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Statistics areas involved

e Bayesian modeling

e Design and analysis of computer experiments



Climate models and observed climate data

e Climate Variables: ~ 30 years averages of meteorological variables.

e Modeled Climate: mathematical model (partial diff. eqns) of weather whose
output variables are averaged.

e Observed Climate: averages of observed variables.

e Modeled climate data - on a grid
Observed climate data - irregular (much sparser than model data)



A particular case

o Upper-air temperature data: observed and climate model

o Model
- MIT 2D Land-Ocean Climate Model

e Parameters of climate model: 0 =[S, K., F,,]
- S: Equilibrium climate sensitivity to a doubling of C'O»
- K. Global mean vertical thermal diffusivity for the mixing of thermal
anomalies into the deep ocean
- F,er: Net aerosol forcing



Goal: Find 0 that best fits the observed data.
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How to Characterize the Uncertainty Associated with the Best Fit?



Naive Approach

e Search the parameter space for 6 that minimizes a discrepancy between the
observed and model data.

e The climate models are computationally intensive!
e This direct approach is not feasible...
Alternative approach for estimating 6

e Sample a number of parameters #, run the climate model and obtain the
model data

e First Model Fitting:
- Build a statistical model based on these model data
- Use the statistical prediction of the model data as surrogate for the model
data at new, untried 6 parameters
- The statistical predictor needs to be less computationally intensive than
the actual computer model in order to be useful

e Second Model Fitting:
- Search the parameter space for # that minimizes a discrepancy between
the observed and statistically predicted model data



Some details

e Nonlinear regression in 6: T, = Tg + noise
- T.ps = observed climate temperature data
B QA: [Sa K,, Faer]
- Ty = point predictor of model climate temperature
- ¥ = noise covariance matrix (currently estimated from control runs, i.e.
unforced climate model runs). Note, however, that ¥ = % + 3,
2 prediction error of model temperature at 6
9. observational error (biases between obs and pred model temp).

e Prior distribution:
p(0) = p(S)p(K,)p(Fuer) - uniform distributions.

e Posterior distribution: p(0|T,ps, X2).



Future work

e Current approach for estimating >: empirical estimator based on unforced
model data (i.e. control runs)
- This insures nonstationarity, but it does not involve the observed data.

e Large dimensional noise covariance ¥ (numerical instabilities)
- Current approach: truncation of small eigenvalues.

e Parametric models for X could solve both problems



