prior increments 

are always identical. For stochastic update algorithms like the perturbed observations 

ensemble Kalman filter (Houtekamer and Mitchell 1998, Burgers et al. 1998) care must 

be taken so that the same random sequence is used no matter the number of processors; in 

the Canadian system this is done using seeds that are a function of the observation 

location, ensemble number, and the date. The impact of the increments on the state 



 19 

variables and the subsequent observation prior ensembles can be computed completely in 

parallel so the partitioning onto processors has no impact on the results. This bit-wise 

reproducibility can be helpful for validating the parallel algorithm. When applied to 

models that depend sensitively on initial conditions, even truncation errors can lead to 

large differences as an assimilation proceeds. It can be difficult to distinguish these 

differences from errors in the implementation; this is not an issue with the low-latency 

implementation. 

 The high-latency algorithm is only guaranteed to be bit-wise reproducing if no 

localization is used. Without localization, each processor computes the observation 

increments for every observed variable and these can be done in the same order on each 

processor. If localization is used, a given processor need only compute increments for 

observations that are 'close' to one of the state variables on that processor. In essence, 

each processor assimilates the observations for a given time in a different order, doing 

first those that are close to its state variables. The observations that are not close can be 

viewed as being assimilated after the close ones, but these computations need not be 

completed since they will not impact any state variables. For all algorithms outlined in 

section 2 that assume a linear relation between prior distributions of observations and 

state variables, the order in which observations from a given time are assimilated is 

irrelevant. However, this is not the case when implemented with localization and in the 

presence of truncation error from finite precision arithmetic. Neighboring state variables 

that are on different processors for the assimilation step could end up with 

inconsistencies. However, results using up to 16 domains with an atmospheric general 

circulation model (NCAR's CAM 3.1 at T85 horizontal resolution and 26 levels (Collins 



 20 

2004)) show that the domain boundaries do not display evident discontinuities when 

assimilating the observations used in the NCAR/NCEP reanalysis. 

  d. Hybrid implementations 

 

Various hybrids of the algorithms and implementations can be devised to reduce 

computation time on a given computing platform. For instance, a hybrid of the sequential 

and parallel algorithms is possible. The set of state variable ensembles on a given 

processor during the assimilation may allow on processor computation of forward 

observation operators for a subset of the observations. These observations could be 

processed as in the sequential algorithm. For an observation of this type, the forward 

operator for each ensemble member could be computed when it was time to assimilate 

the observation. There would be no need to compute the forward observation operator 

initially as in the parallel algorithm, and no need to regress the increments from previous 

observations onto an ensemble distribution for this observation. It is efficient to process 

these observations last on this processor since there is then no need to regress the 

observation increments onto any of the observations whose forward operators cannot be 

computed on processor (they will already have been assimilated). If the number of 

observations for which forward observation operators can be computed on a given 

processor is large compared to the total number of observations on the processor, this can 

be a substantial savings. 

 Another hybrid splits the set of observations available at a given time into a 

number of subsets; for simplicity, assume that the K observations are split into S equal 

subsets. Each subset is treated as if it were all the observations available at a given time. 



 21 

After the assimilation of a subset, a transpose is used to get state-complete data. The 

forward observation operators for the next subset are computed, and a transpose to 

ensemble-complete precedes the assimilation of this subset. The number of transpose 

pairs is increased from 1 to S. However, the expected cost of updating the observation 

prior ensembles on a given processor over all the subsets is reduced by a factor S from 

O(NK2/P) to O(NK2/PS). In the limit of K subsets, this becomes the sequential algorithm 

with transposes. For a given observation set size, number of processors, and transpose 

cost, an optimal number of subsets can be computed to minimize wall-clock computation 

time. 

5. Results  

Most users of NCAR’s Data Assimilation Research Testbed (DART) use Linux clusters 

with relatively high-speed interconnects for their large computing jobs at present. These 

users are interested in having assimilation algorithms that scale well over a range of 

processors. Another key aspect of DART is to provide generic assimilation tools for 

many different types of geophysical models. The low-latency algorithm requires no 

knowledge about the layout of the model state vector. This means that model developers 

do not need to find ways to communicate information about the metadata of their state 

vector to the assimilation. 

 The low-latency algorithm has been run on several different Linux clusters with 

up to 64 processors. The approximately 250,000 observations every 12 hours used in the 

NCEP/NCAR reanalysis for January, 2003 have been assimilated in four different 

models: a spectral version of NCAR’s CAM, a finite volume version of CAM, the WRF 



 22 

regional forecasting model with a North American domain, and the Bgrid dynamical core 

of the GFDL AM-2 climate model. 

 Performance was evaluated on two Linux clusters. The first was NCAR’s 

Lightning Linux cluster, an IBM SMP running SuSE Enterprise Server 9. Each node has 

two 2.2 GHz Opteron processors and 4GB shared memory. The interconnect fabric is a 

128-port Myrinet switch. The code was compiled with PathScale Fortran version 2.4 and 

the MPI library was MPICH version 1.2.6. The second was NCAR’s Coral cluster, an 

Aspen Systems Linux SMP running Suse 9.2. Each node has two 3.2 GHz IA-32 EM64T 

nodes and 4GB shared memory. The interconnect fabric is an Infiniband switch and code 

was compiled with Intel Fortran 9.0 and MPICH version 1.2.5. Timing results below only 

include the assimilation and do not include the model advances since these should be 

embarrassingly parallel. 

 As an example, Fig. 4 shows normalized wallclock times,  

! 

nT
n
bT

b
,         (5.1) 

for 32 ensemble members assimilations with T21, T42, and T85 versions of the spectral 

CAM with 26 levels; the state vector lengths are approximately 300,000, 1.3 million and 

5.1 million. In (5.1), 

! 

T
n
 is the total wall-clock time for the computation with n processors 

and 

! 

T
b
 is the time taken (by the first experiment performed) on b processors. For T21, b 

is 1 and for T42 and T85 b is 4, the smallest number of processors on which the job 

would run due to memory constraints. Four cases were run for each T21 processor count 

and 2 for each T42 and T85 count to give a minimal estimate of run to run variability in 

scaling.  The number of state variables  



 23 

per processor varies from approximately 300,000 to 9000 for T21, 325,000 to 20,000 for 

T42, and 1.3 million to 80,000 for T85. Throughout this range, the normalized wallclock 

stays very close to 1. For all three resolutions, the normalized time rises as processor 

count is increased initially, consistent with the increased cost to broadcast the observation 

priors in step 4i of the algorithm and the increased communication cost of doing state 

transposes with larger processor counts. However, all three resolutions show a dip in the 

normalized time for larger processor counts, at 4 processors for T21, 32 for T42, and 64 

for T85. These better than linear speed-ups appear to be due to increased cache coherency 

as the size of the state vector ensemble stored on each processor during the assimilation 

decreases. For the T21 and T42, normalized time begins to increase again for larger 

processor counts as communication efficiency is reduced. Similar scaling behavior was 

found for all four models on both clusters with a variety of compiler options.   

6. Summary 

Two scalable implementations of a parallel algorithm for doing ensemble filter 

assimilation have been described in the least squares framework of A03. For linear 

forward observation operators, the parallel algorithm is equivalent to the sequential 

algorithm in A03. The low-latency implementation of the parallel algorithm can be coded 

to produce bit-wise identical results for any distribution of ensemble priors on any 

number of processors. The high-latency implementation produces bit-wise identical 

answers on an arbitrary number of processors; when localization is applied, results are 

found to be qualitatively similar but may differ quantitatively as the number of processors 

is varied. 



 24 

 The high latency implementation of the parallel algorithm requires careful 

attention to the way in which state variables are distributed on processors during the 

assimilation phase of the algorithm. However, the low latency parallel algorithm does not 

require careful design of compute domains or computational halos as in other proposed 

parallel filter implementations. It scales to a large number of processors and is tolerant to 

load imbalances due to spatially varying observational density. In this sense it is a 

relatively generic algorithm that can be implemented efficiently without detailed 

knowledge about the model's state variables or the forward operators.  

 The low-latency parallel algorithm implementation has been evaluated in a 

number of low-order model assimilations and for a large climate model (NCAR’s CAM 

3.1 at T85 resolution with 26 vertical levels) assimilating the observations used in the 

NCEP/NCAR reanalysis (Kistler et al 2001). Results for an arbitrary number of domains 

are identical and speedup is consistent with the analysis in section 4. Implementations of 

the high-latency algorithm with localization do not produce identical results but function 

qualitatively correctly. The various implementations of the parallel filter algorithm 

should provide recipes for good performance across a wide-array of parallel machines. 

For machines with a large number of commodity processors with a high-speed custom 

interconnection network, the current architecture of choice for operational numerical 

weather prediction, the low-latency implementation should be effective. For large models 

with large observation sets (as in Houtekamer 2004), good scaling should be attainable 

for many thousands of processors. Versions of the parallel algorithm implementations 

have been incorporated in NCAR's Data Assimilation Research Testbed and are available 

for community evaluation (http://www.image.ucar.edu/DAReS/DART: the high latency 



 25 

algorithms are available in the Iceland release while the low latency algorithms are in the 

J and later releases). 

 

Acknowledgments: The authors would like to thank Tim Hoar, Kevin Raeder and Hui 

Liu for their work on the DART system. Thanks to three anonymous reviewers for 

comments that have significantly improved this work. 

 

 
Appendix: Conditions for which sequential/parallel produce identical results 

Let all forward observation operators after the first be linear, 

  ( ) K,,2,
1

,
K=== !

=

kaxxh
M

j

jjk

T

kk xA .     (A.1)  

An inductive proof demonstrates that the sequential and parallel algorithms are identical 

for arbitrary initial state ensembles 11
ˆ xx = . Suppose that the first k ensemble state 

estimates are identical (equations A.2, A.3, and A.4 compare the parallel algorithm on the 

l.h.s. with the sequential on the r.h.s.),  

kjjj
!= ,x̂x          (A.2) 

and note that this is true for k=2 since the impacts of the first observation on the initial 

state estimate are identical in both algorithms. Also suppose that the final prior estimates 

of the observed variables are identical for the first k-1 observations, 

 N,,1,1,
,1

K=!"=! nkjyy j

n

j

nj       (A.3) 

which also implies that the observation prior increments are the same 

 N,,1,1,
,1

K=!"#=# ! nkjyy j

n

j

nj .     (A.4) 

Suppose also that  



 26 

 N,,1,ˆ
1

,,,1
K==!

=

" nxay
M

m

j

nmmk

k

nj .      (A.5) 

which is true for j=1 since (A.2) implies that 

kT

k 0

1
ˆ yx =A .         (A.6) 

The l.h.s. of (A.5) is the ensemble prior estimate for the kth observation conditioned on 

all previous observations in the parallel algorithm while the r.h.s is the result of applying 

the kth forward observation operator to j
x̂ (which is not actually performed in the 

sequential algorithm unless k=j).  

 Following Fig. 3 for the parallel algorithm and using (A.4), 

 
  

! 

y j,n

k = y j"1,n

k + ˆ # y j"1

j
,y j"1

k( )$y j"1,n

j = y j"1,n

k + ˆ # y j
,y j"1

k( )$ynj , n =1,K,N . (A.7) 

The increment is 

 
  

! 

y j,n

k " y j"1,n
k =

#yn

j

S(y
j
)

yi

j " y 
j( ) y j"1,i

k[ ]
i=1

N

$ , n =1,K,N     (A.8) 

Following Fig. 1 for the sequential algorithm,  

 
  

! 

ˆ x m,n

j +1 = ˆ x m,n

j + ˆ " y
j
, ˆ x m

j( )#yn

j
, n =1,K,N      (A.9) 

and 

  

! 

ak,m
ˆ x m,n

j +1

m=1

M

" = ak,m
ˆ x m,n

j

m=1

M

" + ak,m
ˆ # y

j
, ˆ x m

j( )$yn

j[ ]
m=1

M

" , n =1,K,N   (A.10) 

The increment is  

  

! 

ak,m
ˆ x m,n

j +1

m=1

M

" # ak,m
ˆ x m,n

j =
m=1

M

"
$yn

j

S(y
j
)

ak,m yi

j # y 
j( ) ˆ x m,i

j[ ]
i=1

N

"
% 

& 
' 

( 

) 
* 

m=1

M

" , n =1,K,N  (A.11) 

Reordering the sums gives 

 
  

! 

ak,m
ˆ x m,n

j +1

m=1

M

" # ak,m
ˆ x m,n

j =
m=1

M

"
$yn

j

S(y
j
)

yi

j # y 
j( ) ak,m

ˆ x m,i

j( )
m=1

M

"
% 

& 
' 

( 

) 
* 

i=1

N

" , n =1,K,N . (A.12) 



 27 

Comparing (A.12) and (A.8) shows that if (A.5) is true for j=i-1, then it is also true for 

j=i. In particular, given (A.6), this shows that k

k

k

1!= yy  and k

k

k

1!"=" yy which means 

that 
k

k
xx ˆ= . The two algorithms produce identical results for linear forward observation 

operators for an arbitrary number of observations being assimilated. 

 For nonlinear forward observation operators, the algorithms no longer produce 

identical results. Essentially, they are choosing different places to linearly approximate 

the non-linear relation between the state and observation priors. However, no systematic 

differences have been found between the methods. A more thorough analysis of the 

differences would be difficult and application-specific. When implemented on a 

computer, the two algorithms may differ in the least significant bits even for linear 

observation operators. These differences can be amplified by the assimilation of 

subsequent observations and by the model so actual results may differ even for linear 

forward observation operators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 28 

 
 
 
 
References: 
 

Anderson, J. L. and S. L. Anderson, 1999: A Monte Carlo implementation of the 

nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. 

Wea. Rev., 127, 2741-2758. 

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. 

Mon. Wea. Rev., 129, 2894-2903. 

Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. 

Wea. Rev., 131, 634-642. 

Anderson, J. L., 2007: Exploring the need for localization in ensemble data 

assimilation using an hierarchical ensemble filter. To appear in Physica D. 

Bormann, N., S. Saarinen, G. Kelly, and J.-N. Thépaut, 2003: The Spatial Structure of 

Observation Errors in Atmospheric Motion Vectors from Geostationary Satellite 

Data. Mon. Wea. Rev., 131, 706-718. 

Burgers, G., P. J. van Leeuwen and G. Evensen, 1998: Analysis scheme in the 

ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724. 

Chui, C. K. and G. Chen, 1987: Kalman filtering., Springer, Berlin. 

Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, 

J. T. Kiehl, B. Briegleb, C. Bitz, S.-J. Lin, M. Zhang, and Y. Dai, 2004: 

Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR 

Tech. Note NCAR/TN-464+STR, 226 pp. 

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic 

model using Monte Carlo methods to do forecast error statistics. J. Geophys. Res., 

99(C5), 10143-10162. 

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and 

three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757. 

Hamill, T. M., J. S. Whitaker and C. Snyder, 2001: Distance-dependent filtering of 

background-error covariance estimates in an ensemble Kalman filter. Mon. Wea. 

Rev., 129, 2776-2790. 



 29 

Hamill, T. M. and J. S. Whitaker, 2005: Accounting for the error due to unresolved 

scales in ensemble data assimilation: A comparison of different approaches. Mon. 

Wea. Rev., 133, 3132-3147. 

Houtekamer, P. L. and H. L. Mitchell, 1998: Data assimilation using an ensemble 

Kalman filter technique. Mon. Wea. Rev., 126, 796-811. 

Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for 

atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137. 

Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, 

and B. Hansen, 2004: Atmospheric data assimilation with the ensemble Kalman 

filter: results with real observations. Mon. Wea. Rev., 133, 604-620. 

Houtekamer, P. L. and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. 

Roy. Meteor. Soc., 131, 3269-3289. 

Ide, K., P. Courtier, M. Ghil and A. C. Lorenc, 1997: Unified notation for data 

assimilation: Operational sequential and variational. J. Met. Soc. Japan, 75(1B), 

181-189. 

Jazwinski, A. H., 1970: Stochastic processes and filtering theory. Academic Press, 

376 pp. 

Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. 

Transactions of the AMSE Journal of Basic Engineering, 82D, 35-45. 

Keppenne, C. L. and M. M. Rienecker, 2002: Initial testing of a massively parallel 

ensemble Kalman filter with the Poseidon isopycnal ocean general circulation 

model. Mon. Wea. Rev., 130, 2951-2965. 

Kistler, R., W. Collins, S. Saha, G. White and J. Woolen, 2001: The NCEP-NCAR 

50-year reanalysis: Monthly means CD-ROM and documentation. Bul. Amer. 

Met. Soc., 82, 247-267. 

Mitchell, H. L. and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. 

Mon. Wea. Rev., 128, 416-433. 

Mitchell, H. L., P. L. Houtekamer and G. Pellerin, 2002: Ensemble size, balance, and 

model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 

2791-2808. 



 30 

Ott, E., B. Hunt, I. Szunyogh, A. Zimin, E. Kostelich, M. Corazza, E. Kalnay, D. 

Patil, and J. Yorke, 2004: A local ensemble Kalman filter for atmospheric data 

assimilation. Tellus, A56, 415-428. 

Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly 

non-linear systems. Mon. Wea. Rev., 129, 1194-1207. 

Tarantola, A., 1987: Inverse Problem Theory. Elsevier, 613 pp. 

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill and J. S. Whitaker, 2003: 

Ensemble square root filters. Mon. Wea. Rev., 131, 1485-1490. 

Whitaker, J. S. and T. M. Hamill, 2002: Ensemble data assimilation without perturbed 

observations. Mon. Wea. Rev., 130, 1913-1924. 

Zhang, S., M. J. Harrison, A. T. Wittenberg, A. Rosati, J. L. Anderson and V. Balaji. 

2005: Initialization of an ENSO Forecast System Using a Parallelized Ensemble 

Filter. Mon. Wea. Rev., 133, 3176-3201. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 31 

 
 
 
 
 
 
 
 
 
Figure Captions: 
 

Figure 1: A schematic depiction of the sequential filter algorithm. The forward 

observation operator for the first observation, 

! 

h
1
, is applied to the ensemble state vector, 

! 

ˆ x 
1, to produce a prior ensemble approximation, 

! 

y
1, of the observation. Observation 

increments, 

! 

"y
1, are computed using the observation value, 

! 

˜ y 
1, and error variance, 

! 

"
o,1

2  , 

and regression is used to compute increments for the state, 

! 

ˆ " 
M

y
1
, ˆ x 

1( )#y
1. The state is 

updated by adding the increments to produce 

! 

ˆ x 
2 and the process is repeated for each 

observation in turn. 

 

Figure 2: A schematic depiction of the parallel filter algorithm. All forward observation 

operators, 

! 

h
1
,h

2
,h

3
, are computed to produce prior ensemble estimates, 

! 

y
o

1
,y

o

2
,y

o

3, of the 

observations. Increments, 

! 

"y
o

1 , for the first observation prior ensemble are computed. 

Regression is used to compute increments for the state variables and for each of the 

subsequent observation priors, 

! 

yo
2
,yo

3
, etc. The state and the subsequent observation 

ensembles are updated and the process is repeated for the second observation. 

 

Figure 3: Details of the parallel filter algorithm’s use of the third observation available at 

a particular time. 



 32 

 

Figure 4: Normalized wallclock time for the assimilation portion of assimilations of 

observations used in the NCAR/NCEP reanalysis for January, 2003 using the low-latency 

parallel algorithm. Assimilations are done with the spectral CAM model at T21 (top), 

T42 (middle) and T85 (bottom) with 26 vertical levels. Normalized wallclock time is 

relative to the single processor results for T21 and the 4 processor results for T42 and 

T85. A value less than 1 indicates greater than linear speedup while values greater than 1 

are less than linear speedup. Four cases are plotted for each T21 processor count and two 

for each of the T42 and T85 results. 

 
 

 

 
 
 
 
 
 



 33 

Figure 1: A schematic depiction of the sequential filter algorithm. The forward 
observation operator for the first observation, 

! 

h
1
, is applied to the ensemble state vector, 

! 

ˆ x 
1, to produce a prior ensemble approximation, 

! 

y
1, of the observation. Observation 

increments, 

! 

"y
1, are computed using the observation value, 

! 

˜ y 
1, and error variance, 

! 

"
o,1

2  , 
and regression is used to compute increments for the state, 

! 

ˆ " 
M

y
1
, ˆ x 

1( )#y
1. The state is 

updated by adding the increments to produce 

! 

ˆ x 
2 and the process is repeated for each 

observation in turn. 
 
 



 34 

 
Figure 2: A schematic depiction of the parallel filter algorithm. All forward observation 
operators, 

! 

h
1
,h

2
,h

3
, are computed to produce prior ensemble estimates, 

! 

y
o

1
,y

o

2
,y

o

3, of the 
observations. Increments, 

! 

"y
o

1 , for the first observation prior ensemble are computed. 
Regression is used to compute increments for the state variables and for each of the 
subsequent observation priors, 

! 

yo
2
,yo

3
, etc. The state and the subsequent observation 

ensembles are updated and the process is repeated for the second observation. 



 35 

 
 
Figure 3: Details of the parallel filter algorithm’s use of the third observation available at 
a particular time. 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

 
 

 
 
Fig. 4: Normalized wallclock time for the assimilation portion of assimilations of 

observations used in the NCAR/NCEP reanalysis for January, 2003 using the low-latency 

parallel algorithm. Assimilations are done with the spectral CAM model at T21 (top), 

T42 (middle) and T85 (bottom) with 26 vertical levels. Normalized wallclock time is 

relative to the single processor results for T21 and the 4 processor results for T42 and 

T85. A value less than 1 indicates greater than linear speedup while values greater than 1 

are less than linear speedup. Four cases are plotted for each T21 processor count and two 

for each of the T42 and T85 results. 

 


