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Quasi-Geostrophic Approximation, QGA

Rapidly rotating convection: flows with axial length
scale much longer than transverse length scale

Cylindrical coordinates (s, φ, z)
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Linear theory, sufficient to have E = ν/Ωd2 � 1.

Nonlinear theory, need Ro = U/Ωd� 1 also

Implies Rayleigh number, R = gα∆Td3/κν, not too
large
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Spherical polar coordinates r, θ, φ
Cylindrical polar coordinates s, φ, z

d = ro − ri, ro outer core radius, ri inner core radius
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QGA assumes ∂ζ/∂z = 0, ζ = ẑ · ∇ × u. Considers only
s component of gravity (cf experiments)

Axial vorticity independent of z

Justified rigorously only in Busse annulus model, where
boundary slope η → 0, Ω → ∞ so that ηΩ is finite.

Not rigorously true even in linear theory, but outside
TC numerical solution shows ζ has weak z-dependence

Follows that uz is a linear function of z
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Strength of QGA: Only requires 2D computing: able to
resolve fine scales in s and φ

Able to reach very low E, explore parameter space

Weaknesses of QGA: (i) only works outside TC, because
∂ζ/∂z �= 0 inside TC.

(ii) Temperature must be averaged over z. Cannot cope
with thermal wind, which depends on temperature
varying perpendicular to gravity. Zonal flow produced
solely by Reynolds stresses. No meridional circulation

(iii) Consequence of QGA that latitudinal distribution
of heat flux is specified (F = FTH/HT ), H(s) height of
cylinder, HT height of tangent cylinder.
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Quasi-geostrophic equations
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ζ is the z-component of vorticity. Created by buoyancy
and vortex stretching, dissipated by internal viscosity
and boundary friction (Ekman suction u · n̂). Q(s)
depends on the heat sources
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Linear theory

QGA linear theory gives results very close to fully 3D
spherical case

Prandtl number dependence very similar

Disturbances ∼ exp(imφ)

Rcrit ∼ E−4/3, mcrit ∼ E−1/3
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(a) (b)
Snapshot of the vorticity in the equatorial plane at the
onset of convection, viewed from above.

(a) P = 7.0, E = 6.5 × 10−6, Rc = 1.92× 107, mc = 22,
ωc = 1932

(b) P = 0.025, E = 1.95× 10−6, Rc = 6.8 × 106,
mc = 14, ωc = 318.
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Nusselt number

Nu is (Convective + Conducted) / (Conducted) heat
flux

Onset of convection delayed by rotation, but Nu grows
almost linearly with R until thermal boundary layers
develop.

dNu/dR initially much less at small P , as predicted by
weakly nonlinear theory: due to rapid growth of zonal
flow at small P

However, at larger R zonal wind changes form and Nu
grows rapidly even at low P
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P=0.025, E=2.92 10−6

P=0.025, E=1.95 10−6

P=0.025, E=9.74 10−7

P=7.0, E=6.50 10−6

P=7.0, E=2.44 10−6

Nu− 1 as a function of R/Rc for various P and E
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Local Peclet number

Distinguish between convective velocity, Ûc, dominated
by wavenumbers of order mcrit, and the m = 0 zonal
flow Ûφ. Ûc is root mean square us

Length scale of convection velocity at large P does not
change much from the critical wavelength �c = 2πri/m

Local Peclet number defined as Pe� = Ûc�c/κ

Weakly nonlinear theory gives

Pe� = 2π
√

3p1/2, p =
RNu

Rc
− 1

Flux Rayleigh number RQ = R(Nu− 1)
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Surprisingly,

Pe� = 2π
√

3p1/2, p =
RNu

Rc
− 1

gives a very good fit to the numerical data even at
R = 50Rcrit

At fixed E and P , this means Ûc ∼ R
1/2
q

Time-dependence from weakly nonlinear theory is
exactly periodic, while numeric give highly chaotic
time-dependence at 50Rcrit
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P=0.025 − E=1.95 10−6

P=0.025 − E=9.74 10−7
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P=7.0 − E=2.44 10−6

Y = 8.6 X1/2

Scaling of Local Peclet number Pe� = Ûc�c, as a
function of p = RNu/Rc − 1 for various E and P .

Points are from the QGA calculations
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Inertial scaling

Now we don’t fix the convective length scale �

1
P

u · ∇ζ ∼ 2sus

E(r2o − s2)
∼ R

∂θ

∂φ
; Nu− 1 ∼ ÛcΘ̂c

Nu is Nusselt number and ζ ∼ Ûc/�

Û2
c

P�2
∼ Ûc

E
∼ RΘ̂c

�
→Ûc ∼ (EP )1/5R

2/5
Q

� ∼ E3/5P−2/5R
1/5
Q where RQ = R(Nu− 1)

� is the Rhines scale. Simulations don’t support this
very well; keeping � at its linear critical value does
better!
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Test of the inertial scaling.
Ûc plotted against RQ(EP )1/2.

Points are from the QGA calculations
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Spectrum of the kinetic energy E(k)
with the linear critical k marked as dashed and dotted lines.

(a) P = 7.0, E = 6.5 × 10−6, R = 25Rc, 40Rc and 100Rc;
(b) P = 0.025, E = 9.74× 10−7, R = 3.5Rc
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Nonlinear development: zonal flow

Spiralling convection produces a Reynolds stress; drives
an axisymmetric zonal flow

1
P

∂ūφ

∂t
= − 1

s2
∂

∂s
(s2u′su

′
φ)+

(∇2ūφ− ūφ

s2

)
−E−1/2r

1/2
o

H3/2
ūφ

Prograde spiralling leads to a differential rotation
accelerating the equator, as in the solar differential
rotation

Linear theory can only give this simple pattern;
multiple jet formation is a strongly nonlinear process
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(a) (b)
Vorticity snapshots with the zonal flow profile added.
(a) P = 7.0, E = 6.5 × 10−6, R = 42.7Rc

(b) P = 0.025, E = 1.95× 10−6, R = 3.0Rc
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Zonal flow as a function of convective Reynolds number
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What changes in convection driven dynamos?

Based on fully 3D numerical dynamo simulations, so
dynamo generated field adds Lorentz force

• Zonal flows are significantly reduced by magnetic field

• Nonaxisymmetric convection is not affected as much
as might be expected from magnetoconvection studies.

• Dominant azimuthal wavenumber fairly close to
non-axisymmetric linear critical (non-magnetic) m
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Small E, low Pm dynamo

E = 3 × 10−6, Pr = ν/κ = 1, Pm = ν/η = 0.1
R ≈ 50Rcrit

Field is strongly dipolar: Rm ≈ 125, Elsasser number
Λ = B2/ρµΩη ≈ 0.5

Columnar structure is evident in the dynamo
simulations, particularly near the tangent cylinder, and
this seems to be related to the dipole dominance. These
dynamos won’t reverse.

For this run, Kinetic and Magnetic energies similar:

K.E. ≈ M.E., and also ohmic dissipation similar to
viscous dissipation.
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Field at the CMB
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(a) (b)
(a) Contours of ur at r = ri + 0.5d
(b) Contours of ur at r = ri + 0.8d
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(a) (b)
(a) Non-magnetic vorticity snapshot.
(b) ur in equatorial plane from dynamo simulation
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(a) (b)
(a) Non-magnetic temperature snapshot.
(b) Temperature snapshot from dynamo simulation
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Some relevant length scales

Magnetic length

LB =
[∫

B2 dv/
∫ |∇ ×B|2 dv

]1/2

∼ 0.03d

Velocity length

LV =
[∫

u2 dv/
∫ |∇ × u|2 dv

]1/2

∼ 0.01d

Linear onset length Lcrit = d
(

E(1+Pr)
Pr

)1/3

∼ 0.02d

Rhines length LR =
(

Ûcd
Ω

)1/2

∼ 0.05d

All fairly similar! There is though evidence that
LB > LV in the plots. In geodynamo expect Lcrit � LB
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(a) (b)
(a) Constant z = 0.9d section: Bs

(b) Constant z = 0.9d section: ur

Note Pm = ν/η = 0.1
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Convective velocity

−2(Ω · ∇)u = ∇× gαθr̂ +
1
ρ
∇× (j ×B), vorticity eqn

Giving 2ΩÛc/Lz ∼ gαΘ̂c/Lx

Convective heat flux per square metre F ∼ ρcpÛcΘ̂c,
eliminate Θ̂c to give

Ûc ∼
(
gαF

ρcpΩ

)1/2 (
Lz

2Lx

)1/2

where Lz is axial length scale and Lx is convective
length scale. Inertial model gives

Lx/Lz ∼
(

gαF

ρcpΩ3d2

)1/5

Giving

Ûc ∼ Ωd
(

gαF

ρcpΩ3d2

)2/5
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Christensen and Aubert find this is a good fit to the
magnetic dynamo simulations

Starchenko and Jones suggested that Lx/Lz would be
constant, giving

Ûc ∼
(
gαF

ρcpΩ

)1/2

which is equivalent to Ûc ∼ R
1/2
Q , the other plausible

scaling for non-magnetic convection.
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Kinetic/Magnetic energy balance

Energy input from buoyancy per unit volume balances
ohmic and viscous dissipation. If fohm is fraction of
total dissipation that is ohmic

fohm
gαF

cp
∼ η|∇ × B|2

µ

To get magnetic energy, need a relation between the
field and the current i.e. the magnetic length scale.

Flux-rope arguments, and analysis of dynamo models
(Christensen and Tilgner) suggest LB ∼ dRm−1/2. This
gives, assuming fohm = 1,

B ∼ µ1/2d1/2

(
gαF

cp

)1/2 1

Û
1/2
c
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This gives

K.E.

M.E.
∼ Lz

2Lx

(
Ûc

Ωd

)

In the core, Ûc/Ωd ≈ 3 × 10−6. The velocity estimate
suggests Lz/2Lx ≈ 100 for a convective flux 2TW
(thermal + compositional) so expect M.E. will dominate
K.E. Then expect j× B to dominate u · ∇u, confirming
ohmic > viscous dissipation.

Work done by Lorentz force balances buoyancy work

u · j ×B ∼ gαF

cp
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Above estimates give,

ÛcjB ∼ d

Lb

gαF

cp

too big!

Two possible ways out of this:

(i) systematic alignments of u, j and B, or

(ii) |j| is larger than |B|/LB, but current only
significant over a small filling fraction O(R−1/2

m ).

Possibly some combination of the above holds!
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