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Subgrid modeling of MHD flows is still under development. Most LES for hydrodynamic turbulence are
based upon self-similarity or universality, in that they assume a known power law of the energy spectrum.
For MHD, the kinetic energy is not a conserved quantity, and this poses a problem for the extension of such
techniques to this case. Additional difficulties arise from the fact that MHD has several regimes depending on
the relative strengths of the magnetic and velocity fields, their degree of alignment, and whether mechanical
or magnetic energy is injected into the flow. However, some LES have been developed for particular cases.
There exists LES for MHD turbulence with some degree of alignment between the fields, dissipative LES
which does not model the interactions between the two fields, and LES for low magnetic Reynolds number (see
[1] for references). A more generally applicable subgrid model that would also handle transitional flows (e.g.

dynamos) is then desirable. To this end, we investigate the Lagrangian averaged magneto-hydrodynamic
alpha (LAMHD−α) model. This model we have recently tested both in 2D and in 3D and it has been used
to examine the onset of the dynamo instability when the magnetic Prandtl number is small. Most of these
works compared the time evolution of ideal invariants for forced and free decaying turbulence, as well as the
evolution of energy spectra. Also, some statistical comparisons were performed (e.g. studying the behavior
of probability density functions). In this work, we apply a more stringent test to this model. Intermittency
is a well known feature of turbulent flows, associated with the existence of strong events localized both in
space and time. Intermittency can trigger large scale events, affect the transport coefficients, or give rise
to corrections in the turbulent scaling. As a result, whether a subgrid model can capture the statistics of
intermittent events is of utmost importance to model astrophysical or geophysical flows. This study also
requires high order statistics, thereby extending comparisons between direct numerical simulations (DNS)
and α-models.

The equations for LAMHD−α are

∂tu + us · ∇u − Bs · ∇B + (∇us)
T · u + (∇B)T · Bs + ∇π = ν∆u,

∂tBs + us · ∇Bs − Bs · ∇us = η∆B , (1)

where u and B are the velocity and magnetic fields (both divergence free), ν is the viscosity, and η is
the diffusivity. The subscript s denotes smoothing obtained by inverting the relations, u = (1 − α2∆)us,
B = (1 − α2

M∆)Bs. We compare intermittency in (1) to that of DNS of MHD, regarded as true at a given
Reynolds number. We define the longitudinal structure function of the Elsässer variable z+ = u + B as
S+

p (l) ≡ 〈|δz+
L |p〉 where δz+

L = (z+(x + l) − z+(x)) · l/l is the longitudinal increment of z+. Four sets of 2D
simulations were computed with periodic boundary conditions, one set of MHD DNS with 10242 grid points,
and three sets of LAMHD−α simulations, 5122 and α = αM = 6/512, 2562 and α = αM = 6/256, and 2562

and α = αM = 6/128. All simulations were identical with regards to dissipation (η = ν = 1.6 × 10−4) and
forcing (in the Fourier ring k = [1, 2] with random phases in momentum and vector potential).

With the Extended Self-Similarity (ESS) hypothesis we determined the relative scaling exponents, ξ+
p ,

from S+
p (l) ∼ [L+(l)]ξ

+
p where L+ ∝ l from the Kármán-Howarth theorem (see [1] for details). Figure 1



compares the scaling exponent, ξ+
p , for the DNS runs and the three sets of LAMHD−α runs. In the figure, the

She-Lévêque (SL) formula for MHD is shown as a reference,
ξp

ξ3
= p

6 +1−
(

1
2

)p/3
. The α−model captured the

high-order statistics and the anomalous scaling of the longitudinal structure function exponents (to within
the errors of our statistics), with a net gain in speed close to a factor of 16. For lower order structure
functions, very little contamination of the scaling could be detected at scales larger than α.

In current sheets, where magnetic reconnection occurs, the magnetic field and the current rapidly change
sign. To preserve reliable statistics of these events in subgrid models of MHD turbulence is of importance
in many problems. In order to measure fast oscillations in sign of a field on arbitrary small scales, the
cancellation exponent was introduced (see [2] for references). The signed measure for the current jz(x) on a
set Q(L) of size L is µi(l) =

∫

Qi(l)
dx jz(x) /

∫

Q(L) dx |jz(x)| where {Qi(l)} ⊂ Q(L) is a hierarchy of disjoint

subsets of size l covering Q(L). The partition function χ measures the cancellations at a given lengthscale
l, χ(l) =

∑

Qi(l)
|µi(l)|. We can study the scaling behaviors of the cancellations defining the cancellation

exponent κ, where χ(l) ∼ l−κ. Positive κ indicates fast changes in sign on small scales. This exponent can
also be related with the fractal dimension D of the structures, κ = (d − D)/2, where d is the number of
spatial dimensions of the system. The evolution of the cancellation exponent as a function of time for free
decaying simulations is shown in Fig. 2. The maximum of κ takes place slightly later than the maximum of
magnetic dissipation. Note that the alpha-model captures the time evolution of the cancellation exponent,
as well as the fractal structure of the problem as time evolves.

Future challenges will include implementation of LAMHD−α in domains with boundaries and the study
of intermittency for magnetic Prandtl numbers besides unity.

Figure 1: Structure function scaling exponent: ξ+
p

versus p. 10242 MHD are the pluses, for LAMHD−α
5122 are the diamonds, 2562 (α = 6/256) are tri-
angles, and 2562 (α = 6/128) are the squares. The
error bars are the error to the least-squares fit.

Figure 2: Time history of the cancellation exponent
(thick lines) for the three free decaying runs, and of
η

〈

j2
z

〉

, where the brackets denote spatial average.
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Howarth theorem, and intermittency for forced and decaying LAMHD−α in 2D, Phys. Fluids 18, 045106.

[2] J. Pietarila Graham, P. D. Mininni, and A. Pouquet 2005. Cancellation exponent and multifractal struc-
ture in 2D MHD: Direct numerical simulations and LAMHD−α, Phys. Rev. E 72, 045301.


