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Statistics areas involved

• Bayesian modeling

• Design and analysis of computer experiments
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Climate models and observed climate data

• Climate Variables: ≈ 30 years averages of meteorological variables.

• Modeled Climate: mathematical model (partial diff. eqns) of weather whose

output variables are averaged.

• Observed Climate: averages of observed variables.

• Modeled climate data - on a grid

Observed climate data - irregular (much sparser than model data)
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A particular case

• Upper-air temperature data: observed and climate model

• Model

- MIT 2D Land-Ocean Climate Model

• Parameters of climate model: θ = [S, Kv, Faer]

- S: Equilibrium climate sensitivity to a doubling of CO2

- Kv: Global mean vertical thermal diffusivity for the mixing of thermal

anomalies into the deep ocean

- Faer: Net aerosol forcing
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Goal: Find θ that best fits the observed data.
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Observed Temperature (1st row). Modeled Climate Temperature for 6 different θ’s (2nd and 3rd rows)

How to Characterize the Uncertainty Associated with the Best Fit?
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Naive Approach

• Search the parameter space for θ that minimizes a discrepancy between the

observed and model data.

• The climate models are computationally intensive!

• This direct approach is not feasible...

Alternative approach for estimating θ

• Sample a number of parameters θ, run the climate model and obtain the

model data

• First Model Fitting:

- Build a statistical model based on these model data

- Use the statistical prediction of the model data as surrogate for the model

data at new, untried θ parameters

- The statistical predictor needs to be less computationally intensive than

the actual computer model in order to be useful

• Second Model Fitting:

- Search the parameter space for θ that minimizes a discrepancy between

the observed and statistically predicted model data
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Some details

• Nonlinear regression in θ: Tobs = T̂θ + noise

- Tobs = observed climate temperature data

- θ = [S, Kv, Faer]

- T̂θ = point predictor of model climate temperature

- Σ = noise covariance matrix (currently estimated from control runs, i.e.

unforced climate model runs). Note, however, that Σ = Σθ
1 + Σ2

Σθ
1: prediction error of model temperature at θ

Σ2: observational error (biases between obs and pred model temp).

• Prior distribution:

p(θ) = p(S)p(Kv)p(Faer) - uniform distributions.

• Posterior distribution: p(θ|Tobs, Σ).
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Future work

• Current approach for estimating Σ: empirical estimator based on unforced

model data (i.e. control runs)

- This insures nonstationarity, but it does not involve the observed data.

• Large dimensional noise covariance Σ (numerical instabilities)

- Current approach: truncation of small eigenvalues.

• Parametric models for Σ could solve both problems
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