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Darryl D. Holm, Imperial College London & LANL

Notation: The 3D incompressible Euler fluid

The equations for Eulerian fluid velocity u in 3D are

Du

Dt
= −∇p , with

D

Dt
=
∂

∂t
+ u · ∇ and div u = 0

Taking the curl yields the vorticity equation (ω = curl u)

Dω

Dt
= ω · ∇u = Sω

The vortex stretching vector is Sω with S = 1
2(∇u +∇uT ), or

Sij = 1
2 (ui,j + uj,i)

and preservation of div u = 0 determines the pressure p as

−∆p = ui,juj,i =: |∇u|2 = TrS2 − 1
2 ω

2 .
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Outline for the talk

1. Define Ertel’s theorem, Ohkitani’s relation, vorticity frame dynamics

and alignment dynamics for Euler’s equations.

2. Use Ertel’s theorem to derive Lagrangian dynamics of the Frenet-Serret

curvature and torsion of vortex lines

3. Represent Euler vorticity alignments with S & P as quaternions. These yield

the Cayley-Klein parameters of

Sω̂ = α ω̂ + χ× ω̂ and P ω̂ = αp ω̂ + χp × ω̂

4. Derive dynamics of quaternions for S-alignment ζ = [α, χ] driven by

P -alignment ζp = [αp, χp]

5. Apply this structure to LES models (LAE−α, MP97mod2’) and MHD
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Darryl D. Holm, Imperial College London & LANL

Define vorticity growth rate (α) and swing rate (χ)

The material rates of change of |ω| and ω̂ are given by

Dω

Dt
= Sω with Sω̂ = α ω̂ + χ× ω̂

• The scalar α = ω̂ · Sω̂ is the vorticity growth rate

D|ω|
Dt

= α |ω|
α > 0 stretching

α < 0 shrinking

• The 3-vector χ = ω̂ × Sω̂ is the vorticity swing rate

Dω̂

Dt
= χ× ω̂ , ω̂ × Dω̂

Dt
= χ (frequency)

Remark: If ω aligns with an eigenvector Sω̂ = λ ω̂, then χ = 0.

For such alignment, the vorticity direction is frozen into the flow.
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3D vortex stretching and alignment

The curl of Euler’s equation yields vorticity dynamics

Dω

Dt
= ω · ∇u = Sω

whose the strain-rate matrix S has components Sij = 1
2(ui,j + uj,i)

For S-alignment: Sω = λω, the vorticity stretches (shrinks) depending on

whether the corresponding eigenvalue λ is positive (negative).

• How long will the vorticity grow, before getting misaligned?

– This depends on the Lagrangian rates of change of α = ω̂ · Sω̂ and of the

vorticity swing rate χ = ω̂ × Sω̂. For this we need D2ω
Dt2

!

• Seek alignment-parameter dynamics
(
Dα
Dt and

Dχ
Dt

)
• Is vorticity alignment dynamics cause, effect, or both?

• A key to the answer will be Ertel’s Theorem (1942)
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Darryl D. Holm, Imperial College London & LANL

Ertel’s Theorem (1942)

Theorem: (Ertel 1942) If ω satisfies the 3D incompressible Euler equations

then an arbitrary differentiable function µ satisfies

D

Dt
(ω · ∇µ) = ω · ∇

(
Dµ

Dt

)
.

Proof: In characteristic (Lie-derivative) form, the vorticity equation is,

D

Dt

(
ω · ∂

∂x

)
=
(Dω

Dt
− ω · ∇u

)
· ∂
∂x

= 0 along
dx

dt
= u(x, t)

So ω · ∂
∂x(t) = ω · ∂

∂x(0) (Cauchy 1859) and the derivatives commute[
D

Dt
, ω · ∇

]
= 0

Hence, Ertel’s theorem follows.

Corollary: Dµ/Dt = 0 implies D(ω · ∇µ)/Dt = 0 (e.g. PV in GFD).
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Some Ertel references

• Ertel; Ein Neuer Hydrodynamischer Wirbelsatz, Met. Z. 59, 271-281, (1942).

• Hoskins, McIntyre, & Robertson; On the use & significance of isentropic po-

tential vorticity maps, Quart. J. Roy. Met. Soc., 111, 877-946, (1985).

• Ohkitani; Eigenvalue problems in 3D Euler flows, Phys. Fluids, A5, 2570,

(1993).

• Viudez; On the relation between Beltrami’s material vorticity and Rossby-

Ertel’s Potential, J. Atmos. Sci. (2001).
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Define Ohkitani’s relation & the pressure Hessian

Ohkitani took µ = u in Ertel’s theorem (Phys. Fluids, A5, 2570, 1993).

Result: The vortex stretching vector ω · ∇u = Sω obeys

D2ω

Dt2
=
D(ω · ∇u)

Dt
= ω · ∇

(
Du

Dt

)
= −P ω

where P the Hessian matrix of the pressure

P = {p,ij} =

{
∂2p

∂xi∂xj

}
Thus,

D2ω

Dt2
=
DSω

Dt
= −Pω (Ohkitani’s relation)

So, P -alignments drive dynamics of S-alignments!

NCAR, June 29, 2006 9



Darryl D. Holm, Imperial College London & LANL

Vorticity accelerations −αp & −χp of |ω| & ω̂

The material accelerations of |ω| and ω̂ are given by Ohkitani as

D2ω

Dt2
= −Pω with P ω̂ = αp ω̂ + χp × ω̂

• Scalar αp = ω̂ · P ω̂ gives acceleration of vorticity magnitude

D2|ω|
Dt2

= −αp |ω|
αp > 0 decelerating

αp < 0 accelerating

• 3-vector χp = ω̂ × P ω̂ gives acceleration of vorticity direction

D2ω̂

Dt2
= −χp × ω̂

Remark: If ω aligns with an eigenvector P ω̂ = λ ω̂, then χp = 0.

For such alignment, P⊥Sω̂ = χ× ω̂ is frozen into the flow.
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Vorticity and alignment dynamics

•Vorticity is driven by S
Dω

Dt
= Sω

•Alignment is driven by P
DSω

Dt
= −Pω

with

u = curl−1ω, trP = − |∇u|2

•The latter involves the pressure Hessian P .

•This pressure dependence produces nonlocal effects.
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Lagrangian frame dynamics: tracking the orientation of
vorticity following a fluid particle

t1

•
6

ω̂

����χ̂
-̂
ω × χ̂

t2

•��
���

ω̂

XXXz

ω̂ × χ̂
���:

χ̂
-

��:

The figure shows a vortex line at two times t1 & t2, the Lagrangian trajectory

of one of its vortex line elements, and the orientations of the orthonormal frame

{ω̂, χ̂, (ω̂ × χ̂)} attached to it at the two times.
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Alignment variables α(x, t), χ(x, t) and αp(x, t), χp(x, t)

6

ω̂

�
�

�
���

Sω̂

���
���χ̂

- ω̂ × χ̂
6

ω̂








�

P ω̂

Q
Q

Qs χ̂p

���: ω̂ × χ̂p

Sω̂ lies in the (ω̂, ω̂ × χ̂) plane and P ω̂ in the (ω̂, ω̂ × χ̂p) plane

Sω̂ = α ω̂ + χ× ω̂ , P ω̂ = αp ω̂ + χp × ω̂

where (α, χ) & (αp, χp) define Sω̂ & P ω̂ as stretched & rotated ω̂

α = ω̂ · Sω̂ , χ = ω̂ × Sω̂ ,

αp = ω̂ · P ω̂ , χp = ω̂ × P ω̂ =: −c1χ̂× ω̂ − c2χ̂
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Evolution of vorticity alignment parameters

We have
Dω

Dt
= Sω &

D2ω

Dt2
= −Pω

where Sω̂ = α ω̂ + χ× ω̂ and P ω̂ = αp ω̂ + χp × ω̂

As we know, P -alignment drives S-alignment. That is,

DSω

Dt
= −Pω or

D

Dt
(αω + χ× ω) = − (αpω + χp × ω)

A direct calculation shows that P -parameters [αp, χp] drive S-parameters [α, χ]

in the following alignment-parameter dynamics

Dα

Dt
+ α2 − χ2 = −αp and

Dχ

Dt
+ 2αχ = −χp

We’ll first derive and analyze evolution equations for comoving frame {ω̂, χ̂, ω̂×
χ̂}, then we’ll interpret the alignment-parameter dynamics.
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Lagrangian frame dynamics

One computes
Dχ̂

Dt
= −c1χ−1(ω̂ × χ̂) &

D(ω̂ × χ̂)

Dt
= χ ω̂ + c1χ

−1χ̂ .

The various Lagrangian time derivatives may be assembled into

Dω̂

Dt
= D × ω̂

D(ω̂ × χ̂)

Dt
= D × (ω̂ × χ̂)

Dχ̂

Dt
= D × χ̂

The “Darboux vector” D is defined as

D = χ− c1
χ

ω̂ with |D|2 = χ2 +
c21
χ2

and one sees that c1 = ω̂ · (χ̂× χp) depends on the pressure Hessian.
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What can we deduce from vorticity frame dynamics?
Where are we going next?

1. Note similarity of vorticity frame dynamics to Frenet-Serret equa-

tions for space curves in three dimensions.

2. Use Ertel’s theorem to derive Lagrangian dynamics of the Frenet-

Serret curvature and torsion

3. Represent vorticity alignments with S & P as quaternions. These

yield the Cayley-Klein parameters of Sω̂ & P ω̂

4. Recover dynamics of S-alignment ζ = [α, χ] driven by P -alignment

ζp = [αp, χp] in quaternionic form
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Frame dynamics for F

Use ω̂ etc as row-vectors to define the 3× 3 orthogonal frame-matrix

F (t, s) =

 ω̂

χ̂

ω̂ × χ̂

 , F T = F−1

The matrix F (t, s) specifies the evolution in time t of an orthonormal frame

attached to any given Lagrangian label s along the vortex line.

The previous frame dynamics may now be re-written using F as,

DF

Dt
= BF (t, s) where B =

 0 0 −χ
0 0 −c1/χ
χ c1/χ 0


with Bij = εijkDk for Darboux components Dk and χp · χ̂× ω̂ = −c1.
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Frenet-Serret equations

The unit tangent ω̂, normal n̂ & binormal b̂ of a vortex line define another

3× 3 orthogonal frame-matrix N(t, s) whose orientation varies with its arclength

s according to the Frenet-Serret equations,

N =

 ω̂

n̂

b̂

 ,
∂N

∂s
= AN(t, s) where A =

 0 κ 0

−κ 0 τ

0 −τ 0


Here κ and τ are the curvature and torsion of the vortex line.

The matrix N(t, s) is also orthogonal: NT = N−1.

The solution of Frenet-Serret for N(t, s) determines an orthonormal frame at

each point s along the vortex line at a given time t.

NCAR, June 29, 2006 18



Darryl D. Holm, Imperial College London & LANL

Frame dynamics for the Frenet-Serret matrix N

The frames N & F are related by a rotation R(φ) around the unit tangent vector

ω̂ by an angle φ(t, s)

N = R(φ)F

where
DF

Dt
= BF (t, s)

Consequently,the Frenet-Serret matrix N satisfies

∂N

∂s
= AN(t, s) and

DN

Dt
= BN(t, s) + linear correx

where the arclength derivative along a vortex line is defined as,

∂

∂s
= ω · ∇ .
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Evolving the curvature and torsion of a vortex line

Ertel’s Theorem tells us that the derivatives in t and s commute[
D

Dt
,
∂

∂s

]
= 0 .

This commutation relation implies equality of cross derivatives of N . That is,

Nts = Nst. Hence,

DA

Dt
=
∂B

∂s
− [A , B ] ,

with A = (∂N/∂s)N−1, B = (DN/Dt)N−1 and [A , B ] = AB −BA.

Hence,

− κ
Dτ−1

Dt
= χ + Correx linear in χ

Look at the case of straight vortices κ = 0.
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Alignment: cause and effect!

• Thus, swing rate χ 6= 0 implies time-dependence of vortex torsion

τ . And κ = 0 implies χ = 0, so straight vortices don’t swing!

•We now seek alignment-parameter dynamics of growth rate (α)

and swing rate (χ) for a combined scalar and vector quantity

denoted ζ = [α, χ].

Sω̂ = α ω̂ + χ× ω̂

We rewrite this as quaternionic multiplication:

[0, Sω̂] = [α, χ] ~ [0, ω̂]

which expresses parallel & perpendicular decomposition of Sω̂.
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What about using quaternions? (Hamilton 1843)

Quaternions combine scalar q & 3-vector q into a tetrad q = [q, q] as

q = [q, q] = qI − q · σ , with q · σ =

3∑
i=1

qiσi

The Pauli spin matrices σ obey the relations σiσj = −δij − εijkσk

σ1 =

(
0 i

i 0

)
σ2 =

(
0 1

−1 0

)
σ3 =

(
i 0

0 −i

)
By this definition tetrads obey the multiplication rule denoted ~

p ~ q = [pq − p · q , pq + qp + p× q]

Vorticity dynamics suggests alignment tetrads ζ = [α, χ], ζp = [αp, χp]

which satisfy [0, Sω̂] = ζ ~ [0, ω̂] and [0, P ω̂] = ζp ~ [0, ω̂]

as parallel and perpendicular decompositions.
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Are quaternions a good idea?

Quaternions came from Hamilton after his best work
had been done, & though beautifully ingenious, they
have been an unmixed evil to those who have touched
them in any way. – Lord Kelvin (William Thompson)

O’Connor, J. J. & Robertson, E. F. 1998 Sir William Rowan Hamilton,

http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Hamilton.html

Hamilton was vindicated – quaternions are now used in the robotics
and avionics industries to track objects undergoing a sequence of
tumbling rotations and are also heavily used in graphics.

• Quaternions & rotation Sequences: a Primer with Applications to Orbits,

Aerospace & Virtual Reality, J. B. Kuipers, Princeton University Press, 1999.

• Visualizing quaternions, by Andrew J. Hanson, MK-Elsevier, 2006.
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Quaternions & Cayley-Klein parameters I

The dot product of two quaternions p := [p , p] and q := [q , q] is defined as

p · q := pq + p · q

The magnitude of quaternion q is

|q| := (q · q)1/2 = (q2 + q · q)1/2

One defines the conjugate of q := [q , q] as q∗ = [q , −q]

So, product q ~ q∗ = (q · q)e, where e = [1, 0] is the identity.

Hence

q−1 := q∗/(q · q) is the inverse of quaternion q

under ~ product. (Recall that vectors don’t have inverses.)
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Quaternions & Cayley-Klein parameters II

Consider the map under the quaternionic product (which is associative)

r → r ′ = p̂ ~ r ~ p̂∗

where p̂ is a unit quaternion, p̂ · p̂ = 1, so p̂ ~ p̂∗ = e = [1, 0]

The inverse map is

r = p̂∗ ~ r ′ ~ p̂

If r = [0, r] then r ′ = [0, r′] = [0, r + 2p(p× r) + 2p× (p× r)]

For p̂ := ±[cos θ2 , sin θ
2 n̂], this is a rotation of r by angle θ about n̂.

In p̂ = [p , p], p & p are the Cayley-Klein parameters of the rotation.

∴ Composition of rotations ' Multiplication of (±) unit quaternions
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Alignment Sω̂ vs ω̂ & Cayley-Klein parameters

Consider the unit quaternion relation with p̂ := ±[cos θ2 , sin θ
2 χ̂],

|Sω̂|−1[0, Sω̂] = p̂ ~ [0, ω̂] ~ p̂∗ = [0, cos θ ω̂ + sin θ χ̂× ω̂]

= |Sω̂|−1ζ ~ [0, ω̂] = (α2 + χ2)−1/2 [0, α ω̂ + χ× ω̂]

where ζ = [α, χ]. Thus, the unit vector |Sω̂|−1Sω̂ is a rotation of ω̂ by angle

θ around χ̂ with

cos θ =
α

(α2 + χ2)1/2
and sin θ =

χ

(α2 + χ2)1/2

Hence,

Alignment parameters α and χ define Sω̂ as a stretching of ω̂ by (α2 +χ2)1/2

& rotation of ω̂ by θ = tan−1 χ/α about χ̂.

Likewise for P ω̂ and its alignment parameters αp and χp relative to ω̂.

The angle θ is the misalignment between Sω̂ & ω̂.
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The Euler equations in quaternionic form

Define velocity & pressure tetrads U & Π and the 4-derivative ∇ as

U = [0,u] Π = [p, 0] ∇ = [0,∇]

Then Euler’s fluid equation is written in quaternionic form as

DU
Dt

= −∇ ~ Π

The vorticity tetrad Ω is formed from

∇ ~ U = [−div u , curl u] = [0,ω] =: Ω

Operating with ∇~ on Euler’s equation above produces

[∆p, 0] =

[
− |∇u|2 , Dω

Dt
− Sω

]
Identifying terms yields ∆p = − |∇u|2 and Euler’s vorticity equation.
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Theorem: The vorticity tetrad Ω(x , t) = [0, ω] satisfies

DΩ

Dt
= ζ ~ Ω (Frozen-in tetrad field)

D2Ω

Dt2
+ ζp ~ Ω = 0 (Ohkitani’s relation)

where ζ = [α, χ] and ζp = [αp, χp ].

Consequently, the growth & swing rate tetrad ζ(x , t) = [α, χ] satisfies

Dζ

Dt
+ ζ ~ ζ + ζp = 0

Remark: The ζ-equation is a Riccati equation driven by ζp which, in turn,

depends on the other variables through the pressure Hessian P .

The growth/swing rate tetrad ζ(x , t) = [α, χ] evolves by quadratic nonlinearity

and is driven by the P−alignment tetrad ζp = [αp, χp ].
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Proof:
DΩ

Dt
= [0, αω + χ× ω︸ ︷︷ ︸

Sω

] = [α ,χ] ~ [0, ω] = ζ ~ Ω .

Pω = αpω + χp × ω ⇒ [0, Pω] = ζp ~ Ω

Use Ertel’s Theorem to express Ohkitani’s relation as

D2Ω

Dt2
=
D

Dt
[0, Sω] = −[0, Pω] = − ζp ~ Ω

Compare this relation with D2Ω/Dt2 = D/Dt(ζ ~ Ω) to find

0 =
Dζ

Dt
~ Ω + ζ ~ (ζ ~ Ω) + ζp ~ Ω

The equation for ζ follows, because ~ is associative. �
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Quaternion alignment dynamics in components

The alignment equation for tetrads ζ = [α, χ] with ζp = [αp, χp ] is

Dζ

Dt
+ ζ ~ ζ + ζp = 0

Recall the components of the tetrad multiplication rule

p ~ q = [pq − p · q , pq + qp + p× q]

So ζ ~ ζ = [α2 − χ2, 2αχ] in components & the alignment variables α, χ are

driven by αp, χp according to

Dα

Dt
+ α2 − χ2 + αp = 0 and

Dχ

Dt
+ 2αχ + χp = 0

where Sω̂ = α ω̂ + χ× ω̂ and P ω̂ = αp ω̂ + χp × ω̂

Dω

Dt
= Sω & ω = curlu ,

DSω

Dt
= −Pω & trP = − |∇u|2
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Alignment dynamics in polar coordinates

In polar coordinates given by the stretching rate along ω̂ as the radius r =

(α2+χ2)1/2 = |Sω̂| and the angle θ = tan−1 χ/α of rotation about the comoving

χ̂ axis from ω̂ to Sω̂, the alignment dynamics derived from

DSω

Dt
= −Pω

becomes, upon using

Sω̂ = α ω̂ + χ χ̂× ω̂ = r(cos θ ω̂ + sin θ χ̂× ω̂) ,

the 2× 2 system in polar coordinates,

D

Dt

sin θ

r
+ cos 2θ =

αp
r2

D

Dt

cos θ

r
− sin 2θ =

χ̂ · χp

r2

where one recalls that χ̂ · χp = −c2 and θ = 0 is perfect alignment.
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A simple solution: the Burgers vortex

The most elementary Burgers vortex solution is (with γ0 = const)

u = (−1
2γ0x + ψy, −1

2γ0y − ψx, zγ0) ⇒ ω = (0, 0, ω3)

ω 3(r, t) = eγ0tω0

(
r e

1
2γ0t
)

(note exponential growth)

Thus, for the Burgers vortex one computes

α = γ0 , χ = 0 , αp = − γ2
0

ζ = [γ0, 0] ζp = −[γ2
0, 0]

Conclusions: Burgers tubes/sheets are scalar objects: they don’t swing.

(In fact, they are steady solutions of the ζ-equation.)

When tubes & sheets bend then χ 6= 0 and ζ becomes a full tetrad driven by ζp
which is coupled back through the pressure Hessian P .
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When do [α, χ] tetrad equations arise in fluids?

• First, we need a Frozen-in Vector Field, $ · ∇, so that

Du

Dt
= F implies

D$

Dt
= $ · ∇u for $ = Qopu

• This will produce an Ertel Theorem and Ohkitani relation[D
Dt

, $ · ∇
]

= 0 , so
D2$

Dt2
=
D

Dt
($ · ∇u) = $ · ∇F

• In turn these will produce orthonormal Frame Dynamics for $̂, whose

alignment parameters will satisfy Quaternion equations.

•Other examples:
(1) Lagrangian Averaged Euler-alpha (LAE−α) equations
(2) MP97mod2’ as Euler-Poincaré equations
(3) Ideal MHD and LAMHD-alpha.
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Lagrangian Averaged Euler-alpha (LAE−α) model

Lagrangian averaging preserves Kelvin’s circulation theorem, which leads to a

frozen-in vector field and thereby produces Ertel’s theorem.

The LAE−α motion equation is

Dw

Dt
+∇uT ·w = −∇p for w = u− α2∆u and ∇ · u = 0

or, in Kelvin circulation form,

D

Dt
(w · dx) = −dp along

Dx

Dt
= u

Stokes-ing (or taking d) and ∇ · u = 0 yield a Frozen-in Vector Field
D$

Dt
= $ · ∇u for $ = ∇×w
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Ertel Theorem & Ohkitani relation for LAE−α

The LAE−α motion equation may also be written using u = G ∗w as

Du

Dt
= F = −G ∗ (∇p + 4α2∇ · ΩS)

where 2Ω = ∇u − ∇uT and G∗ = (1 − α2∆)−1 denotes convolution with the

Greens function for the Helmholtz operator.

The Ertel Theorem and Ohkitani relation for LAE−α are then[D
Dt

, $ · ∇
]

= 0 , and
D

Dt
($ · ∇u) =

D2$

Dt2
= $ · ∇F

where $ = ∇×w and w = (1− α2∆)u

The rest (Dynamics of Vorticity Frames and Quaternionic Alignment
Parameters) follows the pattern of Euler fluids.
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Ertel Theorem & Ohkitani relation for MP97mod2’

The MP97mod2’ motion equation may be written as

D̃Ũ

D̃t
= −∇(p + 2q) +∇ · 2q ω̂ ⊗ ω̂ =: F̃ ,

where ∇ · Ũ = 0 and l · ∇Ũ · l = 0 determine p & q, and

∂l

∂t
= curl (Ũ × l) , ω̂ = l/|l| , |l|2 = 1 with ∇ · l = 0

The Ertel Theorem and Ohkitani relation for MP97mod2’ are then[D
Dt

, l · ∇
]

= 0 , so
Dl

Dt
= l · ∇Ũ and

D

Dt
(l · ∇Ũ ) =

D2l

Dt2
= l · ∇F̃

Together, Ertel and Ohkitani conveniently deliver

D

Dt
(l · ∇Ũ · l) = l · ∇F̃ · l + |l · ∇Ũ |2
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The equation system for Lagrange multipliers p & q

Preservation of ∇ · Ũ = 0 and l · ∇Ũ · l = 0 determines Lagrange multipliers p

& q from the system

0 =
∂

∂t
(∇ · Ũ ) = − |∇Ũ |2 +∇ · F̃

0 =
∂

∂t
(l · ∇Ũ · l) = − Ũ · ∇(l · ∇Ũ · l) + |l · ∇Ũ |2 + l · ∇F̃ · l

where the MP97mod2’ force F̃ depends linearly on p & q as

D̃Ũ

D̃t
= −∇(p + 2q) +∇ · (2q l⊗ l) =: F̃

The rest (Dynamics of ω̂ Frames and Quaternionic Alignment Pa-
rameters) follows for MP97mod2’ as for Euler fluids, provided the
p, q system may be solved at each time step.
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Ertel Theorem & Ohkitani relation for Ideal MHD

Du

Dt
= B · ∇B −∇p , DB

Dt
= B · ∇u ,

and div u = 0 = div B. Notice that B is a Frozen-in Vector Field.

The Elsasser variables & (±) material derivatives are defined as

w± = u±B ;
D±

Dt
=
∂

∂t
+ w± · ∇

The magnetic field B and w± with div w± = 0 satisfy (note ± vs ∓)

D±w∓

Dt
= −∇p and

D±B

Dt
= B · ∇w±

Ertel’s Theorem and Ohkitani’s relation for ideal MHD are then[D±

Dt
, B · ∇

]
= 0 , and

D±

Dt
(B · ∇w∓) =

D±

Dt

D∓

Dt
B = −PB
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Definition of α± and χ± in Elsasser variables

The stretching rates α± & swing rates χ± for evolving magnetic field B = BB̂

along the ± characteristics are given by

D±B

Dt
= α±B ,

D±B̂

Dt
= χ± × B̂

where

α± = B̂ · (B̂ · ∇w±) χ± = B̂ × (B̂ · ∇w±)

As Moffatt (1985) suggested, B in ideal MHD is analogous to vorticity ω in Euler

fluids – except MHD has two ± characteristic velocities!

Per Moffatt’s suggestion, we introduce the MHD analogs of αp & χp,

αpb = B̂ · P B̂ χpb = B̂ × P B̂
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Lagrangian frame dynamics for ideal MHD

The 2 sets of orthonormal vectors {B̂, (B̂×χ̂±), χ̂±} acted on by their opposite

Lagrangian time derivatives are found to obey

D∓B̂

Dt
= D∓ × B̂ ,

D∓(B̂ × χ̂±)

Dt
= D∓ × (B̂ × χ̂±) ,

D∓χ̂±

Dt
= D∓ × χ̂±

where the (∓) pair of Darboux vectors D∓ are defined as

D∓ = χ∓ − c∓1
χ∓

B̂ , c∓1 = B̂ · [χ̂± × (χpb + α±χ∓)] .

The corresponding Frenet-Serret frames and their Lagrangian parameter evolution

may again be found, by using Ertel’s theorem for ideal MHD.
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Quaternionic alignment dynamics for ideal MHD

Tetrads ΩB = [0, B], ζ± = [α±, χ±] and ζpb = [αpb, χpb] are used to express

the following

Theorem: The magnetic field tetrad ΩB satisfies the two relations

D±ΩB

Dt
= ζ± ~ ΩB , (Frozen-in tetrads)

D∓

Dt

(
D±ΩB

Dt

)
+ ζpb ~ ΩB = 0 , (Ohkitani relations)

Consequently, the tetrads ζ± satisfy the coupled Riccati equations

D∓ζ±

Dt
+ ζ± ~ ζ∓ + ζpb = 0
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Quaternionic MHD alignment eqns in components

Alignment dynamics of tetrads ζ± = [α±, χ±] with ζpb = [αpb, χpb] is

D∓ζ±

Dt
+ ζ± ~ ζ∓ + ζpb = 0

Recall the components of the tetrad multiplication rule

p ~ q = [pq − p · q , pq + qp + p× q]

So ζ± ~ ζ∓ = [α±α∓−χ± ·χ∓, α±χ∓ + α∓χ± + χ±×χ∓] in components &

the alignment variables [α±, χ±] with ζpb = [αpb, χpb] evolve by

D∓α±

Dt
+ α±α∓ − χ± · χ∓ = −αpb

and
D∓χ±

Dt
+ α±χ∓ + α∓χ± + χ± × χ∓ = −χpb

This is quaternionic alignment dynamics for ideal MHD.
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