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Abstract

An object-oriented geophysical and astrophysical spectral-element adaptive refine-

ment (GASpAR) code is introduced. Like most spectral-element codes, GASpAR

combines finite-element efficiency with spectral-method accuracy. It is also designed

to be flexible enough for a range of geophysics and astrophysics applications where

turbulence or other complex multiscale problems arise. The formalism accommo-

dates both conforming and nonconforming elements. Several aspects of this code

derive from existing methods, but here are synthesized into a new formulation of

dynamic adaptive refinement (DARe) of nonconforming h-type. As a demonstration
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of the code, several new 2D test cases are introduced that have time-dependent ana-

lytic solutions and exhibit localized flow features, including the 2D Burgers equation

with straight, curved-radial and oblique-colliding fronts. These are proposed as stan-

dard test problems for comparable DARe codes. Quantitative errors are reported

for 2D spatial and temporal convergence of DARe.

Key words: spectral element, numerical simulation, adaptive mesh, AMR

1 Introduction: A need for high-accuracy dynamic adaptivity

Accurate and efficient simulation of strongly turbulent flows is a preva-

lent challenge in many atmospheric, oceanic, and astrophysical applications.

New simulation codes are needed to investigate such flows in the parameter

regimes that interest the geophysics communities. Turbulent flows are linked

to many issues in the geosciences, for example, in meteorology, oceanogra-

phy, climatology, ecology, solar-terrestrial interactions, and solar fusion, as

well as dynamo effects, specifically, magnetic-field generation in cosmic bodies

by turbulent motions. Nonlinearities prevail when the Reynolds number Re is

large. The number of 3-dimensional degrees of freedom (d.o.f.) increases as

Re
9/4 as Re → ∞ in the Kolmogorov 1941 framework [16, §7.4]. For aeronau-

tic flows often Re > 106, but for geophysical flows often Re � 108 [11, 28].

Also, computations of turbulent flows must contain enough scales to encom-

pass the energy-containing and dissipative scale ranges distinctly. Uniform-
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grid convergence studies on 3D compressible-flow simulations show that in

order to achieve the desired scale content, uniform grids must contain at

least 20483 cells [33]. Today such computations can barely be accomplished. A

pseudo-spectral Navier-Stokes code on a grid of 40963 uniformly spaced points

has been run on the Earth Simulator [19], but the Taylor Reynolds number

(∝
√

Re) is still no more than ≈ 700, very far from what is required for most

geophysical flows. The main goal of the present code development is to ask, if

the significant structures of the flow are indeed sparse, so that their dynamics

can be followed accurately even if they are embedded in random noise, then

does dynamic adaptivity offer a means for achieving otherwise unattainable

large Re values. Thus, we have developed a dynamic geophysical and astro-

physical spectral-element adaptive refinement (GASpAR) code for simulating

and studying turbulent phenomena.

Several properties of spectral-element methods [SEMs, 9, 29] make them

desirable for direct numerical simulation of geophysical turbulence. Perhaps

most significant is the fact that SEMs performed at high polynomial degree are

inherently minimally diffusive and dispersive. This property is clearly impor-

tant when trying to simulate high-Re flows with multiple spatial and temporal

scales that characterize turbulence. Also, because SEMs use finite elements,

they can be used in very efficient high-resolution turbulence studies in do-

mains with complicated boundaries. It is an important feature that SEMs are

naturally parallelizable [e.g., 15]. Equally important, SEMs not only provide

spectral convergence when the solution is smooth (see appendix eq. A.3), but

are also effective when the solution is not smooth.

Our goal in this paper is to describe GASpAR and, in particular, the proce-

dures used in our dynamic adaptive refinement (DARe) technique. We provide
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SEM and DARe algorithm details here that are not available elsewhere, in the

hope of supporting readers who wish to create their own codes. Furthermore,

we propose several linear and nonlinear problems as standards to test funda-

mental aspects of flows that are encountered in turbulence studies, and use

these to test our DARe algorithms. Because these problems have known exact

time-dependent solutions, quantitative errors can be reported for DARe simu-

lations. Our code is object-oriented, and we will describe how object-oriented

programming serves our purposes. The code is parallelized, but we will discuss

this aspect only when it is intrinsic to the algorithms. While we are motivated

by the performance potential of SEMs generally, ([8], [34]) we do not emphasize

performance metrics in the present paper, in favor of focusing on algorithmic

detail and solution accuracy.

First we describe (§2.2) SEM discretization on a particular class of prob-

lems and introduce many of the required formulas, operators, and so forth. We

explain (§2.4) how continuity is maintained between nonconforming elements.

We provide linear-solver details in §2.5, and introduce innovations required

to solve on nonconforming elements. In §2.6 we present our new adaptive-

mesh algorithms: how neighboring elements are found, how conformity is es-

tablished, and the procedures for refinement and coarsening. In §2.6.3 we

describe a new implementation of element-boundary communication. DARe

criteria are discussed in §2.6.4. Then, in §3 we propose and perform exam-

ples from two test-problem classes with time-dependent analytic solutions:

the linear advection-diffusion equation (§3.2), demonstrating feature tracking

of smooth and isolated features; and the 2D Burgers equation (§3.3), testing

the ability of DARe to track well-defined increasingly sharp structures arising

from nonlinear dynamics. In §4 we offer some conclusions, as well as comments
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on potential application of GASpAR to geophysical turbulence simulations.

2 Temporal and dynamically adaptive spatial discretizations

2.1 Adaptive-mesh geometry

Conforming adaptive methods (where entire element boundaries geometri-

cally coincide, as in Fig. 1a) on quadrilaterals and hexahedra are gradually

being replaced by nonconforming adaptive methods. One reason is that lo-

cally adaptive mesh generation for conforming methods is complicated [30].

Another reason is that adaptive conforming meshes can lead to high-aspect-

ratio elements that can cause difficulties for a linear solver [13]. Moreover, the

fact that nonconforming elements can better localize mesh refinement implies

that the computational cost over all elements can be reduced [24].

Nonconforming elements can be geometrically and/or functionally noncon-

forming. In the former case (Fig. 1b), neighboring-element boundaries do not

entirely coincide; in the latter, the polynomial expansion degree p in neigh-

boring elements differs. Several SEM researchers have adopted a method that

simultaneously alters element size h and configuration (h-refinement) and the

polynomial degree p across neighboring elements (p-refinement), providing

for a so-called h-p-refinement strategy. The mortar element method (MEM)

[1, 4, 10, 26] variationally minimizes the Lebesgue L2 norms of the discon-

tinuities across nonconforming-element boundaries. MEM has been shown to

produce optimal convergence in solving the incompressible Stokes equation

[3], and has been demonstrated experimentally to produce excellent results

when used as a basis for DARe in 1D [27]. Nonconforming h-p (not always dy-
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Fig. 1. (a) Conforming degree p = 2 mesh showing the mapping of global (i.e.,

unique) d.o.f. in the domain D̄ to local (i.e., redundant) d.o.f. in the elements Ek.

Edge subscripts give element key k and edge index from s = 0 counterclockwise

to s = 3. Element E1 is bounded at the east by ∂E1,1 and E2 at the west by

∂E2,3 = ∂E1,1. Interface matching occurs by assignment, so the assembly matrix

Ac is Boolean. (b) Geometrically nonconforming (functionally conforming) mesh.

Here E2 and E3 are bounded at the west by “child” edges ∂E2,3 and ∂E3,3, and

E1 is bounded at the east by the “parent” edge ∂E1,1 = ∂E2,3
⋃

∂E3,3. Interface

matching occurs by interpolation of global d.o.f. from the function space associated

with ∂E1,1 onto the union of those associated with the ∂Ek,3, which contains the

function space of ∂E1,1.

namic) adaptive MEMs have been developed for studying turbulence [17, 18],

ocean simulation [20, 25], flame front deformation [12], electromagnetic scat-

tering [23], wave propagation [6], seismology [7] and other topics. However,

MEM for p-type refinement has been cited as sometimes causing instability
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[30]. Also, in most flows of interest to us, it is the nonlinear interaction of

the different scales that determines not only the structures that form but also

their statistics and time evolution. This suggests that reasonably high-order

approximations are required in each element during much of the evolution.

Thus, in the present work we restrict ourselves to a nonconforming fixed-p,

h-refinement strategy only and use an interpolation-based scheme to maintain

continuity between nonconforming elements. This method [13, 24] is akin to

the formulation developed in [5]; however, the latter deals with functionally

nonconforming elements, while the former relates to the geometrically noncon-

forming elements of interest here. We contrast this choice with other familiar

DARe codes [e.g., 10], which, while object-oriented, uses the MEM as the basis

of its dynamic adaptivity, but does not accommodate h-refinement. While the

interpolation-based matching scheme has been widely used for functionally

nonconforming meshes, to the best of our knowledge, our implementation of

it in the context of fully dynamic adaptivity is unique and new.

2.2 Discretization of a nonlinearly coupled dynamical PDE system

In order to focus on DARe methodology, we concentrate on the simplest

nonlinearly coupled PDE system that encompasses many of the difficulties

in simulating fluid turbulence. Thus we discretize the 2D Burgers equation,

presenting in turn the spatial operators and the time discretizations. These

sections are in part a review of well established methods but also provide

implementation details unavailable elsewhere, and enable us to discuss code

design motivations.

The equation considered in this work is the advection-diffusion equation for

7



velocity ~u(~x, t):

∂t~u + ~c ·
~∇~u = ν∇2~u, (1)

where ~c may be ~u (so that (1) is the Burgers equation), or ~c = ~c(t) (a prescribed

uniform linear-advection velocity) and ν ∝ Re
−1 is the kinematic viscosity.

This is to be solved in a spatiotemporal domain (~x, t) ∈ D× ]0, tf ] subject to

the boundary and initial conditions

~u(~x, t)=~b(~x, t) for (~x, t) ∈ ∂D× ]0, tf] , (2)

~u(~x, 0)= ~u0(~x) for ~x ∈ D. (3)

2.2.1 Variational approach to spatial discretization

Then the discretization of (1) starts from the following “weak” variational

form: Find the trial function ~u(·, t) ∈ U~b such that for any test function ~v ∈ U~0,

〈~v, ∂t~u〉+ 〈~v, C~u〉 = −ν〈 ~~∇vt,
~~∇u〉, (4)

where C :=~c ·
~∇ is the advection operator and the inner product is (A.8). (See

the appendix for the complete mathematical details.) The treatment of (3) will

not be made explicit but may be easily inferred from our general discussion.

Assume that D̄ can be partitioned as in Table A.1. Adopt a Gauss-Lobatto-

Legendre (GLL) basis, that is, expand uµ and vµ using (A.6). Inserting these

expansions into (4), we arrive at the semi-discrete ODE system problem: Find

the numerical solution ~un(·, t) = ~φtu(t) ∈ Ph,~pU~b such that for all ~v = ~φtv ∈

Ph,~pU~0,

vt
M

du

dt
+ vt

Cu = −νvt
Lu, (5)

collocated at K(p + 1)d mapped Lagrange node points (Table A.1), where

M = diagk Mk, C = diagk Ck, and L = diagk Lk are the unassembled block-
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diagonal mass matrix, linear or nonlinear advection matrix [cf. 9, ch. 6], and

diffusion matrix, respectively. The respective d(p + 1)d-square matrix blocks

for element Ek are formulated in the appendix.

Note that after assembly as discussed in §2.4, (5) must hold for the restric-

tion ~v|Ēk
= ~φt

kvk of ~v to the kth element Ek, so that a coupled ODE system

for ~un|Ēk
= ~φt

kuk would in an assembled state be

Mk
duk

dt
+ Ckuk = −νLkuk. (6)

Assembly guarantees continuity of ~un across all elements, which in turn is

sufficient to keep uµ
n ∈ H1(D). There are conforming and nonconforming ele-

ment configurations, as illustrated in Fig. 1, and an interpolation-based scheme

to enforce continuity along a nonconforming interface is the subject of §2.4.

(Throughout the remainder of this paper “nonconforming” will refer to geo-

metrically nonconforming elements, keeping the polynomial degree p fixed in

all elements.)

2.2.2 Semi-implicit multistep time discretization

GASpAR employs semi-implicit multistep time discretization schemes. The

diffusion is always solved fully implicitly, the time derivative is approximated

using a backward-difference formula (BDF) of order Mbdf [9, 21] and the ad-

vection term is approximated by an explicit extrapolation-based method (Ext)

of order Mext [22]. Then the integral of (6) from tn−1 to tn is approximated by

H
n
kun

k =
n−1
∑

m=n−Mbdf

βm,n
bdf M

m
k um

k −
n−1
∑

m=n−Mext

βm,n
ext C

m
k um

k , (7)

where

H
n
k := βn,n

bdfM
n
k + νL

n
k (8)
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is the spectral-element Helmholtz matrix. Although the matrices Lk and Mk

in (6) were t-independent, they are time-indexed in (7) and (8) because DARe

will, in general, reconfigure the partition (Table A.1) over time. For this rea-

son the coefficients βm,n are re-computed for each tn after a reconfiguration,

as in the traditional schemes cited, except that the timestep ∆tm may vary

with m as the smallest spectral-element diameter hm := mink hm
k (Table A.1)

changes. The accuracy of solving (7) follows from many known SEM error

estimates, e.g., for the Helmholtz problem on conforming meshes [21, §2.3.6]

or the Poisson problem on non-conforming meshes [21, §5.5.2.1]. In §2.5 the

solution of (7) is explained.

2.3 Implications for code design

The fully discretized advection-diffusion equation (7) brings up several is-

sues impinging on code design. First, all mesh information is separated from

all other code objects, since element type information can be encoded eas-

ily into the objects that require this distinction. Second, solution data must

be available at multiple times tm, so this information is provided in a data

structure. Thus arise both element and field objects. The former contains all

d-dimensional mesh information, including the Gauss-quadrature nodes and

weights (Table A.1). The element object also contains neighbor-list informa-

tion and the hierarchical element refinement level ∝ − log2 hk of each element

Ek. The field object contains the data um quantifying the physical system of

interest at each tm.

The 1D basis functions, the derivative matrices and Gauss-quadrature nodes

and weights (Table A.1) are encapsulated in basis classes (objects), and the
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1D matrices such as (A.9,A.10,8) are objects that contain pointers to the

basis objects and to a local element object. Generally d-dimensional SEM

matrices are not constructed but are applied using 1D tensor-product matrix

factors. High-level objects encapsulate the solution of (6) or other equations,

and have common interfaces that allow the equations to take a single time

integration step. In other words, all high-level equation-solver classes are used

in the same way; they are constructed using linked lists of elements, fields

and multidimensional SEM objects that depend only on the underlying mesh.

Hence, the classes that handle DARe and enforce continuity between elements

are independent of the system being solved.

2.4 Continuity and global assembly of nonconforming elements

Conforming discretizations enforce continuity simply by assigning the same

weighted-averaged ~un values to the coinciding node points ~x~,k = ~x~ ′,k′ along

element edges ∂Ek,s = ∂Ek′ ,s′ (Fig. 1a). This matching condition consists of

expressing the Ng global (unique) d.o.f. ug in terms of the local (redundant)

d.o.f. as d(p + 1)d-vectors uk, k ∈ {1, · · ·K}. Generally Ng < Kd(p + 1)d.

This expression is accomplished by using a Kd(p+1)d×Ng Boolean assembly

matrix Ac (also called a scatter matrix):

u = Acug. (9)

The transpose A
t

c performs the gather operation associated with the Ac scatter.

In practice, Ac is never formed explicitly but is instead applied.

In the nonconforming case ∂Ek,s ( ∂Ek′ ,s′ and most boundary-node points

are not coinciding (Fig. 1b). In the present work, unlike in MEM, the interface
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matching does not alter the underlying function space U~b (§2.2). To illustrate,

consider the nonconforming mesh in Fig. 1b. For the moment denote the global

nodes, those nodes residing on the east parent edge ∂E1,1, by ~xg,i, i ∈ {2, 5, 8},

and denote the nodes on the west child edges, ∂E2,3 and ∂E3,3 by ~xj, j ∈

{9, 12, 15, 18, 21, 24}. A globally continuous function can always be found in

U~0 in a proper subspace of the span of globally discontinuous functions φj(~x)

that interpolate from the local nodes ~xj. Therefore the weak formulation of

(1) implies functions φg,i(~x) exist that are globally continuous across D, span

U~0, and interpolate from the global nodes ~xg,i. Therefore the matrix A, that

generalizes the Boolean scatter matrix Ac used in the conforming-element

formulation, can be conceived as having entries φg,i(~xj), and accommodates

both conforming and nonconforming elements. It is convenient to factor A =

ΦAc, where Φ is the interpolation matrix from global to local d.o.f. and Ac is

locally conforming. Another illustration appears in [31, (14–16)].

To accommodate Dirichlet boundary conditions (2) into the solution, we

employ a masking projection Π, which is diagonal with unit entries everywhere

except corresponding to nodes on Dirichlet boundaries, where there are zero

entries. Any field ~φtu = ~u ∈ U~b may be analyzed as ~u = ~uh + ~ub, where

uh := ΦΠAcug constructs the projection ~uh := ~φtuh ∈ U~0 of ~u, that is, its

homogeneous part, and ub := u − uh constructs ~ub ∈ U~0, which vanishes

at the interior nodes ~x~,k ∈ D\∂D. Inserting this analysis into (5) (noting

~v ∈ U~0 ⇒ v = ΦΠAcvg) and repeating the time discretization leading to (7),

we arrive at the following linear equation to solve for ug at each time step:

vt
Hu = vtf ∀vg =⇒ A

t

cΠΦt
HΦΠAcug = A

t

cΠΦt(f −Hub), (10)

where H := diagk Hk is symmetric positive-definite (8) and we have denoted
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Table 1

PCG algorithm modified for nonconforming element meshes.

uh = 0 // initialize homogeneous term

r = Σ(f −HSub) // initialize residual

w = 0 // initialize search vector

ρ1 = 1 // initialize parameter

while not converged:

e = SP
−1r // error estimate

ρ0 = ρ1, ρ1 = rtWe // update parameters

w← e + wρ1/ρ0 // increment search vector

r′ = ΣHw // image of w

α = ρ1/w
tWr′ // component of uh increment

uh ← uh + αw // increment uh along w

r ← r − αr′ // increment residual

end

u = Sf(uh + ub).

all past-time terms from time-derivative expansion and advection in (7) by

f . The preconditioned conjugate-gradient [PCG, 32, 36] algorithm is used

to solve (10). While (10) shows explicitly that the l.h.s. matrix is symmet-

ric nonnegative-definite, it is not in a form easily solved in parallel. Left-

multiplying (10) by ΦΠAc, we get the following local problem to solve for

uh:

ΣHuh = Σ(f −Hub), where Σ := ΦΠAcA
t

cΠΦt. (11)

The direct stiffness summation (DSS) matrix Σ is coded so that the gather

and scatter are performed in one operation (§2.6.3), which reduces parallel

communication overhead [34].

Two other operators must be introduced that help maintain H1(D) conti-

nuity. The inverse multiplicity matrix W is diagonal, computed by initializing

a collocated vector gµ
~,k = 1 ∀~, k, µ, setting child boundary nodes to 0, per-
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forming g ← ΦAcA
t

cΦ
tg, then setting

W µ,µ′

~,k,~ ′,k′ =























δµ,µ′

/gµ
~,k, if ~x~,k = ~x~ ′,k′ coincides with a global node,

0, otherwise.

For example, corresponding to Figs. 1a & b the diagonals of W are

( 1, 1, 1
2
, 1, 1, 1

2
, 1, 1, 1

2
, 1

2
, 1, 1, 1

2
, 1, 1, 1

2
, 1, 1)

and ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
2
, 1

2
, 0, 1

2
, 1

2
, 0, 1, 1, 0, 1, 1), (12)

respectively. After a DSS operation (11) the true global d.o.f., nodes 2, 5,

and 8, carry all the information held by nodes 9, 12, 15, 18, 21, and 24,

so for the purpose of the PCG solve the latter give zero W entries in (12).

Given that global inner products in the PCG solve are collected from local

contributions from each element (i.e., Table 1, the lines involving W), the W

zeros prevent double counting when computing these products, and prevent

non-global d.o.f. (e.g., child edge nodes) from contributing. Note also that in

Fig. 1b the W entries for nodes 17 and 20 have value 1
2
, as expected for nodes

such as these that lie on conforming edges. The H1 “smoothing” operation in

the PCG algorithm also uses W. In smoothing, we have that ḡ = Sg, where

S := ΦΠAcA
t

cW. Smoothing acts only on quantities all of whose d.o.f. have

already been distributed to global d.o.f. using DSS. The result of smoothing is

a quantity that is interpolated properly to the child edges and that is expressed

without multiple counting at multiple local nodes that represent the same

physical location. The W matrix weights the operand g so that the respective

sums on the parent (global) edge nodes (nodes 2, 5, and 8 in the case above)

contribute to the result ḡ just once each, and the child edge nodes receive

their ḡ values from the parent edge nodes by interpolation.
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2.5 Modified preconditioned conjugate-gradient algorithm

It is important to modify the well known PCG algorithm in order to solve

(11) in the nonconforming case. The modifications stem from the require-

ment that the iteration residuals r and the search directions w correspond

to functions ~r ≡ ~φtr and ~w ≡ ~φtw belonging to H1(D)d. The CG algorithm

searches the global d.o.f. space for the solution to the linear equation. So that

we may continue to use the local matrix forms, however, we must also mask

off all Dirichlet nodes (if any exist), which are not solved for. The Σ ma-

trix (11) masks off these nodes in such a way that the new search direction

~w ∈ H1(D)d. Additionally, in all cases in the CG iteration where a quantity

~g must remain in H1(D)d, we explicitly “smooth” it by using the smoothing

operator, S (cf.§2.4). Note that it is critical that the inhomogeneous boundary

term ~ub belong to H1(D)d in (11); thus, the smoothing matrix S is applied

to ub before H is. However, the non-smoothed boundary term must be added

after the convergence loop in order to complete the solution. Note also that

the final smoothing operation follows the addition of the boundary condition

and therefore cannot be masked; hence the distinction of the final matrix

Sf := ΦAcA
t

cW.

With these considerations we present in Table 1 the PCG algorithm for the

assembled local problem (11) modified from the conforming-elements case,

here for nonconforming elements. Preconditioning is handled by the matrix

P
−1. GASpAR includes block- and point-Jacobi preconditioners. For the test

problems presented in §3, a point Jacobi preconditioner has proven to be ade-

quate. In general, the preconditioned quantity must be smoothed, as indicated

in Table 1.
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2.6 Adaptive mesh formulation

2.6.1 Element-mesh hierarchical configuration

We now employ nonconforming connectivity to carry out dynamic adap-

tivity. Recall that the global domain D is initially covered (Table A.1) by a

set of disjoint (non-overlapping) elements Ek. Each of these initial elements

becomes a tree root element, identified by a unique root key kr for that tree.

At each level ` ∈ {`min, · · · `max}, an element data structure provides both its

own key k and its root key kr. For any level `, the range of 2d` valid element

keys will be k ∈ [2d`kr, 2
d`(kr +1)−1] because the refinement is isotropic (that

is, it splits an element at the midpoints of all its edges to produce its 2d child

elements). Conversely, we obtain the level index from the element key using

` = blog2d(k/kr)c. (13)

In order to ensure all keys are unique, the first kr := 1 and the next is k′
r :=

2d`max(kr + 1), and so on.

After elements Ek are identified (“tagged”) for refinement or coarsening at

level `, three steps are involved in performing DARe: (1) performing refine-

ment by adding a new level of 2d child elements E2dk, · · ·E2d(k+1)−1 at level `+1

to replace each Ek, or else coarsening 2d existing children Ek, · · ·Ek+2d−1 into

a new parent Ebk/2dc; (2) building data structures for all element boundaries,

which hold data representing global d.o.f. and accept gathers (Atu segments)

or perform scatters (Aug segments); and (3) determining neighbor lists for

data exchange. Neighbor lists consist of records (structures) that each con-

tain the computer processor id, element key k, root key kr and boundary id

s ∈
{

0, · · · 2d − 1
}

of each neighbor element that adjoins every interface. In
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refining or coarsening, the field values for each child (parent) elements are

interpolated from the parent (child) fields. For simplicity, the interior of each

element boundary (i.e., excluding the vertices) is restricted to an interface

between one coarse and at most 2d−1 refined neighbors. Thus, at most one

refinement-level difference will exist across the interior of an interface between

neighboring elements.

In GASpAR, the data structures that represent global d.o.f. at the inter-

element interfaces are referred to as “mortars.” These structures are not to

be confused with the mortars used in MEM; however, they serve as templates

for that more general method. Recalling Fig. 1b as a paradigm, in general the

mortars contain node locations and the basis functions of the parent element

boundary (edge in 2D, or face in 3D). The mortar structures represent the

same field information for the parent and child edges; their nodes coincide

with the nodes of the parent edge, and they interpolate global d.o.f. data

to the child edges, as described above. The mortar data structures are de-

termined by communicating with all neighbors to determine which interfaces

are nonconforming. This communication uses a voxel database (VDB) [17]. A

VDB consists of records containing geometric point locations, a component

id that tells what part of the element Ek (in 2D, edge ∂Ek,s, vertex ∈ ∂2Ek,s,

etc.) the point represents, an id of the element that contains the point, the

root id of that element, and some auxiliary data. Two VDBs are constructed:

one consists of all element vertices, and one consists of all element edge mid-

points. With these two VDBs, we are able to determine whether a relationship

between neighbor edges is conforming and also determine the geometrical ex-

tent of the mortar. The VDB approach can also be used for general deformed

geometries in two and three dimensions, as long as adjacent elements share
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well-defined common node points.

The algorithm classes that carry out DARe operate only on the element and

field lists. The SEM solvers adjust themselves automatically to accommodate

the dynamic addition and removal of elements that occurs as a result of DARe.

2.6.2 Refinement and coarsening rules

The refinement and coarsening method takes as input only the local indexes

of the elements to be refined and coarsened. Before refinement or coarsening

is done, the tagged elements are checked for compliance with several rules. For

refinement, the rules are: (R1) the refinement level must not exceed a specified

limit `max; and (R2) at most one level may separate neighbor elements. These

rules must be followed also for interfaces at periodic boundaries. Rule R2 is

enforced by tagging a coarse element for refinement too, if it has an already

refined neighbor tagged for further refinement. Enforcement of R1 and R2 is

most easily effected by building a global list of keys of all elements tagged for

refinement, and comparing the local refinement lists with it.

We may not coarsen an element under any of the conditions: (C1) it is a

root; (C2) any of its 2d − 1 siblings are not tagged for coarsening; (C3) it

appears in a refinement list; or (C4) rule R2 would be violated. To enforce

C4, we use a query-list, i.e., a global list of each element key k, its parent key

bk/2dc, and its level ` (13). The query-list contains keys gathered from all

processors. The following procedure is then used.

(1) Build a global “refinement” query-list (RQL) from the keys in the local

refinement list.
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(2) Find level limits `max and `min from the coarsen list.

(3) Reorder the current local coarsen list from `max down to `min.

(4) Looping from ` = `max down to `min: build a global “coarsen” query-list

(CQL) from the keys in the current local coarsen list; and for all keys k

in the local coarsen list at the current `, if any refined neighbor is in the

CQL and no refined neighbors are in the the RQL, then k is retained in

the current coarsen list; otherwise it is deleted.

(5) Check finally that all elements in the local coarsen list have all their

siblings also tagged for coarsening. The sibling elements of k are identified

by having the same parent key bk/2dc.

Note that the local refinement lists are checked and possibly modified before

checking and modifying the coarsen lists.

2.6.3 Communicating boundary data

The mortar data structures contain all the data to be communicated be-

tween elements during each application of the DSS Σ (11) or smoothing op-

eration S. Communication of element-boundary data requires network com-

munication on parallel computers. This involves initialization and operation

steps. Initialization establishes element-processor connectivity by bin-sorting

global node indexes and having each processor examine the nodes from one

bin, to determine element-neighbor lists. This method has been suggested

in [9, §8.5.2] but to our knowledge has never before been implemented. All

coinciding mortar-structure nodes ~xg,i = ~xg,i′ are uniquely labeled by their

Morton index M(~xg,i), computed by digitizing the d coordinates and partially
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interleaving the B bits along each coordinate µ. So for aµ := min~x∈D xµ:

Mµ(~x) := bx
µ − aµ

∆x
+ 1

2
c ⇒ M(~x) :=

d
∑

µ=1

2(µ−1)BMµ(~x) ∈
{

0, · · ·2dB − 1
}

,

where ∆x is chosen so that Mµ(~x) ∈
{

0, · · ·2B − 1
}

∀~x. For P processors,

a collection of P bins Bl, l ∈ {0, · · ·P − 1}, is generated that partitions the

dynamic range (over all processors) of the Morton indexes. Processor l parti-

tions its list of indexes into the bins, sending the contents of Bl′ to processor

l′, where the information is combined with those from other processors and

then sent back to processor l. After this initialization step, every processor is

informed of which other processors share which mortar nodes. The operation

step communicates the data at any node point ~xg,i with all other processors

that share it. These data are extracted from the containing element by using

the pointer indirection provided by M(~xg,i). The field values at ~xg,i are summed

during DSS or smoothing and reassigned to ~xg,i also by indirection. To reduce

communication, shared ~xg,i residing on the same processor are summed before

being transmitted to the other processors that share that ~xg,i. At the end of the

operation step, the field values at multiply-represented global nodes are iden-

tical. This gather-scatter procedure ensures that the DSS output are locally

available immediately after communication. One benefit of this gather-scatter

method is that it allows communication to be separated from the geometry,

because Morton indexes are essentially unstructured lists of local data loca-

tions. However, a future upgrade of GASpAR will use VDBs to obviate the

need for the bin-sort initialization step, which requires information already

provided in the VDBs.
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2.6.4 Error estimators

Elements are tagged for DARe by the use of an a posteriori criterion. The

spectral estimator criterion, modified from [18, 27], uses local Legendre spectra

to estimate the quadrature and truncation errors and the spectral convergence

rate in each element Ēk = ~ϑk([−1, 1]d). First, the mapping uµ ◦ ~ϑk(~ξ) of each

solution component uµ(~x) is transformed to spectral coefficients uµ,µ′

j along

a 1D line in coordinate ξµ′

by [9, (B.3.13)], averaging over all the ξµ′′ 6=µ′

.

The convergence rates λµ,µ′

are fit using |uµ,µ′

j | ≈ Cµ,µ′

e−λµ,µ′

j [18, (18)] with

j ∈ {p− 3, · · · p}, except that instead of “equivalent” 1D coefficients [18, (17)],

we combine fits using λµ := mind
µ′=1 λµ,µ′

. The solution error εµ
est is estimated

using [18, (19) l.h.s.], except again instead of “equivalent” 1D coefficients, we

estimate the first term of [18, (19)] by
∑d

µ′=1(u
µ,µ′

p )2 and the second term by

(
∏d

µ′=1(C
µ,µ′

)2
∫∞
p+1 dj e−2λµ,µ′

j)1/d. Thus, Ēk is refined, if for some µ, εµ
est is

above a threshold value εt or if λµ is below another threshold λt. For coars-

ening, for all µ, all 2d sibling elements must have their εµ
ests below some value

γcεt < εt, computed by multiplying by a “coarsening multiplier” γc. This pre-

vents “blinking,” i.e., refined elements being immediately coarsened again. In

conjunction with the spectral estimator, we can often obtain better overall

accuracy convergence by thresholding on the Ēk-maximum second derivative

magnitude in any coordinate and taking a logical OR of that criterion with the

spectral estimator. While the high polynomial degrees will help the spectral

estimator, given the variety of our future applications, new refinement criteria

may be more effective. The investigation of refinement criteria appropriate,

e.g., for intermittent features is a major outstanding problem in adaptive nu-

merical solution of PDEs that we will consider in future work.
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3 Results for adaptive (non)linear advection-diffusion simulation

Our test problems examine various aspects of (1). The primary goal is to

investigate the solution temporal and spatial convergence when adaption is

used. Thus we have selected problems with analytic solutions, so that errors

may be determined exactly, instead of only by comparison e.g., to a uniformly

highly refined control solution. Tests begin with the simplest aspect of (1)

and progress through more difficult problems until the behavior of the full

2D nonlinear, multi-component version of (1) is considered. We do not use

filtering for any of these test problems.

For each test the BDF3 and Ext3 schemes are used for the time-derivative

and the advection terms in (7), respectively, unless stated otherwise. This re-

quires that all the required time levels tm−1 be initialized, m ∈ {1, · · ·max(Mbdf , Mext)}.

A logical OR of the spectral and second-derivative error estimators or just the

second-derivative estimator is used for the adaption criterion. The spectral

estimator is normalized by the initial-condition norm ||~u0||∞, and the second

derivative is normalized by ||~u0||∞/L2, where L is the longest global domain

length. The threshold λt is always set at 1 when used.

Except where we compare with published results, the viscosities are some-

what arbitrary. We reiterate that one of our motivations in considering (1)

is that it exemplifies many of the characteristics of the Navier-Stokes equa-

tions of interest in simulating turbulence, including the dependence on ν via

Re. However, we note that a recent paper [31] concludes that the MEM and

the interpolation-based connectivity for nonconforming elements may manifest

inconsistencies that affect convergence, which a small viscosity can prevent.
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For the purposes of our tests, we perform adaption after every 10 timesteps

except if stated otherwise. In practice, this is not optimal as the adaptivity

overhead can overtake the computational savings achieved by reducing the

required number of d.o.f.. In general, it is more meaningful and efficient to

adapt at a fraction of a fiducial timescale, say an eddy turnover time. The

refinement criteria are applied to each component of (1) that is solved for.

In order to compare an adaptive solution, we use an `-control grid. This is

a grid that uniformly covers the domain with elements at the finest resolution

`max = `. For all spatial convergence tests that have control solutions, we will

also provide a single processor speed-up factor representative of the adaptive

solutions, by giving the ratio Tcontrol/Tadaptive of the total control and adaptive

cpu run times. Naturally, this factor is only to be used for reference since the

speed-up will, in general, depend not only on the solution and its refinement

criteria and thresholds, but also the adaption interval, and expansion degree,

p.

3.1 Adaptive heat-equation solution results

For the linear case ~c = ~c(t) the fundamental solution of (1) is a Gaussian

d-periodized in D = [0, 1]d:

uµ
a(~x, t) :=

σ(0)d

σ(t)d

∞
∑

ı1,···ıd=−∞

exp−
(

~x− ~x 0 +~ı− ∫ t
0 ~c(t′) dt′

σ(t)

)2

(14)

for t > −σ(0)2/4ν (uµ
a(~x, t):=0 otherwise), where σ(t):=

√

σ(0)2 + 4νt, σ(0) =
√

2/20 is the initial e-folding width and ~x 0 =
∑d

µ=1 ~e µ/2 is the initial peak

location. To compute (14), we truncate summands of value less than 10−18

of the partial sum. The simplest version of (1) is the heat equation, where
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~c = ~0. The goal here is to determine the temporal and spatial convergence

when there is no advection. The initial condition (3) is computed on K =

4 × 4 elements from (14) at t = 0 and d = 2, and the mesh is refined until

refinement level ≤ `max. Both the spectral estimator with threshold εt =

10−3 and second-derivative estimator with threshold of 0.25 were used. The

coarsening multipliers (to prevent blinking) for each were set to γc = 0.5 and

0.25, respectively. A BDF2 scheme is used here for the time derivative.

3.1.1 Temporal convergence of the adaptive heat-equation solution

We examine time convergence by advancing to tf = 0.05 for various constant

∆t. From (14) curves of relative L2 error ε = ||~un − ~ua||2/||~u0
a ||2 vs ∆t are

plotted for several maximum-refinement levels `max and for degrees p, in Fig.

2a-d, The control grid here consists of 16× 16 elements. The BDF2 and Ext2

are globally second-order schemes, so if the solution is well resolved spatially,

we expect to find a slope of ≈ 2 in a log-log plot of error vs ∆t. Indeed

this is seen in Fig. 2a-d; each panel shows a sequence of three curves for the

refinement levels `max ∈ {0, · · ·2}, where `max = 0 implies that no refinement

is done. For the curves that are spatially resolved, the error is linear with

slope 2.04. Even at low p, the solution is well resolved if DARe is used, even at

`max = 1. If the refinement thresholds εt where increased slightly, we would see

a larger reduction in the the number of d.o.f. required, but our accuracy would

decrease, requiring a higher `max before accuracy (at small ∆t) is restored. As

p increases, there is less need for DARe, as is expected due to the smoothness

of the solution.
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Fig. 2. Plots of normalized error log10(||~un − ~ua||2/||~u0
a ||2) vs log10 ∆t for (a-d)

the heat equation and (e-h) advection-dominated flow (1), for different polynomial

degrees p as labeled. Each upper panel shows curves for up to three maximum

refinement levels `max indicated in the legend; each lower panel shows four refine-

ment levels. For the heat equation, The 2-control solutions (thin curves) overlie the

`max ≥ 1 adaptive curves. As p increases, the curves converge.

3.1.2 Spatial convergence of the adaptive heat-equation solution

We now consider the effects of polynomial degree p. The maximum refine-

ment is fixed at `max = 2. At time tn a dynamic Courant-limited timestep

∆tn ≤ Co

/

max
~∈{1,···p}d;k∈{1,···Kn};µ,µ′∈{1,···d}





4ν

(∆n
~,k)

2
+
|uµ′n

~−~e µ,k + uµ′n
~,k |

2∆n
~,k



 (15)

is used with a fixed Courant number Co = 1.0, where ∆n
~,k := minµ∈{1,···d}

|ϑµn
k (~ξ~−~e µ) − ϑµn

k (~ξ~)| (Table A.1). We can set Co to a reasonably high value

because a semi-implicit scheme is used. The solution is advanced to tf =

0.5, enough to observe the solution coarsening as it decays. Only the control

runs use the variable timestep; the adaptive runs use as a fixed timestep the

Courant-limited value of the corresponding control case at t = tf . The initial

mesh is the same as §3.1.1.
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Fig. 3. Semilog plots of ||~un − ~ua||2/||~u0
a ||2 vs p for (a) the diffusion, (b) ad-

vection-dominated flow. Square and diamond markers indicate the adaptive and

`max-control runs, respectively. For diffusion, `max = 2, and for the advec-

tion-dominated cases, `max = 3.

Figure 3a shows the exponential spatial convergence characteristic of all our

tests. We expect from (A.3) that an infinitely smooth solution will spectrally

converge along a straight-line plot of log10(||~un− ~ua||2/||~u0
a ||2) vs p. For lower

p, the 2-control solutions are better than the adaptive runs, but the curves

merge quickly, as we would expect for such a smooth problem. The adaptive

curves show some slight concavity for this problem. The low-p error source is

likely the elliptic nature of (10), so that coarse elements propagate their error

throughout the mesh. Figure 4b shows that even for varying K (Fig. 4a), the

error over time behaves monotonically, agreeing very closely with the control

profile. We find that the adaptive cases for all but p = 2 case run significantly

faster (Tcontrol/Tadaptive ≈ 3) than the controls for this problem.

3.2 Adaptive linear-advection simulation results

Next we consider the linear advection-dominated equation (1) with d = 2,

ν = 10−4 and ~c = ~e 1. This tests the ability of the code to follow a localized
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Fig. 4. For the 2D adaptive (a-b) p = 6 heat-equation, and (c-d) p = 8

linear advection tests, time series of (a,c) number K of elements, and (b,d)

log10(||~un − ~ua||2/||~u0
a ||2). The errors for the adaptive and control meshes lie on

top of one another.

translating distribution. The initial state (3) is given by (14) at t = 0. The

spectral estimator in this problem is turned off. The second-derivative criterion

is set to εt = 1 with a coarsening multiplier of γc = 0.5.

3.2.1 Temporal convergence for adaptive linear advection

Temporal convergence is tested as in §3.1.1, except that only the second-

derivative criterion is used. The final tf = 0.06, and we begin with a K = 4×4

element mesh. We present the results in 2e-h. The spatially resolved curves

in each plot have an average slope of 2.95. Even at high degree p, the error is

∆t-independent for the unrefined mesh. For lower p, the error decays at the

order of the time-stepping method only if there are several refinement levels,

indicating that the solution is well resolved spatially only at higher `max. Thus,

in order to achieve a temporal error O(∆t3), refinement is necessary.

Figure 2e-h also shows 3-control runs corresponding to the adaptive solu-

tions, indicated by thin curves that all overlie the `max = 3 curves. As p in-

creases, less refinement is required to achieve the same accuracy that 3-control
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does.

3.2.2 Spatial convergence for adaptive linear advection

We turn to the effects of polynomial degree p on the solution error. The max-

imum refinement level is fixed to `max = 3. Here, a Courant-limited timestep

(15) is again used with Co = 0.2. The solution is advanced to tf = 0.2, enough

to see several DARe cycles occur (Fig. 4c). The initial mesh is the same as

in §3.2.1. Spectral error decay can be seen in Fig. 3b, which also shows the

3-control solutions. The adaptive solution error decays nearly identically as

does the 3-control, suggesting again that interpolation introduces no deleteri-

ous effects for this problem.

Figure 4c-d shows typical time series of the element count K and the error.

Clearly, adaptivity does not alter the monotonic error behavior. The 3-control

grid (K = 32 × 32 elements) error for p = 8 is plotted in Fig. 4d and is

nearly identical to the adaptive error. Adaptivity clearly provides a significant

savings in the number of d.o.f. required for a given accuracy. Indeed, the single

processor time savings is significant too; we find that (Tcontrol/Tadaptive ≈ 10

for most p.

Note that when we set ν = 0 for this problem, we obtain energy conservation

to about six digits for the `max = 3 adaptive case, and to about seven digits

in the `max = 3 control run, up to tf = L/|~c| = 1.
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3.3 2D Burgers equation

We now examine the nonlinear (~c = ~u) version of (1). The goal is to in-

vestigate the solution errors as the mesh resolves and tracks the stationary or

propagating fronts generated and sustained by the nonlinear coupling of the

system. We introduce a class of exact 2D solutions as follows. Note that any

d solutions qµ(y, t) to the 1D Burgers equation can be cast into d dimensions

by substituting

~u(~x, t) =
d
∑

µ=1

~κµqµ(~κµ
· ~x,~κµ

· ~κµt), where ~κµ
· ~κµ′

:= ~κµ
· ~κµδµ,µ′

, (16)

into (1) [14]. If qµ has period Y µ w.r.t. y, then taking integer 2κµ,µ′

/Y µ makes

periodic boundary conditions for ~x ∈ [−1, 1]d appropriate. An initial condition

(3) for a kind of straight ~κµ-perpendicular front is derived from

qµ(y, 0) :=− sin(πy) + ûµ
2 sin(2πy), (17)

The first problem is the classical Burgers stationary front, which is compared

with and without adaptivity to previous results. The second problem will

consider the vector nature of (1) by simulating the collision of two oppositely

translating oblique fronts. The third case is a curved front, i.e., a propagating

radial N-wave.

3.3.1 Stationary Burgers front

The stationary Burgers front is the classical solution to (1), exhibiting a

straight front developing across the x1 direction. We compare with analytic

values the maximum derivative magnitude |∂x1u1|max and the time tmax at

which the maximum occurs. To compare with the literature [2], we set ν =
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0.01/π, ûµ
2 = 0 and ~κµ = ~e 1δµ,1. The problem is initialized with K = 4×1 grid

of a specified degree p. A BDF3/Ext3 scheme is used for the time-derivative

and advective terms, respectively. We initialize from (17) only at t = t0, and

integrate using a BDFM/ExtM scheme to provide values at tM (M = 1, 2).

A nonadaptive and an adaptive case with maximum refinement `max = 3

are considered. In the nonadaptive case, the element edges lie along x1 =

0,±0.05,±1, whereas in the adaptive case, the elements are initially uniform.

The second-derivative error criterion is used in this problem applied to ~u, and

the threshold and coarsening multiplier are εt = 1 and γc = 0.5, respectively.

Table 2a presents the nonadaptive results from GASpAR and from [27].

Besides the comparison in Tables 2a and 2b, we obtained analytic solutions

using (16) combined with the 1D formula [37, (4.10)] computed using Gauss-

Hermite quadrature, and verified |∂x1u1|max to seven digits against the reported

value [2]. Thus, we have also verified that the L2 accuracy of the solution is

consistent with the derivative accuracy implied by Tables 2a and 2b. We note

that the p = 5 case is comparatively poor [cf. 27], possibly due to differences

between the basis functions in the two methods [2], but our nonadaptive errors

in tmax for our case are consistently better, while for p > 5 the |∂x1u1|max errors

are comparable [cf. 27].

Table 2b shows the results from the adaptive case and the reference and

control solutions, where reference refers to a solution on a nonadaptive grid

with K fixed as at the adaptive solution at t = tmax. Thus, it offers a so-

lution computed with roughly as many d.o.f. as the adaptive solution, and

hence requiring about the same computational effort, disregarding adaptivity

overhead. Clearly, resolving the front is very challenging as evidenced by the

reference solution for p = 5 actually diverging, and good solutions not being
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Table 2

For the stationary Burgers front: (a) nonadaptive results; (b) adaptive, reference,

and control results. The analytic solution [2] is denoted by p =∞.

(a) Mavriplis [27] GASpAR

p tmax |∂xu|max tmax |∂x1u1|max

5 0.53745 167.227 0.5320 228.38977

9 0.50611 154.019 0.51074 148.04258

13 0.51103 151.496 0.51072 151.69874

17 0.51071 152.076 0.51045 152.09104

21 0.51023 152.004 0.51047 151.99624

∞ 0.51047 152.00516

(b) adaptive reference control

p tmax |∂x1u1|max tmax |∂x1u1|max tmax |∂x1u1|max

5 0.52679 224.36164 — — 0.52674 224.37214

9 0.51095 153.39634 0.52635 227.53596 0.51095 153.39633

13 0.51030 150.03130 0.51219 181.02024 0.51030 150.03130

17 0.51048 152.25110 0.51082 149.57372 0.51048 152.25110

21 0.51047 152.00556 0.51021 147.22940 0.51047 152.00565

∞ 0.51047 152.00516

obtained until p > 13. The control solutions are all nearly identical to the

adaptive ones, suggesting that our refinement criteria enable DARe to cap-

ture the formation of the front accurately, at a significantly reduced number of

d.o.f.. Indeed, on one processor, the computational times for the DARe cases

are also reduced by a factor of about 7 compared with the control runs. Keep-

ing in mind that on a single processor, no load balancing is required, we do not

expect this level of efficiency for most turbulence problems. However, for the

case where we are resolving largely isolated structures in an otherwise noisy

background, we expect to see significant reductions in overall computational

costs using DARe.
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3.3.2 N-wave problem

The radial N-wave solution combines a d-dimensional Cole-Hopf transfor-

mation of (1) and a heat-eq. solution [generalizing 37, (4.6) & (4.40)]

~u = −2ν ~∇ ln χ ←− χ(~x, t) = 1 +
a

td/2
exp−(~x− ~x 0)2

4νt
, (18)

The N-wave emanates from ~x 0 = (~e 1 + ~e 2)/2. For this test, we initialize at

t0 = 5×10−2 and set ν = 5×10−3 and a = 104. Dirichlet boundary conditions

(2) on D = [0, 1]2 are imposed at each time by evaluating (18) on ∂D. The

initial grid has K = 4 × 4 elements, and we consider only the adaptive case

with `max = 4. The refinement criteria are the same as in §3.2.

Fig. 5 presents six snapshots of the u1 component of a typical N-wave system

numerical solution, and illustrates the refinement patterns characteristic of all

the runs. The solution has reflection symmetries, so for simplicity only one

quadrant is shown. As the semicircular front propagates outward, the mesh

refines to track it; while in the center the velocity components grow more

planar, and the mesh coarsens. The front does not steepen in this problem, as

it does in the planar front problem (§3.3); it simply decays as it propagates

outward.

We set p = 14 and advance from t = t0 to tf = 0.11 for various constant ∆t

to produce the timestep error-convergence curve in Fig. 6a. This time interval

was enough to provide a number of DARe events; nevertheless, the solution

converges with ∆t, at order (slope) 3.01.

To check spatial convergence, the solution is advanced from t = t0 to tf =

0.11 by using variable p and ∆t (15) but fixed Co = 0.15. Figure 6b shows

the final L2 error vs p. As with the linear advection case, the error behaves
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(f)

V1

Fig. 5. For the p = 8 adaptive radial N-wave solution of (1) with ~c = ~u and

ν = 5 × 10−3, initialized by (18), surface plots of u1(~x, t), showing ~x ∈ [ 12 , 1]2 and

K/4 = 88, 121, 139, 172, 181, 190 as t = 0.18, 0.33, 0.48, 0.65, 0.81, 1.00. Black and

yellow curves show nodes and element edges, respectively.
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Fig. 6. For the adaptive radial N-wave solution of (1) with ~c = ~u and ν = 5× 10−3,

initialized by (18), plots of log10(||~un−~ua||2/||~u0
a ||2) vs: (a) log10 ∆t for p = 14, with

slope 3.01; and (b) p.

spectrally for a finite time integration.

3.3.3 Colliding front problem

Here we take (17) with ûµ
2 = 1

2
δµ,1, an initial condition that develops two

translating, colliding fronts, and use (16) to get a 2D bi-periodic vector solu-

tion to the system (1). We retain ν = 0.01/π, and to set the fronts oblique to

the axes put ~κµ = (~e 1 + 2~e 2)δµ,1. The mesh initially has K = 4× 4 elements

of degree p = 8. Initialization is as in §3.3.1, except that we use a BDF2/Ext2

scheme for time integration. The second-derivative error criterion is used in

this test, with threshold and coarsening multiplier εt = 8 and γc = 0.2, re-

spectively. The maximum refinement is `max = 5. Because the mesh only has

to resolve discrete fronts as they develop, translate, merge and decay there is

clear potential for computational savings by using adaptivity: simply reducing

the number of elements on which to compute. Here, we wish to illustrate this

potential and to verify that the error in the solution is consistent with the

results in §3.3.1. We do not consider a control run for this problem.

34



−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 1.800000e−02 (file bftest_nr5_n9.0000071 01−Sep−2005 19:01:53)
28 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(a)
V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 2.550000e−02 (file bftest_nr5_n9.0000101 01−Sep−2005 19:02:21)
52 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(b)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 4.050000e−02 (file bftest_nr5_n9.0000161 01−Sep−2005 19:04:17)
112 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(c)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 6.050000e−02 (file bftest_nr5_n9.0000241 01−Sep−2005 19:22:37)
352 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(d)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 8.050000e−02 (file bftest_nr5_n9.0000321 01−Sep−2005 21:18:45)
784 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(e)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 1.180000e−01 (file bftest_nr5_n9.0000471 01−Sep−2005 23:59:26)
481 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(f)
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Fig. 7. For the p = 8 adaptive colliding front solution of (1) with ~c = ~u and

ν = 10−2/π, initialized by (16) and (17) with ~κµ = (~e 1 + 2~e 2)δµ,1 and ûµ
2 = 1

2δµ,1,

surface plots of u1, showing ~x ∈ [−1, 0]2 and K/4 = 28, 52, 112, 352, 784, 481 at

the time abscissas noted in Fig. 8. Black and yellow curves show nodes and element

edges, respectively.
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Fig. 8. For the p = 8 adaptive solution of (1) with ~c = ~u and ν = 10−2/π, initialized

by (16) and (17) with ~κµ = (~e 1 + 2~e 2)δµ,1 and ûµ
2 = 1

2δµ,1, time series of fraction

K/maxt K of elements (dash-dotted curve) and magnitude of relative maximum

error in |~κ1
·
~∇u1| (dot markers) vs time. Also shown are the maximum-absolute

(solid curve) and L2 (dashed curve) errors for u1. The abscissa is marked at the six

times of Fig. 7.

In Fig. 7 are presented six snapshots during the evolution of the u1 com-

ponent of the colliding-fronts system, zoomed to one quadrant of the domain.

The mesh refines around each of the oppositely-propagating fronts as they

steepen, merge and begin to decay. The dash-dotted curve of Fig. 8 shows the

number K of elements increasing monotonically before and during the merger,

and decreasing, as expected, after the merger is complete at about t = 0.12.

Moreover, Fig. 7 shows that DARe occurs only in regions localized around the

steepening or translating fronts. The maximum number of adaptive elements

is maxt K = 3136, while the control solution would require K = 16384. This is

a coverage fraction of about 19%, suggesting that adaptivity in this problem

certainly offers a huge reduction in the required number of d.o.f..
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Figure 8 provides the time series for the maximum-magnitude and L2 so-

lution errors (unnormalized) of u1, as well as the relative error of |~κ1
·
~∇u1|.

The solution errors are reasonably well behaved. As expected, there is much

more variation of the derivative error. The analytic values for |∂x1u1|max and

the time, tmax at which this maximum occurs are 213 and 0.1280, respectively.

From our results, we find that |∂x1u1|max = 222 and tmax = 0.1283, which is

entirely consistent with the stationary results presented in Table 2b.

Finally, Fig. 9 shows a snapshot solution and relative error field of an even

more challenging problem, namely the same two colliding fronts orthogonally

crossed by a stationary front. Also, to better exercise h-refinement, the degree

was reduced to p = 6 from p = 8 in the previous test. The reduction in overall

accuracy is consistent with the p-convergence results in Fig. 6b. The relative

L2 error is ||u1
n − u1

a||2/||u1
n||2 = 5.8 × 10−3. The element distribution in Fig.

9b shows that the error estimation coincides well with the actual point-wise

error field.

4 Discussion and conclusion

We have presented an overview of a geophysical and astrophysical spectral-

element adaptive refinement (GASpAR) code, concentrating on the continuous

Galerkin discretization of a vector (generalized advection-diffusion) equation

to illustrate the construction of the weak and collocation operators and to

highlight aspects of the code design. We have provided a detailed description

of the underlying mathematics and code constructs that establish connectiv-

ity and maintain continuity between conforming and nonconforming elements.

From this basis, we have presented a new dynamic adaptive mesh refinement
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Fig. 9. For the p = 6 adaptive double colliding fronts solution of (1) with ~c = ~u and

ν = 10−2/π, initialized by (16) and (17) with ~κ1 = ~e 1 +2~e 2, ~κ2 = ~e 2− 2~e 1, û1
2 = 1

2

and û2
2 = 0, surface plots of (a) u1

n and (b) (u1
n−u1

a)/||u1
n||∞, showing ~x ∈ [0, 1]2 and

K/4 = 1018 at t = 0.10. For clarity, the node lines are not shown, but the element

boundaries are now black.

(DARe) algorithm for the spectral-element method, and in particular, de-

scribed 2D refinement criteria and enumerated rules for self-consistent refine-

ment and coarsening of a nonconforming element mesh. We propose several

problems that have analytic time-dependent solutions, in order to test quan-

titatively the ability of the code to simulate accurately 2D phenomena arising

as a result of linear and nonlinear advective and dissipative dynamics.

Using DARe, GASpAR can potentially generate a substantial savings both

in the number of d.o.f. computed and in the computation time required to

update them, despite the added overhead required by the adaptivity. These

results suggest an obvious extension of this work, to apply DARe to broader

classes of problems and systematically examine performance metrics and op-

erational considerations with the goal of minimizing adaptivity overhead, es-

pecially in a parallel environment. For example, for different turbulence prob-

lems, what is the optimal frequency (e.g., w.r.t. eddy turnover time) at which
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to perform adaptivity, in order to reduce overhead cost? This extension would

also discuss load-balancing strategies that mitigate communication bottle-

necks, and optimize work-load distribution: when should repartitioning be

done so as to minimize the cost of communicating to other processors?

The test problems show that DARe can be very beneficial for resolving iso-

lated structures. But in practice, how likely is it that only a few isolated struc-

tures will exist? And how significant to the flow evolution are these structures,

to the extent that their being resolved by DARe would preserve the overall

flow statistics? These questions are the focus of current and future efforts and

we will report on these investigations in regard to decaying turbulence in a

subsequent paper. A useful approach to these questions provides that the fields

solved for need not be those on which adaption criteria operate directly. For

example, while the velocity is actually solved for in (1), the adaption criteria

might operate on kinetic energy, vorticity, or enstrophy. Arguably, some fully

developed turbulent flows viewed in terms of the fundamental fields may be

too intricate to benefit from DARe. Nevertheless, when viewed w.r.t. an ap-

propriate functional, some relevant structures, when resolved, may allow for

accurate simulation of the significant dynamics and statistics of the overall

flow.

A Spectral-element formalism

In this appendix we summarize results from the SEM literature, and our

notation. Table A.1 shows the hierarchy of basic formulas progressing from

one 1D element, through K1 1D elements, to K d-dimensional elements. Any

dependent variable u = u(ξ) may be approximated by its projection Ppu on
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the space Vp of polynomials of degree p, using u-values on any p + 1 distinct

nodal points ξj:

u = Ppu + Epu ≈ Ppu :=
p
∑

j=0

u(ξj)φj, (A.1)

where Epu is the pointwise error and φj(ξ):=
∏

j′ 6=j(ξ−ξj′)/(ξj−ξj′) denotes the

Lagrange interpolating polynomials. Taking ξj and wj from Table A.1 implies

the quadrature

〈u〉1 :=
∫ 1

−1
u(ξ) dξ =

p
∑

j=0

wju(ξj) +Rpu(ξ′), (A.2)

where Rp :=−22p+1 p3(p+1)(p−1)!4

(2p+1)(2p)!3
( d/ dξ)2p is the residual operator [35] and ξ ′ ∈

]−1, 1[. Then the mean-square error is bounded as

〈(Epu)2〉1 ∝ p1−2Q
Q
∑

q=0

〈u(q)2〉1 (A.3)

for any order Q of square-integrable derivative [9, (B.3.59)]. Thus if u is in-

finitely smooth then Ppu converges to u spectrally.

Now let [−1, 1] be covered by K1 disjoint 1D elements E1
k as in Table A.1

(noting that nonlinear invertible ϑk may sometimes be preferable). Then u

may be approximated by its projections Pk,pu on the space Vh
1,p of piecewise

polynomials of degree p on the E1
k. That is, (A.1) generalizes to

u =
K1

∑

k=1

(Pk,pu + Ek,pu) , Pk,pu :=
p
∑

j=0

u(xj,k)φj,k, (A.4)

where Ek,pu := Ep(u ◦ ϑk) ◦ ϑ−1
k . Then (A.2) generalizes to

〈u〉1 =
K1

∑

k=1

∫ xk

xk−1

u(x) dx,
∫ xk

xk−1

u(x) dx =
p
∑

j=0

wj,ku(xj,k) +Rk,pu(x′
k), (A.5)

where Rk,pu := (h1
k/2)2p+1Rp(u ◦ ϑk) ◦ ϑ−1

k and x′
k ∈ E1

k.

Generalizing further, assume a d-dimensional problem domain D can be

partitioned as in Table A.1. Now generalizing (A.4), one may approximate a
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Table A.1

Hierarchy of spectral-element formulas, where Lj is the standard Legendre polyno-

mial of degree j and norm (j + 1
2)−

1

2 , f ◦ g(x) := f(g(x)) and 1S(x) :=
{

1 (x∈S)
0 (else)

.

Domain: ξ ∈ [−1, 1];

x ∈ [−1, 1] =
⋃K1

k=1 Ē1
k, where ]xk−1, xk[ ≡ E1

k := ϑk(]−1, 1[) has length

h1
k := xk − xk−1 > 0 =⇒ E1

k

⋂

E1
k′ = ∅ if k 6= k′;

~x ∈ D̄ =
⋃K

k=1 Ēk, where Ek := ~ϑk(]−1, 1[d) has diameter

hk := maxµ max~x,~x′∈Ēk
|xµ − x′µ| and Ek

⋂

Ek′ = ∅ if k 6= k′.

Nodes: ξj := (j + 1)th least root of (1− ξ2) d
dξLp;

xj,k := ϑk(ξj), where ϑk(ξ) := xk−1 + 1
2h1

k(1 + ξ), k ∈
{

1, · · ·K1
}

;

~x~,k := ~ϑk(~ξ~), where ξµ
~ := ξµ

and ~ϑk(~ξ) is invertible but not necessarily linear.

Weights: wj := 2/p(p + 1)Lp(ξj)
2;

wj,k := | d
dξϑk(ξj)|wj ;

w~,k := |det ~∇~ξ
~ϑk(~ξ~)|

∏d
µ=1 wµ .

Basis: φj′(ξ) = wj′
∑p

j=0 Lj(ξj′)Lj(ξ)/
∑p

j′′=0 wj′′Lj(ξj′′)
2 −−−−→

ξ→ξj′′

δj,j′′;

φj,k(x) := 1Ē1

k
(x)φj ◦ ϑ−1

k (x) −−−−−→
x→xj′,k′

{

1, xj,k = xj′,k′ ,

0, otherwise;

φ~,k(~x) := 1Ēk
(~x)φ~ ◦ ~ϑ−1

k (~x) −−−−−→
~x→~x~ ′,k′

{

1, ~x~,k = ~x~ ′,k′ ,

0, otherwise,

where φ~(~ξ) :=
∏d

µ=1 φµ(ξµ).

field u(~x) by its projections Pk,~p u on the space Vh,~p of piecewise polynomials

of degree pµ in coordinate xµ on the Ek. That is, (A.4) generalizes to

u ≈ Ph,~p u :=
K
∑

k=1

Pk,~p u, Pk,~p u :=
∑

~∈J

u(~x~,k)φ~,k, (A.6)

where J := {~






µ ∈ {0, · · · pµ}}. The appropriate approximation of a vector

~u =
d
∑

µ=1

uµ~e µ ≈ Ph,~p ~u = ~φtu

uses ~φ with entries ~φµ
~,k := φ~,k~e

µ and u with entries uµ
~,k := uµ(~x~,k), where ~e µ
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denotes the Cartesian unit vectors. For scalars u (A.5) generalizes to

〈u〉 :=
∫

· · ·
∫

D

u(~x) dd~x =
K
∑

k=1

∫

· · ·
∫

Ek

u(~x) dd~x

≈
K
∑

k=1

∑

~∈J

w~,ku(~x~,k) =: 〈u〉
gl

.

(A.7)

Finally, variational formulation depends on the inner product from (A.7):

〈u, v〉 := 〈uv〉 ≈
K
∑

k=1

∑

~∈J

w~,ku(~x~,k)v(~x~,k) =: 〈u, v〉gl (A.8)

for scalars, 〈~u,~v〉 :=∑d
µ=1〈uµ, vµ〉 for vectors, 〈~~u,~~v〉 :=∑d

µ,µ′=1〈uµ,µ′

, vµ,µ′〉 for

tensors, and so forth. This implies a norm ||u||2 :=〈u, u〉1/2
gl . The norm ||u||∞ :=

maxK
k=1 max~∈J |u(~x~,k)| is also used.

Now define the function spaces

U~b :=







~u =
d
∑

µ=1

uµ~e µ












uµ ∈ H1(D) ∀µ & ~u = ~b on ∂D







and H1(D) := {f






f ∈ L2(D) & ∂xµf ∈ L2(D) ∀µ} .

Searching the piecewise polynomial subspace Ph,~pU~b ( U~b for a solution to (4)

leads to (5), where

Mµ,µ′

~,~ ′;k := 〈~φµ
~,k,

~φµ′

~ ′,k〉gl = δ~,~ ′δµ,µ′

w~,k, (A.9)

Cµ,µ′

~,~ ′;k := 〈~φµ
~,k, C~φµ′

~ ′,k〉gl = δµ,µ′

w~,k~c~,k ·
~∇φ~ ′,k(~x~,k), (A.10)

Lµ,µ′

~,~ ′;k := 〈~∇~φµ
~,k,

~∇~φµ′

~ ′,k〉gl = δµ,µ′
∑

~ ′′∈J

w~ ′′,k
~∇φ~,k(~x~ ′′,k) ·

~∇φ~ ′,k(~x~ ′′,k),

and ~c~,k(t) := ~c(~x~,k, t). The matrix L for deformed Ek (nonlinear ~ϑk) can also

be constructed [e.g., 9], and is supported in GASpAR.

As an example of global assembly, for the mesh partition in Fig. 1a, (9)
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takes the following explicit form (suppressing zero-valued and µ > 1 blocks):

u =

( u0
...

u17

)

=

















u0,1
...

u8,1
u0,2
...

u8,2

















=

























1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





























ug,0
...

ug,14



 .

For the mesh in Fig. 1b, the explicit form of (9) for the nonconforming assem-

bly matrix A = ΦAc is (suppressing zero-valued and µ > 1 blocks)

u =

( u0
...

u26

)

=





























u0,1
...

u8,1
u0,2
...

u8,2
u0,3
...

u8,3





























=











































1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 3/8 0 0 3/4 0 0 −1/8 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Note that the A entries corresponding to the child-node rows (see Fig. 1b)

are not Boolean but that every row sum is unity. This result is to be expected

because A must accommodate interpolation of a constant solution (e.g., ug,i =

1 ∀i) across a nonconforming interface.

43



Acknowledgements

We thank Rich Loft, Peter Sullivan, Steve Thomas and Joe Tribbia for help

at the outset of this work in using spectral element methods, and Huiyu Feng

and Catherine Mavriplis for several useful discussions. Computer time was

provided by NSF under sponsorship of the National Center for Atmospheric

Research. The third author was supported by the U.S. Department of Energy

under Contract W-31-109-ENG-38.

References

[1] Anagnostou, G., Y. Maday, C. Mavriplis, and A. T. Patera, “On the

mortar element method: Generalizations and implementation,” in Third

International Symposium on Domain Decomposition Methods, pp. 157–

173, SIAM, (1989).

[2] Basdevant, C, Deville, M., Haldenwang, P., Lacroix, J. M., Ouazzani, J.,

Peyret, R., Orlandi, P, and Patera, A., “Spectral and finite difference

solutions of the Burgers equation,” Comp. Fluids, 14, pp., 23–41 (1986).

[3] Belgacem, F. B., “The mixed mortar finite element method for the in-

compressible Stokes problem: Convergence analysis,” SIAM J. Numer.

Anal., 37,(4) pp. 1085-1100 (2000).

[4] Bernardi, C., Y. Maday, C. Mavriplis, and A. T. Patera, “The mortar

element method applied to spectral discretizations”, Proceedings of the

Seventh International Conference on Finite Element Methods in Flow

Problems,, T. J. Chung and G. R. Karr, eds., University of Alabama,

Huntsville (1989)

[5] Chang, Rong-Yeu, Hsu, Chia-Hsiang, “A variable-order spectral element

44



method for incompressible viscous flow simultaion”. Int. J. Num. Meth.

Eng., 39, 2865–2887, 1996.

[6] Casadei F., E. Gabellini, G. Fotia, F. Maggio, and A. Quarteroni, “A mor-

tar spectral/finite element method for complex 2D and 3D elastodynamic

problems,” Comp. Meth. Appl. Mech. Eng., 191, 5119–5148 (2002).

[7] Chaljub, E., Y. Capdeville, and J. P. Vilotte, “Solving elastodynamics in

a fluid-solid heterogeneous sphere: A parallel spectral element approxi-

mation on non-conforming grids,” J. Comp. Phys., 187, 457–491 (2003).

[8] Dennis, J., Fournier, A., Spotz, W., St.-Cyr, A. Taylor, M., Thomas, S.,

and Tufo, H., High Resolution Mesh Convergence Properties and Parallel

Efficiency of a Spectral Element Atmospheric Dynamical Core, Int. J.

High Perf. Computing Appl., 19 pp. 225–235 (2005).

[9] Deville, M. O., P. F. Fischer and E. H. Mund, High-Order Methods for In-

compressible Fluid Flow. Cambridge, Cambridge University Press (2002).

[10] Dubois-Pelerin, Y., V. Van Kemenate, M. O. Deville, “An Object-

Oriented Toolbox for Spectral Element Analysis”, it J. Sci Comp., 14,

pp. 1-29 (1999)

[11] Elmegreen, B. G., & J. Scalo “Interstellar turbulence, I: Observations and

Processes” Ann. Rev. Astron. Astrophys. 42, 211–273 (2004).

[12] Feng, H. and C. Mavriplis, “Adaptive spectral element simulations of thin

flame sheet deformations,” J. Sci. Comp., 17, pp. 1–3 (2002).

[13] Fischer, P. F., G. W. Kruse, and F. Loth, “Spectral element methods

for transitional flows in complex geometries,” J. Sci. Comput., 17, 1, pp.

81–98 (2002).

[14] Fournier, A., G. Beylkin and V. Cheruvu, “Multiresolution adaptive

space refinement in geophysical fluid dynamics simulation,” Lecture Notes

Comp. Sci. Eng., 41, pp. 161–170 (2005).

45



[15] Fournier, A., M. A. Taylor, and J. J. Tribbia, “The spectral element atmo-

sphere model (SEAM): High-resolution parallel computation and local-

ized resolution of regional dynamics,” Mon. Wea. Rev., 132, pp. 726–748

(2004).

[16] Uriel Frisch, Turbulence: The legacy of A.N. Kolmogorov, Cambridge Uni-

versity Press, 1995.

[17] Henderson, R. D., “Unstructured spectral element methods for simulation

of turbulent flows,” J. Comp. Phys. 122, pp. 191–217 (1995).

[18] Henderson, R. D., “Dynamic refinement algorithms for spectral element

methods,” Comput. Methods Appl. Mech. Engrg. 175, pp. 395–411 (1999).

[19] Isihara T., Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, “Spectra

of energy dissipation, enstrophy and pressure by high-resolution direct

numerical simulations of turbulence in a periodic box,” J. Phys. Soc.

Japan 72, pp. 983–986 (2003).

[20] Iskandarani, M., D. B. Haidvogel, and J. C. Levin, “A three-dimensional

spectral element model for the solution of the hydrostatic primitive equa-

tions” J. Comp. Phys. 186, pp. 397–426 (2003).

[21] Karniadakis, G.E. and S.J. Sherwin, Spectral/hp Element Methods for

CFD. New York, Oxford Iniversity Press (1999).

[22] Karniadakis, G.E., M. Israeli, and S.A. Orszag, “High–Order splitting

methods for the incompressible Navier-Stokes equations ” J. Comp. Phys.

97, pp. 414–443 (1991).

[23] Kopriva D. A., S. L. Woodruff, and M. Y. Hussaini, “Computation of

electromagnetic scattering with a non-conforming discontinuous spectral

element method,” Int. J. Num. Meth. Eng., 53, pp. 105–122 (2002).

[24] Kruse, G. W., “Parallel nonconforming spectral element solution of the

incompressible Navier–Stokes equations in three dimensions,” Ph.D. Dis-

46



sertation, Division of Applied Mathematics, Brown University (1997).

[25] Levin, J. G., M. Iskandarani, and D. B. Haidvogel, “A nonfoncorming

spectral element ocean model,” Intl. J. Numer. Meth. Fluids 34, pp.

495–525 (2000).

[26] Maday, Y., C. Mavriplis, and A. T. Patera, “Nonconforming mortar el-

ement methods: Application to spectral discretizations,” in Domain De-

composition Methods, pp. 392–418, SIAM (1989). Also ICASE Report

88-59.

[27] Mavriplis, C., “Adaptive mesh strategies for the spectral element

method,” Comput. Methods Appl. Mech, Engrg. 116, pp. 77–86 (1994).

[28] C. Meneveau and J. Katz, “Scale-invariance and turbulence models for

large-eddy simulation,” Annu. Rev. Fluid Mech. 32, pp. 1–32 (2000).

[29] Patera, A., “A spectral element method for fluid dynamics: laminar flow

in a channel expansion,” J. Comp. Phys. 54, pp. 468–488 (1984).

[30] Rønquist, E. “Convection treatment using spectral elements of different

order,” Intl. J. Num. Meth. Fluids 22, pp. 241–264 (1996).

[31] Sert, C. & Beskok, A., “Spectral element formulation on non-conforming

grids: A comparative study of pointwise matching and integral projection

methods”, J. Comp. Phys., in press (2005).

[32] Shewchuck, Richard J. “An Introduction to the Conjugate Gradi-

ent Method Without the Agonizing Pain,” http://www-2.cs.cmu.edu/

jrs/jrspapers.html (1994).

[33] I. Sytine, D. Porter, P. Woodward, S. Hodson and K-H Winkler, “Con-

vergence tests for the Piecewise Parabolic Method and Navier-Stokes so-

lutions for homogeneous compressible turbulence”, J. Comp. Phys. 158,

pp. 225–238 (2000).

[34] Tufo, H.M., Fischer, P.F., “Terascale Spectral element Algorithms and

47



Implementations”, Proceedings of the ACM/IEEE SC99 Conference on

High Performance Networking and Computing, IEEE Computer Soc.

(1999).

[35] Eric W. Weisstein. “Lobatto Quadrature.”

From MathWorld—A Wolfram Web Resource.

http://mathworld.wolfram.com/LobattoQuadrature.html.

[36] Eric W. Weisstein. “Conjugate Gradient Method.”

From MathWorld—A Wolfram Web Resource.

http://mathworld.wolfram.com/ConjugateGradientMethod.html.

[37] Whitham, G.B., Linear and Nonlinear Waves New York, Wiley (1974).

48


