Critical issues to get right about stellar dynamos

Axel Brandenburg (Nordita, Copenhagen)

- 1. Small scale dynamo and LES
- 2. Pm=0.1 or less (to elim. SS dyn)
- 3. Magn. Helicity transport and loss

Shukurov et al. (2006, A&A 448, L33) Schekochihin et al. (2005, ApJ 625, L115) Brandenburg & Subramanian (2005, Phys. Rep., 417, 1) Brandenburg (2001, ApJ 550, 824; and 2005, ApJ 625, 539)

Long way to go: what to expect?

- Turbulent inertial range somewhere
- Departures from $k^{-5/3}$
 - $-k^{-0.1}$ correction
 - Bottleneck effect
- Screw-up from MHD nonlocality?
 - $E_{\rm M}(k)$ and $E_{\rm K}(k)$ parallel or even overlapping?
 - Or peak of $E_{\rm M}(k)$ at resistive scales?
 - Does small scale dynamo work for $P_{\rm m} <<1$ and $R_{\rm m} >>1?$
 - How is large scale dynamo affected by small scales?
- Implications for catastrophic α -quenching

Hyperviscous, Smagorinsky, normal

Inertial range unaffected by artificial diffusion

Allow for **B**: small scale dynamo action

Peaked at small scales?

Help from LES and theory

 \rightarrow converging spectra at large k??

Can be reproduced with prediction by Müller & Grappin (2005, PRL) : $|E_M(k)-E_K(k)| \sim k^{-7/3}$ $E_M(k)+E_K(k) \sim k^{-5/3}$

Maybe no small scale "surface" dynamo?

Small $Pr_M = \nu/\eta$: stars and discs around NSs and YSOs

Here: non-helically forced turbulence

When should we think of extrapolating to the sun? Implications for global models (w/strong SS field)

Large scale dynamos

- Dynamo number for α^2 dynamo $C_{\alpha} = \frac{\alpha}{\eta_{t}k_{1}} = \frac{\frac{1}{3}\varepsilon_{f}\tau\omega\cdot\mathbf{u}}{\frac{1}{3}\tau\overline{\mathbf{u}^{2}}k_{1}} = \varepsilon_{f}\frac{k_{f}}{k_{1}}$
- May C_{α} and/or $C_{\alpha}C_{\omega}$ not big enough
- Catastrophic quenching
 - Suppression of lagrangian chaos?
 - Suffocation from small scale magnetic helicity?
 - Applies also to Babcock-Leighton
 - Most likely solution: magnetic helicity fluxes

Penalty from α effect: writhe with *internal* twist as by-product

Slow saturation

Brandenburg (2001, ApJ 550, 824)

$$\overline{\mathbf{B}}^{2} = \overline{\mathbf{b}^{2}} \frac{k_{\mathrm{f}}}{k_{\mathrm{1}}} \left(1 - e^{-2\eta k_{\mathrm{1}}^{2}(t-t_{\mathrm{s}})} \right)$$

- 1. Excellent fit formula
- 2. Microscopic diffusivity

Slow-down explained by magnetic helicity conservation

$$\frac{d}{dt} \langle \mathbf{A} \cdot \mathbf{B} \rangle = -2\eta \langle \mathbf{J} \cdot \mathbf{B} \rangle$$

Helical dynamo saturation with hyperdiffusivity

Scale separation: inverse cascade

No inverse cascade in kinematic regime

$$\overline{\mathbf{B}} = \begin{pmatrix} \cos z \\ \sin z \\ 0 \end{pmatrix}$$

Decomposition in terms of Chandrasekhar-Kendall-Waleffe functions

$$\mathbf{A}_{\mathbf{k}} = a_{\mathbf{k}}^{+} \mathbf{h}_{\mathbf{k}}^{+} + a_{\mathbf{k}}^{-} \mathbf{h}_{\mathbf{k}}^{-} + a_{\mathbf{k}}^{0} \mathbf{h}_{\mathbf{k}}^{0}$$

LS field: force-free Beltrami

Periodic box, no shear: resistively limited saturation

Brandenburg & Subramanian Phys. Rep. (2005, **417**, 1-209)

Boundaries instead of periodic

16

Revised nonlinear dynamo theory (originally due to Kleeorin & Ruzmaikin 1982)

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{A} \cdot \mathbf{B} \rangle = -2\eta \langle \mathbf{J} \cdot \mathbf{B} \rangle$$

Two-scale assumption

Dynamical quenching

$$\frac{\mathrm{d}}{\mathrm{d}t}\alpha_{M} = -2\eta k_{f}^{2} \left(R_{m} \frac{\left\langle \overline{\mathbf{E}} \cdot \overline{\mathbf{B}} \right\rangle}{B_{eq}^{2}} + \alpha_{M} \right)$$

Kleeorin & Ruzmaikin (1982)

$$\overline{\mathbf{E}} = \alpha \overline{\mathbf{B}} - \eta_{t} \overline{\mathbf{J}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \rangle = +2 \langle \overline{\mathbf{E}} \cdot \overline{\mathbf{B}} \rangle - 2\eta \langle \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} \rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{a} \cdot \mathbf{b} \rangle = -2 \langle \overline{\mathbf{E}} \cdot \overline{\mathbf{B}} \rangle - 2\eta \langle \mathbf{j} \cdot \mathbf{b} \rangle$$

$$\alpha = -\frac{1}{3} \tau \left(\langle \mathbf{\omega} \cdot \mathbf{u} \rangle - \langle \mathbf{j} \cdot \mathbf{b} \rangle / \rho_{0} \right)$$

Steady limit \rightarrow algebraic quenching: $\alpha = \frac{\alpha_0 + \eta_t R_m \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} / B_{eq}^2}{1 + R_m \overline{\mathbf{B}}^2 / B_{eq}^2}$ (\rightarrow selective decay)

General formula with current helicity flux

Advantage over magnetic helicity
1)
$$\langle \mathbf{j}.\mathbf{b} \rangle$$
 is what enters α effect
2) Can define helicity density

$$\overline{\mathbf{b}}_{C}^{-SS} = 2\overline{\mathbf{e} \times \mathbf{j}} + \overline{(\nabla \times \mathbf{e}) \times \mathbf{b}}$$

$$\frac{\partial}{\partial t} \overline{\mathbf{j} \cdot \mathbf{b}} = -2\overline{\mathbf{e} \cdot \mathbf{c}} - \nabla \cdot \overline{\mathbf{F}}_{C}^{-SS}$$

$$\mathbf{c} = \nabla \times \mathbf{j}$$

$$R_{\rm m} \text{ also in the numerator}$$

$$\alpha = \frac{\alpha_{\kappa} + R_{\rm m} \left[(\overline{\mathbf{J}} \cdot \overline{\mathbf{B}} - \frac{1}{2}k_{\rm f}^{-2} \nabla \cdot \overline{\mathbf{F}}_{C}^{-SS}) / B_{eq}^{2} - \frac{\partial \alpha / \partial t}{2\eta_{t} k_{\rm f}^{2}} \right]}{1 + R_{\rm m} \overline{\mathbf{B}}^{2} / B_{eq}^{2}}$$

Significance of shear

- $\alpha \rightarrow$ transport of helicity in *k*-space
- Shear \rightarrow transport of helicity in *x*-space
 - Mediating helicity escape (\rightarrow plasmoids)
 - Mediating turbulent helicity flux

Expression for current helicity flux (first order smoothing, tau approximation)

$$\overline{\mathsf{F}_{i}^{\mathrm{C}}} = -4\tau \overline{\omega_{j} u_{k,i}} \,\overline{B}_{j} \overline{B}_{k}$$

Schnack et al.

Vishniac & Cho (2001, ApJ 550, 752) Subramanian & Brandenburg (2004, PRL 93, 20500)

Expected to be finite on when there is shear Arlt & Brandenburg (2001, A&A 380, 359)

Helicity fluxes at large and small scales

Forced LS dynamo with no stratification

Examples of helical structures

Mean field model with advective flux

Shukurov et al. (2006, A&A 448, L33)

23

Saturation behavior with advective flux

Shukurov et al. (2006, A&A 448, L33)

Conclusions

- LES & DNS $\rightarrow E_{\rm M}(k)$ and $E_{\rm K}(k)$ overlap (?)
- SS dynamo may not work in the sun
- Only LS dynamo, if excited and if CMEs etc.

10⁴⁶ Mx²/cycle