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Background for Ozone: Air Quality Standards

As required by the Clean Air Act (CAA) of 1971, the EPA
has established standards, known as the National Ambient Air
Quality Standards (NAAQS), to monitor and control ambient
concentrations for six principal air pollutants (also referred to
as criteria pollutants):

• carbon monoxide (CO),

• lead (Pb),

• nitrogen dioxide (NO2),

• ground-level Ozone (O3),

• particulate matter (PM) and

• sulfur dioxide (SO2)
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NAAQS for Ground-level Ozone

In 1997, the U.S. EPA changed the NAAQS for regulating
ground-level Ozone levels to one based on the fourth-highest
daily maximum 8-hr. averages (FHDA) of an Ozone season
(184 days). Compliance is met when the FHDA over a three
year (season) period is below 84 ppb.
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Data

Five seasons of daily Ozone data (1995 to 1999)
at 72 locations.
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The Problem

Although such a standard makes sense from a health (and
environment) standpoint, it presents a challenging statistical
problem.

Goal

To draw spatial inference for the FHDA at
unobserved locations.

Although it is straightforward to build spatial models for the
daily Ozone field, the extension to the fourth-highest order
statistic is not so simple. Gaussianity? Covariance?
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The Three Approaches

Daily Model

• Determine an AR model for every location, even the un-
observed ones. [more]

• Using spatially-coherent shocks, simulate every day of an
Ozone season. [more]

• Build up the distribution of the FHDA.

Seasonal Model

• Straightforward application of kriging to FHDA.

Extremes Model

• Uses a Generalized Pareto, lots more to it.

7



Daily and Seasonal Predicted FHDA (1997)
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Comparing the Daily and Seasonal models

TPS Daily Seasonal
Variogram Correlation

1995 2.23 2.67 5.68 5.27
1996 2.49 2.85 5.96 5.90
1997 2.91 3.01 6.41 6.02
1998 2.75 2.93 5.35 4.85

M
P
S
E

1999 4.34 2.94 6.76 6.22

1995 5.34 4.73 5.19 5.33
1996 5.61 4.84 5.51 5.68
1997 6.27 4.59 6.03 6.05
1998 5.00 3.25 4.98 4.93

C
V

R
M

S
E

1999 6.25 4.91 6.47 6.30
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Probability of exceeding the standard

Daily Model Extreme-Value Model
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Conclusions

• Simplicity of the seasonal model approach is desirable.

• Daily model yields consistently lower MSE from cross-
validation.

• Daily model can account for “complicated” spatial fea-
tures without resorting to non-standard techniques.

• Daily MPSE is consistently too optimistic.

• Extreme value models good alternative to modelling the
tail of distributions.

• Two very different approaches yield similar results
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Future and Ongoing Work

• Apply models to network design issues.

• Extending Extremes Toolkit (extRemes) to have spatial
model.

• Extend model to entire eastern United States
(Nonstationarity of Shocks?).
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That’s all folks!
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Spatial Extremes

Given a spatial process, Z(x), what can be said about

Pr{Z(x) > z}

when z is large?
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This is not about dependence between Z(x) and Z(x′)–this
is another topic!
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Spatial Extremes

Given a spatial process, Z(x), what can be said about

Pr{Z(x) > z}

when z is large?

Note:
This is not about dependence between Z(x) and Z(x′)–this
is another topic!

Spatial structure on parameters of distribution (not FHDA).
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Generalized Pareto Distribution (GPD)

Exceedance Over Threshold Model
For X random (with cdf F ) and a (large) threshold u

Pr{X > x|X > u} =
1− F (x)

1− F (u)

Then for x > u (u large), the GPD is given by

1− F (x)

1− F (u)
≈ [1 +

ξ

σ
(x− u)]−1/ξ
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Extreme Value Distributions: GPD
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Fitting the GPD to data

Method
Maximum Likelihood is easy to evaluate and maximize.

Threshold Selection: Variance vs. Bias
Trade-off between a low enough u to have enough data (low
variance), but high enough for the limit model to be a rea-
sonable approximation (low bias).

Confidence Intervals
The parameter distributions are generally skewed. So, the
best method for finding confidence intervals (or sets) are
based on the likelihood value (or surface) and a χ2 critical
value.
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A Hierarchical Spatial Model

Observation Model:
y(x, t) surface Ozone at location x and time t

[y(x, t)|σ(x), ξ(x), u, y(x, t) > u]

Spatial Process Model:

[σ(x), ξ(x), u|θ]

Prior for hyperparameters:

[θ]
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A Hierarchical Spatial Model

Assume extreme observations to be conditionally independent
so that the joint pdf for the data and parameters is

∏
i,t

[y(xi, t)|σ(x), ξ(x), u, y(xi, t) > u] [σ(x), ξ(x), u|θ] [θ]

t indexes time and i stations.
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Shortcuts and Assumptions

• ξ(x) = ξ (i.e., shape is constant over space). Justified by
univariate fits.

• Assume σ(x) is a Gaussian process with isotropic Matérn
covariance function.

• Fix Matérn smoothness parameter at ν = 2, and let the
range be very large–leaving only λ (ratio of variances of
nugget and sill).

22



More on σ(x)

λ is the only hyper-parameter–use an uninformative prior
for it.

σ(x) = P (x) + e(x) + η(x)

with P a linear function of space, e a smooth spatial process,
and η white noise (nugget).

• As λ −→ ∞, the posterior surface tends toward just the
linear function.

• As λ −→ 0, the posterior surface will fit the data more
closely.
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log of joint distribution

n∑
i=1

`GPD(y(xi, t), σ(xi), ξ)−
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log of joint distribution

n∑
i=1

`GPD(y(xi, t), σ(xi), ξ)−

λ(σ −Xβ)TK−1(σ −Xβ)/2− log(|λK|) + C
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log of joint distribution

n∑
i=1

`GPD(y(xi, t), σ(xi), ξ)−

λ(σ −Xβ)TK−1(σ −Xβ)/2− log(|λK|) + C

K is the covariance for the prior on σ at the observations.
This is a penalized likelihood:

The penalty on σ results from the covariance and smoothing
parameter λ.
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Inference for λ: Try something different.

Fit a thin plate spline to the MLE (of σ) from the univariate
fitting, and determine λ by cross-validation:
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Inference for λ: Try something different.
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1. For fixed λ, fit TPS to all but one location (do this for
each location).
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Inference for λ: Try something different.

Fit a thin plate spline to the MLE (of σ) from the univariate
fitting, and determine λ by cross-validation:

1. For fixed λ, fit TPS to all but one location (do this for
each location).

2. Predict the value at the omitted location.

3. Obtain residuals between the prediction and observation.

4. Choose λ that minimizes the sum of squares of these resid-
uals.
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Inference for λ: Try something different.

Fit a thin plate spline to the MLE (of σ) from the univariate
fitting, and determine λ by cross-validation:

1. For fixed λ, fit TPS to all but one location (do this for
each location).

2. Predict the value at the omitted location.

3. Obtain residuals between the prediction and observation.

4. Choose λ that minimizes the sum of squares of these resid-
uals.

Resulting surface looks like
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Space-Time Approach: Daily Model

Let Y (x, t) denote the daily 8-hr max Ozone for m sites over
n time points. Consider,

Y (x, t) = µ(x, t) + σ(x)u(x, t),

where u(x, t) is a de-seasonalized zero mean, unit variance
space-time process, i.e.

u(x, t) = ρ(x)u(x, t− 1) + ε(x, t),

where |ρ(x)| < 1, the spatial shocks, ε(x, t), are independent
over time, but spatially correlated with covariance function

Cov(ε(x, t), ε(x′, t)) =
√

1− ρ2(x)
√

1− ρ2(x′)ψ(d(x,x′))

Note that µ(·, ·), σ(·) and ρ(·) are spatial fields. [back]
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Space-Time Approach: Daily Model

Algorithm to predict FHDA at unobserved location, x0.

1. Simulate data for an entire Ozone season

(a) Interpolate spatially from u(x,1) to get û(x0,1).

(b) Also interpolate spatially to get ρ̂(x0), µ̂(x0, ·) and σ̂(x0).

(c) Sample shocks at time t from [ε(x0, t)|ε(x, t)].
(d) Propagate AR(1) model.

(e) Back transform Ŷ (x0, t) = û(x0, t)σ̂(x0) + µ̂(x0, t)

2. Take fourth-highest value from Step 1.

3. Repeat Steps 1 and 2 many times to get a sample of
FHDA at unobserved location.

[back]
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Space-Time Approach: Daily Model

Distribution for the AR(1) shocks
[ε(x0, t)|ε(x, t)] (Step 1c) given by

Gau(M,Σ)

with
M = k′(x0,x)k−1(x,x)ε(x, t)

and
Σ = k′(x0,x0)− k′(x0,x)k−1(x,x)k(x,x0),

where k(x,y) represents the covariance between two spatial
locations.

[back]
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Geostatistical Approach: Seasonal Model

Covariance
Estimate a covariance function for the FHDA field, and use

it to predict an unobserved location.

Ŷ (x0) = k′(x0,x)k−1(x,x)Y

where Y is the observed FHDA, k(x,y) is the covariance
between two locations x and y. This has variance,

k(x0,x0)− k′(x0,x)k−1(x,x)k(x,x0)
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Geostatistical Approach: Seasonal Model

Covariance

Two types of covariance: ψv and ψm. back
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