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Turbulent dynamos at low magnetic Prandtl number
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Planetary and stellar dynamos likely result from turbulent motions in magnetofluids with kinematic
viscosities that are small compared to their magnetic diffusivities. Laboratory experiments are in progress
to produce similar dynamos in liquid metals. Plasmas in stellar interiors and conducting fluids in planetary
cores and liquid sodium experiments are characterized by a magnetic Prandtl number PM (the ratio of the
kinematic viscosity ν to the magnetic diffusivity η) much smaller than one. As a few examples, the magnetic
Prandtl number in the solar convective region is estimated to be PM ≈ 10−5− 10−6, and in the Earth’s core
PM ≈ 10−5.

While numerical simulations of dynamo action in these objects are available, the large values of the kinetic
(RV ) and magnetic (RM ) Reynolds numbers forbid a study using realistic values of PM . Simulations of the
geodynamo or the solar convective region are often done for PM ∼ 1. While the proper separation of the
kinetic and magnetic dissipation scales cannot be achieved in these simulations, values of PM much smaller
than one can be reached under more idealized conditions. Pseudospectral methods in periodic boxes give an
excellent tool to study the behavior of magnetohydrodynamic (MHD) turbulence in the regime PM < 1.

In this talk, we review recent results from simulations of helical and non-helical dynamos at PM < 1
using pseudospectral codes in periodic boxes [1, 2, 3, 4]. To extend the range in PM in the simulations,
subgrid scale (SGS) models of MHD turbulence were used. We discuss some of these models with particular
emphasis in the Lagrangian Average MHD (LAMHD) equations [5, 6, 7]. To validate results from SGS
models, direct numerical simulations (DNS) of MHD turbulence with resolutions up to 10243 grid points are
discussed.

Three flows are considered: the flow resulting from Taylor-Green forcing [1, 2], the result of Roberts
forcing [3], and the result of Arn’old-Beltrami-Childress (ABC) forcing [4]. The first case corresponds to
a flow with no net helicity that gives amplification of magnetic energy in large and small scales, while
the second forcing gives a helical flow where only dynamo action in small scales is permitted by introducing
mechanical energy in the largest available scale. Finally, ABC forcing at intermediate scales gives an example
of a helical case where large scale magnetic amplification is allowed. For this forcing, values of PM down to
5 × 10−3 are reached. The results obtained for such a low value of PM are expected to be of relevance for
astrophysical and geophysical applications, as well as for laboratory dynamos.

For all cases studied, dynamo action is observed to persist at the smallest values of PM that can be
reached. Moreover, for values of PM smaller than ∼ 0.1 an independence of the threshold in the magnetic
Reynolds number Rc

M with PM is observed (Figure 1). While for the Taylor-Green (non-helical) forcing
and the Roberts forcing (helical, but with magnetic amplification only at small scales) a sharp increase in
the critical parameter is observed before reaching the asymptotic regime, in the ABC case almost no such
increase is found.

For simulations with magnetic Reynolds numbers RM > Rc
M , the saturation and nonlinear behavior of

dynamos with PM < 1 is discussed. In helical flows, as magnetic energy saturates, a large scale magnetic field
develops (at scales larger than the forcing scale). It is of interest to know what happens with the amplitude



Figure 1: Critical magnetic Reynolds Rc
M to have dynamo action as a function of RV (PM = RM/RV )

for different forcing functions: Taylor-Green (crosses), Roberts (squares), and ABC (diamonds). Points
connected with solid lines were obtained from DNS, while points connected with dashed lines were obtained
using the LAMHD equations.

of the magnetic field as the value of PM is decreased. However, different results are obtained when the space
of parameters is explored keeping RM constant and increasing RV , or keeping RV constant and decreasing
RM as another way to decrease PM . As the value of PM is decreased, if RV is kept constant and RM (and
thus PM ) decreases, the saturation of the dynamo takes place for lower values of the magnetic energy. But if
RM is kept constant and RV is increased (and thus PM decreases), first a decrease in the saturation value of
the magnetic energy is observed, followed by a regime where its amplitude seems to be roughly independent
of PM .
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