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Rapidly rotating convection in spherical geometry has been explored using the quasi-geostrophic approxi-
mation [1]. This is a reasonable model of convection between rotating spherical shells outside the tangent
cylinder that touches the inner core. This approximation assumes a simple z-dependence and solves the
two-dimensional nonlinear fluid equations in s, the distance from the axis, φ the azimuthal coordinate, and
time t. Attention is focussed on the heat transport and the azimuthal zonal flow. We find that the local
Peclet number, the product of the typical convective velocity and local convective length scale divided by
the thermal diffusivity, is helpful for understanding the dynamics of rapidly rotating convection.

For small R/Rc − 1, R being the Rayleigh number and Rc its linear critical value, the Nusselt number
varies linearly with R/Rc − 1, with a slope that diminishes rapidly as the Prandtl number P = ν/κ → 0. At
larger values of R/Rc − 1 the Nusselt number becomes less dependent on P , and eventually increases more
slowly with R/Rc − 1 as thin thermal boundary layers develop. At small R/Rc − 1, the zonal flow U0

φ ∼ Û2
c ,

where Ûc is the convective velocity, but as R/Rc−1 increases saturation occurs and the exponent is reduced
to U0

φ ∼ Û
4/3
c approximately. Some possible reasons for this exponent will be discussed. The zonal flow

sometimes exhibits a multiple jet structure, and sometimes has a simple radial structure. Factors affecting
multiple jet formation will be considered.

We compare our results with the inertial scaling, [2, 3], developed to study rapidly rotating convection,
which predicts that Ûc ∼ RQ

2/5(EP )1/5, where RQ is the flux Rayleigh number, RQ = R(Nu − 1), and
E is the Ekman number, ν/Ωd2, d being the gap between the inner and outer core. The scalings for RQ

and E are in reasonable agreement with our numerical solutions, but the Prandtl number scaling is poor.
It appears that the viscous length scale at onset, dE1/3, is still relevant even at Rayleigh numbers 50 times
critical.

When a dynamo generated magnetic field is present, Christensen and Aubert [4] find that the scaling
Ûc ∼ RQ

2/5 still holds (the Rayeigh number here being defined in terms of the rotation time rather than the
dissipation time), while Starchenko and Jones [5] argued that Ûc ∼ RQ

1/2. In the Earth’s core, velocities are
so low that inertia is negligible except on very small length scales. The conditions that inertia is negligible
in spherical dynamo models have been investigated recently by Sreenivasan and Jones [6].

The vorticity equation can be written

−2(Ω · ∇)u = ∇× gαT r̂ +
1
ρ
∇× (j×B), (1)

suggesting 2ΩÛc/Lz ∼ gαT/Lx. The temperature perturbation T can be eliminated using the convective
heat flux per square metre F ∼ ρcpÛcT , to give

Ûc ∼
(

gαF

ρcpΩ

)1/2
Lz

2Lx
, (2)

or Ûc ∼ RQ
1/2 if the ratio Lz/Lx is constant. It is therefore the asymptotic behaviour of Lz/Lx which is

crucial. In the presence of a magnetic field, the zonal flow is much reduced, and more interest attaches to
the strength of the generated magnetic field. Ohmic dissipation balances the buoyancy work, since viscous
dissipation is small, so

ηµj2 ∼ gαF

cp
. (3)



The length scale δB over which the magnetic field varies comes from the induction equation

(B · ∇)u ∼ η∇2B → δB ∼ Rm−1/2d (4)

if flux ropes with thickness δB are created, [7]. Then setting |µj| ∼ |B|/δB and using (3),

B ∼ µ1/2d1/2

(
gαF

cp

)1/2 1

Û
1/2
c

. (5)

The scaling for Ûc, (2), can then be used to estimate the typical field strength. This field strength scaling
implies that the Lorentz force is primarily balanced by pressure in the flux ropes where it is created. To
obtain the magnetic field strength directly from the vorticity equation (1) we must note that in the magnetic
flux tube configuration the current varies only slowly along the (long) flux tube.

These scalings can be applied to obtain estimates of the typical velocity and magnetic field strength of
the planets. For a planet to actually have an active dynamo obeying these scalings, the total heat flux must
exceed the heat flux that can be conducted down the adiabat at least somewhere in the core. Also, the
magnetic Reynolds number predicted by (2) must be sufficient for dynamo action to occur.
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