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1 Introduction

Turbulent flows are ubiquitous, and as manifestations of one of the last outstanding unsolved
problems of classical physics, they form today the core picture of numerous scientific and en-
gineering inquiries and are linked to many issues in the geosciences: for example, in geology
(Earth interior and dynamo problem), meteorology (cloud physics), oceanography (the role of
stratification), climatology (global warming), space weather (from the Sun through the solar
wind to the magnetosphere and ionosphere of the Earth), and ecology. The study of turbulence
is not limited to inquiries in geophysics; turbulence plays an equally prominent–often dual–role
in the understanding of nonlinear processes in physics, as well as in industrial flows, through e.g.
the presence of seed particles or bubbles, and in studies of combustive and chemically reactive
flows, and an even more pragmatic role in the area of aeronautical engineering regarding aircraft
safety or in epidemiology. This interest is inter-disciplinary, and the issue of universality (or not)
of physical processes and scaling laws arises, as the modeling of such complex flows becomes
more realistic, but is also in more demand because of the wide range of applicability.

Although no general theory of turbulence currently exists, progress has been made recently
in answering some fundamental questions (see e.g. Frisch, 1995). Departure from normality in
probability distribution functions (PDF) for a variety of flows is well documented, but the origin
and dynamics of these “fat wings” are not understood. Such wings appear, in fact, in many
nonlinear problems with a wide range of excited scales in geophysical flows (Sornette, 2000).
Nonlinearities become important in turbulent flows and can overcome linear viscous dissipation
when the Reynolds number, Re = Uo L0/ν , is large, where U0 and L0 are characteristic velocity
scale and length scale of the flow, and ν is the viscosity. This number is the control parameter
that measures both the number of interacting modes and the ratio of active temporal or spatial

scales in the problem. The number of degrees of freedom in turbulent fluids increases as R
9/4

e

for Re � 1 and for flows in nature, Re often exceed ≈ 108. It is clear that the ability to probe
large Re, and, hence, to examine details regarding the PDFs and structures of turbulent flows,
depends critically on the ability to resolve a large number of spatial and temporal scales and
understand the global dynamics as well as the local interactions between modes and structures.

Theory demands that computations of turbulent flows reflect a clear scale separation between
the energy-containing, inertial (self–similar) and dissipative ranges. Numerical experiments
allow for fully controlled testing of a variety of models both phenomenological and basic, and
they attempt to follow directly as wide a range of scales as possible in order to compute the
true behavior of the flow. Detailed convergence studies show that in order to achieve the desired
scale separation between the energy–containing modes and the dissipation regime, it is necessary
to compute on grids with regularly–spaced points of at least 20483 cells (see e.g. Sytine et al.,
2000 for the compressible case). Only today can such computations be accomplished, and the
subsequent data handled, although strenuously. For a computation of velocity, density and
pressure on such a grid of 8 billion modes and with storage using 16-bit scaled integers, 80
gigabytes (GB) of compressed data per time frame is generated. To provide good temporal
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resolution in a run of 3,000 time steps, a frame may be required every 10 time steps. Since
there is no proven reduction in the degrees of freedom in a turbulent system which is guaranteed
to retain all of the important characteristics of the flow, all of the data generated by these
computations must be kept. Thus a total of 20 terabytes (TB) of storage would be required.
This amount of data is sizable even for a national center, and is entirely beyond the abilities of
individuals to manage at university laboratories in the near future.

In many respects, the data from numerical turbulence runs–particularly the size–is unique
to turbulence studies. In the CONQUEST (CONcurrent QUErying Space and Time; Stolorz et
al., 1995) information system, for example, spatio-temporal features are extracted from large
data sets. The features extracted may refer to cyclone tracks (or hurricanes) with distinct
climatologic patterns, or they may be otherwise “indexable” (identifiable), and amenable to
using learning algorithms that look for novel patterns or correlations. But in turbulence, one
does not know yet what structures are key to our understanding the statistical properties of
turbulent flows (e.g. vortex sheets, spiral or filaments, shocks or fronts, blobs, plumes or tetrads,
knots, helices, tubes or arches) and their topology (see e.g. Kawahara et al., 1997). Perhaps more
importantly, turbulence data is 4-D because it is the spatio–temporal interactions between such
structures–parallel or anti-parallel or orthogonal vortex filaments, single sheet or accumulations
of such sheets embedded in a large-scale strain with potential cancellation-like scaling, kinking
or intertwining of tubes, the latter being known to provide the elementary building blocks of
turbulent transfer of energy to small scales in 3D and as such the source of our multi-scale
problem. We note that in that light, an electronic data center for geophysical turbulent flows
would be extremely useful, similar to the case of facilities for space physics observational data
centers and theoretical physics experimental data centers.

Predictive models for geophysical flows require a unique synergy between computation and
modeling, experiment and measurement. As an illustration, there is presently a world–wide
effort to achieve an experimental dynamo with a small magnetic Prandtl number (PM = ν/η
where η is the magnetic diffusivity) similar to that of the Earth. Theoretical modeling (e.g.
Pouquet, 1993; Nakayama, 2001), numerical computations (e.g. Nore et al., 1997; Kageyama &
Sato 1999) and experiments (Gailitis, 1993) must be inter–compared in order to define precisely
the characteristics of the flow responsible for a viable dynamo.

Direct numerical simulations of turbulent flows can help elucidate the connection between
multi–scale turbulent structures and the underlying non–Gaussian statistics. This link forms
the basis of the notion of intermittency which plays a role in many geophysical phenomena,
for example in droplet formation in clouds and in reactive flows where nonlinear interactions
alter local chemical contact rates. However, intermittency is not yet included in models of these
processes, nor is it clear how this should be done. A relatively new development, which may
even demand new turbulence concepts, concerns the high resolution in-situ and remote sensing
geophysical data. These include lidar and radar measurements which can resolve turbulence
structures throughout the atmospheric boundary layer to scales of a few meters, and data from
such remote sensing platforms as Topex/Poseidon and QuikSCAT, which provide high resolution
sea level and sea surface wind speed measurements, respectively. In principle, these data can
be assimilated into global ocean and atmosphere circulation models. But the flows which these
models address, and which the data represent, are non-Gaussian. An understanding of the role
of intermittency will help determine how best to assimilate observational data into flow models
for enhanced prediction capability, and long-term trending.

Indeed, beyond direct numerical simulations (DNS), research on parameterization of small
scales for use in Large Eddy Simulations (LES) must be actively pursued as LES represents a
strong link to theoretical approaches. Still, how do we proceed without being swamped by the
complexity of closure schemes? Fast multi–processors enable us to compute turbulent flows at
moderate Reynolds numbers in 3D and recently, a Taylor Reynolds number of Rλ ∼ 500 (with
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Figure 1: 1D spectral element calculation of Burgers’ equation with moving shock initial conditions
(Huang, et al., 1994) at Re = 5000. The polynomial order is fixed at Np = 32. The profiles are given
at times (a) 0.2; (b) 0.6, (c) 1.0, and (c) 1.4. Note the clustering of points around the shock as the
grid tracks the sharp velocity gradient there. The number of elements for each profile is 10, 8, 6, and 6,
respectively. The grid is based on a binary tree, and adaptation occurs by binary splitting of an element
(joining of two elements), if the velocity gradient is greater than (less than) some value.

Rλ ∼ R
1/2

e ) on a grid of 10243 points has been achieved (Kaneda, private communication). The
vast amount of data associated with such a model must have its structures identified and be
navigable in both space and time in order to be of use in parameterizing the small–scale behavior
of the flow in LES models. For example, in the LANL-α model (Holm et al., 1998), the small
scales (which typically represent over 85% of the data) possess a dramatically reduced number
of degrees of freedom when compared to conventional turbulence because it conserves the H1,α

instead of the L2 norm: it correctly preserves the nonlinear structure of the Navier-Stokes
equations for the dynamics of the large scales, but the dynamics of the small scales are limited
to being swept by the larger scales. Although resolved in the computations, the information
content of these scales is effectively small and we should be able to model them effectively.

2 Computational Issues in Geophysical Turbulence

2.1 A model of turbulence in one dimension, and adaptivity

The Burgers equation remains today a fertile ground for experimenting, both for numerical
algorithms (Berger & Colella, 1989; Karniadakis et al., 1991; Dietachmayer & Droegemeier,
1992; Gombosi et al., 1994; Mavriplis, 1994) and for phenomenology for turbulence (Woyczynski,
1995; Frisch & Bec, 2000); it is also a model for many physical processes, from traffic fluctuations
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(Higuchi, 1978) to cosmology (Vergassola et al., 1994). It reads:

∂tu + u∂xu = ν∂2

xxu + f (1)

where u is the velocity and f a forcing term which, in general, is taken to be concentrated in the
large spatial scales and, for example, delta–correlated in time. When the forcing is identically
zero, an exact solution is known through the Hopf–Cole transformation. Using the fact that
the solution is a combination of ramps and shocks, one can show that the structure functions
δu(r) = u(x + r)− u(x) scale in the inertial range where dissipative processes can be ignored as
〈δu(r)p〉 ∼ rζp , with ζp = p for p ≤ 1 and ζp = 1 for p ≥ 1. Furthermore, power laws for the
wing of the PDFs of negative velocity gradients (the shocks) for (1) can be found analytically,
but the index for such a law is in dispute (see Gotoh & Kraichnan (1998), and Frisch & Bec,
op. cit.). The important point, though, is that such wings can now be computed analytically
and thus lead to a better understanding of the role of structures in turbulent flows. Recently, it
has also been shown, through an analogy with the XY spin model, that the tails of the Burgers
velocity gradients can be recovered with Graner distributions (Noullez and Pinton, 2002).

Fast algorithms can be found that solve equation (1) with L0 ∼ 1, velocity U0 ∼ 1 and
ν ∼ 10−4 with only a few dozen nodal points. A criterion of choice of such points follows the
concept of equidistribution according to a monitor function based in part on velocity gradients
(see Figure 1; for a recent account see e.g. Huang & Russell (1997) and references therein). Is
there a limitation on the achievable Reynolds number with grid adaptation at fixed number of
points N? For a regular grid, and for Burgers equation, one can achieved Re ∼ N3/2, a result
that obtains by equating the characteristic time of nonlinear interactions based on the evaluation
of the energy spectrum E(k) ∼ k−2, and of the diffusion time. This type of analysis is customary
for Navier–Stokes flows using the concept of energy cascade, although for the Burgers equation
the shock is a coherent structure and the time of formation of a shock is scale–independent. Let
us now consider the extreme choice of taking all the available grid points in the vicinity of the
shock with only a couple of points in the rarefaction wave (the ramp). Taking into account the
fact that the local solution gives for the thickness of the shock a scaling lmin ∼ ν1/2 because
of the hyperbolic tangent profile, one now obtains Re ∼ N2 (reminiscent of scaling when using
irregularly spaced points with Chebychev polynomials).

2.2 Data Analysis and Manipulation

Conventional statistical analysis methods, while simple to compute, may reduce data to a rel-
atively few numbers, filtering out information that has been computed at great expense. Still-
image visualizations may reveal important instantaneous features, difficult to detect using nu-
merical methods, but fail to capture the dynamics of time-evolving phenomena. Only temporal
animations may reveal the behavior of complex evolving features. To be most effective, these
animations must be realized in a highly interactive manner, using tools that permit researchers
to navigate data through both time and space (Clyne et al., 1998). The computational demands
for interactive visual data analysis on the scales discussed are staggering. Large data visual-
ization systems exist, such as those developed by Parker (1999) and Painter (1999), but they
rely on hardware costing millions of dollars. In many ways visualization systems such as these
are brute force approaches and not entirely necessary for visual data exploration, particularly if
the goal is to assist in discovery of large scale features. The efficient extraction of sub-regions
of data in time and space also must be possible. The extraction of data may be preceded or
followed by conversion to quantities (e.g. temperature, vorticity, or a component of the rate of
strain tensor) that are derived from the raw model data.

Multiresolution data representation methods may offer a solution to these issues. The theory
of wavelets offers a natural mathematical framework for such a representation. At each successive
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power-of-two resolution level the wavelet transformation yields a lower frequency approximation
to the previous level along with higher frequency detail coefficients representing the loss of
information between levels. The accuracy of these coarser approximations is dependent on the
nature of the data itself and the choice of wavelet basis function used. Exploring optimal wavelet
basis functions for various forms of scientific data is an active area of research (Tao, et al., 1994;
Kolarov & Lynch 1997; Wilson 2000), including in turbulence (Farge et al., 1999). Wavelet
transforms are invertible, and lossless reconstruction of the approximation to the next higher
resolution is possible (Mallat 1989). The transformation to and from wavelet space can be
accomplished in linear time. Using techniques such as lifting (Sweldens, 1996), reconstruction
may be accomplished using only additions and subtractions of floating point numbers, making
the inverse transformation exceptionally fast. Furthermore, the transformed data occupy no
more space than the original data, making multiresolution representations possible without the
use of additional data storage.

Applying 3D wavelet transforms directly to data volumes in the manner first proposed by
Muraki (1993) allows the efficient construction of data at different scales but it does not enable
the multiresolution data sub-setting that we seek. Partitioning the data into blocks and applying
the 3D transform to the individual blocks may improve the situation (Ihm 1998; Rodler 1999).
Block decomposition facilitates region extraction and improves cache performance on cache-
based microprocessors. However, to our knowledge these block-based efforts have all assumed
static data. Furthermore, current methods, primarily aimed at large medical data sets, assume
the researcher knows a priori which sub-region is of interest. Organization strategies that do
not make these assumptions and are more appropriate for turbulence data must be explored.
Similarly, analysis tools that may exploit these multiresolution encodings must be developed.

2.3 Large Eddy Simulations (LES)

There are a variety of closure schemes that have been proposed for turbulence (see e.g. Kraich-
nan, 1976; Yoshizawa, 1985; Chasnov, 1991; Kaneda et al., 1999). It is clear that, as the
primitive equations become more complete, more forces being taken into account, the closures
become more complex since they involve evaluating a large number of triple correlations between
the various variables (velocity, density, pressure, entropy, magnetic field, ...). Such equations are
difficult to solve analytically and resort to numerical solutions to analyze them is unavoidable.
Economical and physically-motivated methods must be developed further as they represent the
only reasonable hope for modeling turbulent flows. For example, a stochastic framework of the
Langevin type (Bertoglio, 1984), enhanced or real-space eddy viscosity (Métais & Lesieur, 1992),
or closures based on a Lagrangian spectral theory (Kaneda, 1981; Yoshida et al., , 2002; Gotoh
et al., , 2002) are promising venues. In particular in the latter case, there are no adjustable pa-
rameters and the Lagrangian approach allows for getting rid of the problem associated with the
Direct Interaction Approximation (Kraichnan, 1977) and thus leads to a classical Kolmogorov
k−5/3 spectrum (see also Nakayama (2001) for the case of weak anisotropic MHD).

On the other hand, it has been proposed that numerical methods themselves represent a
closure of the primitive equations. In particular, the ability of non-oscillatory advection schemes
to represent the effects of the unresolved scales of motion has already been explored (Oran and
Boris, 1993, Porter et al., 1994). For example, such a solver can accurately reproduce the
dynamics of an atmospheric convective boundary layer. When an explicit turbulence model
is implemented, the solver does not add any significant numerical diffusion and thus appears
to include an effective subgrid scale model. Are the conservation/symmetry properties of the
underlying equations sufficient to lead to that effect? Can such methods recover the law of
the wall in channel flows? Similarly, the MPDATA methods (Smolarkiewicz and Margolin,
1998) developed for studying precipitation over mountains or forest fires can be studied to
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assess/quantify its LES properties exploiting a set of benchmark problems in the large Re limit.
A recent study of Burgers equation using such a code (Margolin and Rider, 2002) shows that
the equivalent equation for the cell-averaged velocity ū reads:

∂tū + ū∂xū − ν0∂
2

xxū = δx2[α∂xū + β|∂xū|]∂2

xxū + δx2ζūūxxx + δx2η
ū3

x

ū
+ δx3γūxxxx (2)

with δx the grid spacing, and where α, β, γ, ζ and η vary according to the numerical method
used. Indeed, the first term on the r.h.s. acts as a numerical/physical nonlinear turbulent vis-
cosity. However, this approach remains empirical and must be backed by strong closure schemes.
Furthermore, the adaptive-mesh-refinement capabilities of codes developed for turbulence stud-
ies should also be assessed in the same fashion, thereby trying to link numerically–based and
physically–based parameterization schemes.

3 Can we Learn from Fully Developed Turbulence?

The hallmark of turbulence is the creation of fluid motions at ever smaller and faster time scales,
until the energy finally has cascaded down to the microscopic scales at which it can be dissipated
as heat by viscosity. This turbulent cascade process is a successive loss of stability that occurs
with increasing rapidity as the Reynolds number is increased. Fully-developed turbulence at
high Re is known to be “intermittent.” This means, for example, that in the decay of turbulence
the correlations in the flow at different scales do not follow a simple geometric relation between
scales. Instead it comes in intermittent “gusts” and the cascade of energy has fractal properties.
Thus, the heart of the problem of analyzing turbulence data, i.e. the statistical description of
many interacting degrees of freedom (infinitely so in the limit Re → ∞) is fundamentally an
information technology problem. The complexity is so rich that attacking this problem will
require advances in IT research that should serve many other purposes and will go hand in hand
with the development of computational power for the foreseeable future.

The seminal paper of R.H. Kraichnan (1994) on intermittency for a passive scalar such as
a non-reactive pollutant, has led several teams to show that there are intermittency corrections
to the scaling laws stemming from dimensional analysis, even though the velocity field in that
model is well behaved (Gaussian with power-law spatial correlation and delta correlated in time).
Such laws can be linked to the dynamics of structures, ramps or fronts, highly concentrated in
space/time (Sreenivasan et al., 1997; Warhaft, 2000; Shraiman & Siggia, 2000; Falkovich et al.,
2001). The corrections these authors find to a linear variation of scaling exponents with order
is a signature of the persistence of the dynamical influence of the large scales of the turbulent
flow; it arises, as a memory of initial conditions, through the existence of statistical Lagrangian
invariants (with time). An example of such an invariant involves, in the isotropic case, the
one–time three–point correlation function C3(~r1, ~r2, ~r3): even though, through Richardson law
of dispersion, the average distance between the three points increases in time as t3/2, there exists
a function of the shape of the triangle formed by the three points at positions (~r1, ~r2, ~r3) as they
evolve temporally, such that C3 indeed remain constant (see Pumir, 1998). These invariants have
physical consequences, for example concerning the problem of return to isotropy in the small
scales, which is slower than thought previously and which is associated with intermittency.

The determination of the exponents ζp is an open problem for Navier–Stokes and MHD
turbulence, and that such exponents differ from the Burgers values mentioned in §2.1; however,
one can also observe with both experiments and numerical simulations a saturation – Burgers
being an extreme case – whereby the exponents, as p grows, tend to a limit for a passive scalar;
this phenomenon is attributed to the presence of sharp fronts in the spatial distribution of the
scalar density. Intermittency deals with the localization of sharp structures in space/time. Their
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signature is felt in the existence of fat wings in PDFs with strong events highly more probable
than for the Gaussian with the same mean and variance and, as stated before, in the departure
from a linear law with order of the scaling exponents of structure functions. Beyond Navier–
Stokes, intermittency has been quantified in this manner in the Solar Wind (Burlaga et al., 1990;
Ruzmaikin et al., 1995; Tu & Marsch, 1995) and in DNS for MHD (Politano et al., 1998; Gomez
et al., 1999; Müller & Biskamp, 2000). It has been modeled successfully for Navier–Stokes flows
(Castaing et al., 1993; She & Leveque, 1994), as shown by numerous laboratory experiments
starting with Anselmet et al., (1984), and direct numerical simulations (Vincent and Meneguzzi,
1994), including in the compressible case at r.m.s. Mach numbers of unity (Porter et al., 1999).

How much can we learn from these considerations when examining realistic flows, such as
when considering anisotropy due to rotation, stratification or a uniform magnetic field, as well
as in the vicinity of interfaces, or a combination of such effects, as they occur in geophysical
flows? In the case of coupling to a magnetic field, in the kinematic regime where the magnetic
field remains passive, anomalous scaling appears already at second order (Vergassola, 1996),
and a comparison with standard two–point closures would thus be of great interest; in the case
of a passive vector with pressure included, similarly (Yoshida & Kaneda, 2001). What is the
energy spectrum in anisotropic flows (see e.g. Ishihara et al., 2002)? Is there return to isotropy
at small scale for anisotropic forcing such as shear waves? Finally, the way that intermittency
can be incorporated in Large-Eddy Simulations and its effects on small–scale physics is largely
unknown today, although Lagrangian techniques that allow us to follow the flow locally may
prove useful. The challenge is thus to retain simple modeling approaches (the only viable ones
for realistic flows of industrial or geophysical interests) yet incorporating some of this knowledge
recently uncovered in specific cases.

4 Conclusion

Computations should be selected to provide data sets of archetypal geophysical turbulent flows
which would then enable a variety of physical conditions to be explored with as few actual
runs as possible, but at the highest resolution feasible today. This kind of data would allow
controlled testing of models developed in the geosciences community, and appropriate scaling
laws for sub-grid scale models could then be derived from it. Such an approach could also be
used to facilitate data assimilation in geophysical models from observations in order to enhance
predictive capabilities. The societal impacts, with the direct effect of turbulence on geophysical
flows is blatant. The broader impact on education can also be mentioned, at the graduate and
undergraduate levels and for the involvement of high–school teachers with exciting scientific
developments at the frontier of what is possible today. An example is atmospheric turbulence
and oceanic circulation, and their interaction at the air–sea interface. At intermediate scales,
strong stable stratification (together with rotation) structures the flow and impedes mixing
in the vertical direction (Kaneda & Ishida, 2000), destroys – at least partially – statistical
isotropy, and affects variability. Questions such as whether a quasi–two dimensional approach
is sufficient, or the hydrostatic approximation at the planetary scale, are wide open (see e.g.
Danilov & Gurarie (2000) for a recent review; also, Kimura and Herring, 1996). In a broader
sense, the interaction of turbulence and waves (e.g. here, internal gravity waves; in MHD, Alfvén
and magneto-acoustic waves) remains an open problem, in some cases in part because of the
non–uniformity of the weak turbulence approximation (Newell et al., 2001); this approach which
allows for a theoretical evaluation of scaling laws for fluxless and constant flux solutions of the
equations is of great interest and has huge potential applications.

Because of the vast demands inherent to research areas in the geosciences, only a concerted
effort will allow in due time for a possible breakthrough on some of the important and difficult
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questions remaining in the field of geophysical turbulence involving global scale dynamics. A
process must be put together whereby, if successful, it would provide access to and dissemination
of turbulence data with demonstrated scale separation; it would be not only immediately valuable
to the geosciences community, but would also benefit industrial and commercial interests.
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[46] Oran, E. and Boris, J. Computers in Physics 7, 523 (1993).

[47] Painter, J., Mccormick, P., and Mcpherson, A. In NSF/DOE Workshop on Large Scale
Visualization and Data Management (1999).

[48] Parker, S., Parker M,. Livnat, Y., Sloan, P., Hansen, C. & Shirley, P. Trans. Viz. Comp.
Graph., 5, 238 (1999).

[49] Politano, H., A. Pouquet & V. Carbone EuroPhys. Lett. 43, 516 (1998).

9



[50] Polyakov, A.M. Phys. Rev. E. 54, 4896 (1996).

[51] Porter, D., Pouquet, A., & Woodward, P., Phys. Fluids 6, 2133 (1994).

[52] Porter, D., Pouquet, A., Sytine, I. & Woodward, P., Physica A, 263, 263 (1999).

[53] Pouquet, A., Les Houches Summer School on Astrophysical Fluid Dynamics; Session
XLVII, p. 139; Eds. J. P. Zahn & J. Zinn–Justin, Elsevier (1993).

[54] Pumir, A., Phys. Rev. E vol. 57, 2914 (1998).

[55] Rodler, R., in /sl Pacific Graphics ’99 ”Wavelet-based 3D Compression with Fast Random
Access for Very Large Volume Data”, p. 108 (1999).

[56] Ruzmaikin, A., Feynman, J., Goldstein, B.E., Smith, E.J., Balogh, A. J. Geophys. Res.
100, 3395 (1995).

[57] She, Z.S. & Leveque E. Phys. Rev. Lett. vol. 72, 336 (1994).

[58] Shraiman B. & Siggia E. Nature 405 , 639 (2000).

[59] Smolarkiewicz, P. & Margolin, L. J. Comput. Phys. 140, 459 (1998).

[60] Sornette, D., Critical Phenomena in Natural Sciences, Springer (2000).

[61] Sreenivasan, K.R., Antonia, R.A. Annu. Rev. Fluid Mech. 29, 435 (1997).

[62] Stolorz, P., Nakamura, H., Mesrobian, E., Muntz, R., Shek, C., Santos, J., Yi, J., Ng,
K., Chien, S., Mechoso, C., Farrara, J., in Fast Spatial–Temporal Data Mining of Large
Geographical Data Sets, AAAI Press, Menlo Park, p. 300 (1995).

[63] Sytine, I., Porter, D., Woodward, P., Hodson, S. & Winkler, K-H J. Comput. Phys. 158,
225 (2000).

[64] Sweldens, W. J. Appl Comp. Anal., 3, 186 (1996).

[65] Tao, H., and Moorhead, R., in Proc. Visualization ’94 ”Progressive transmission of scientific

data using biorthogonal wavelet transform”, p. 93 (1994).

[66] Tu, M. & E. Marsch, Space Sci. Rev. 73, 1 (1995).

[67] Vergassola, M., Dubrulle, B., Frisch, U. & Noullez, A. Astron. Astrophys. 289, 325 (1994).

[68] Vergassola, M. Phys. Rev. E 53, R3021 (1996).

[69] Vincent A. & Meneguzzi M., J. Fluid Mech. 258, 245 (1994).

[70] Warhaft Z. Ann. Rev. Fluid Mech. 32, 203 (2000).

[71] Wilson, J., in IEEE Data Compression Conference Poster Session ” Wavelet-Based Lossy

Compression of Turbulence Data (2000)

[72] Woyczynski, W.A. in ”Nonlinear Waves and Weak Turbulence with applications in oceanog-
raphy and condensed matter physics” pp. 279-311 (Birkhauser, Berlin) (1995).

[73] Yoshida, K. & Kaneda, Y. Phys. Rev. E 63, 1 (2001).

[74] Yoshida K., Ishihara T. & Kaneda Y., in Statistical theories and computational approaches
to turbulence. Kaneda Y. & Gotoh T. Eds. Springer (2002).

[75] Yoshizawa, A. Phys. Fluids 28, 3313 (1985).

10


