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• Fundamental MHD equations
• Some parameters not Earth-like
• Differences between models: 

- parameter values
- boundary conditions
- mode of driving convection

Outline of geodynamo models
Solve equations of thermal / compositional con-
vection and magnetic induction in a rotating and 
electrically conducting spherical shell
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Successes of geodynamo modeling

Earth’s radial magnetic field at CMB

Dynamo model field at full
resolution and filtered to ℓ < 13Tilt of dipole axis vs. time in dynamo model

|                  1 million years |
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Control parameters
Name Force 

balance
Earth 
value

Model 
values

Ra* Rayleigh 
number

Buoyancy
Retarding forces

5000 x
critical

< 50 x 
critical

E Ekman 
number

Viscosity
Coriolis force

10-14 ≥ 3x10-6

Pr Prandtl   
number

Viscosity
Thermal diffusion

0.1 - 1 0.1 - 10

Pm Magnetic
Prandtl #

Viscosity
Magnetic diffusion 10-6 0.06 - 10



• Geodynamo models successfully reproduced
the properties of the geomagnetic field

• This is surprising, because several control
parameters are far from Earth values
(viscosity and thermal diffusivity too large)

• Pessimistic view: Models give right answer for
wrong reasons

• Optimistic assumption: Models are already in 
regime where diffusion plays no first-order role

Models all wrong ?



• Use many dynamo models, covering
decent range in control parameters.

• Try to find laws that relate the characteristic
velocity, magnetic field strength and heat
flow to the control parameters

• If diffusion plays no role, these properties
must be characterised by non-dimensional
numbers unrelated to any diffusivity

Scaling laws



Three diffusivities enter into the dynamo problem:
ν:  viscous κ:  thermal λ:  magnetic

Parameters describing diffusive effects:
E = ν/ΩD2 Ekman number
Pr = ν/κ Prandtl number
Pm = ν/λ magnetic Prandtl number
Control parameter independent of any diffusivity:
Ra* = αgΔT/(Ω2D)    modified Rayleigh number
Choose basic scales for time (Ω-1) and magnetic field
([ρµ]1/2ΩD) that do not depend on diffusivities

Control parameters



Boussinesq equations
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Output parameters
• Ro = U/(DΩ) Rossby number non-dim velocity
• Lo =B/[ρµ]½ΩD Lorentz number non-dim field strength
• Nu* = γQadv/(ρcpΔTΩD3) Modified Nusselt number

Relations to conventional parameters
• Rayleigh number Ra Ra* = Ra E2/Pr
• Nusselt number Nu Nu* = (Nu-1) E/Pr
• Elsasser number Λ Lo = (Λ E/Pm)1/2

• magn. Reynolds #    Rm Ro = Rm E/Pm



Data basis and case selection
• Total of 162 model cases (127 dynamos, 35 failed dynamos)
• Driven by fixed ΔT, no-slip boundaries
• All parameters varied by at least two orders of magnitude
• Each run for at least 50 advection times (some much longer)
• Symmetry in longitude assumed for E ≤ 10-5

Selection criteria for scaling analysis:
• Self-sustained dynamo
• Dipole-dominated magnetic field (fdip > 0.35)
• E ≤ 3 ×10-4

• Fully developed convection (Nusselt-# > 2.0)

→ 70 model cases pass these criteria



Dynamo regimes (at Pr=1)

As the Ekman number is lowered, dipolar dynamos occupy a 
broader region and are found at lower magnetic Prandtl # 
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Minimum magnetic Prandtl number

Pmmin ≈ 450 E3/4

Earth values:

E ≈ 10-14 → Pmm ≈ 2x10-8



Critical magnetic Reynolds number

The mimimum magnetic Reynolds number for self-sustained
dynamos is ≈ 40, irrespective of the value of the magnetic
Prandtl number.

Field decay Self-sustained dynamos



Dynamo regimes (0.1 ≤ Pr ≤ 10)   
Inertial vs. Coriolis force: 

Local Rossby number
RoL calculated with mean
length scale ℓ in the
kinetic energy spectrum

RoL = U/(ℓΩ) 

When inertia dominates
the dipolar regime
breaks down

Pm color-coded
Pm>2.5
Pm<0.5
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Flux-based Rayleigh number

Modified Rayleigh # based on buoyancy flux:

RaQ*    =    γgoQbuoy / (ρcpΩ3D2)  

RaQ*=   Ra*Nu*  =  Ra (Nu-1)E3Pr-2

To very good approximation
RaQ* is equivalent to the power
generated by buoyancy forces

γ = (1-η2)/4πη : geometry factor



Scaling of  Nusselt number

Use of modified „diffusionless“ parameters allows to collapse the data and 
express the dependence by a single power-law.
Compared to non-rotating convection, the exponent is very large (≈ 0.5).



Dimensional heat flow

For an exponent of 0.5:

Qadv ~  γαgρcp  D2 ΔT2/ Ω

Advected heat flow is independent of thermal conductivity.

Earth‘s core:      Qadv = 2 TW   → ΔTsuperadiab ≈ 1 mK

Requirement for validity is probably that the thermal boundary layer thickness is larger than the Ekman layer 
thickness, which in terms of non-dimensional parameters requires  Ra*Q <  400 E Pr-2.  Satisfied in the 
numerical models and perhaps for thermal convection in the Earth’s core.



Dependence on 
magnetic Prandtl 
number ?

Velocity: Rossby number

Power  →
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  →

Ro ~  RaQ* 2/5



Velocity scaling II

Ro ~ Ra*Q
0.43 Pm-0.13 

Two-parameter regression
reduces misfit by factor 2.5.

But is dependence on the
magnetic Prandtl number
definitely required ? 



Scaling ohmic dissipation time

τdiss ~ Rm-1 τdiss ~ 
Rm-7/6 Pm1/6

Which law is right ?

τdiss = Magnetic energy  /  Ohmic dissipation

Christensen & Tilgner, 2004



Karlsruhe laboratory dynamo

Magnetic Prandtl number
≈ 1 in numerical models
≈ 10-5 for liquid sodium

Dynamo
onset



Scaling ohmic dissipation time

τdiss ~ Rm-1 τdiss ~ Rm-7/6 Pm1/6

Karlsruhe laboratory
dynamo

Better agreement with the simple scaling law



Velocity Scaling: stay simple

Let us assume that in 
general the magnetic
Prandtl number has no 
influence (at least in 
the limit Pm << 1)

Ro = 0.85  Ra*Q
2/5



Rayleigh number of the core
Core velocity estimated from secular variation:

Large-scale flow ~ 0.5 mm/sec Total rms-flow ~ 1 mm/sec

Ro ~   6 x 10-6

Core Rayleigh number → Ra*Q ~ 3 x 10-13

The conventional Rayleigh number is 1023 (5000xRac)



Light element flux and inner core
growth rate

Ra*Q ~  3 × 10-13 → Qbuoy ~   3 × 104 kg s-1

If convection is driven entirely by compositional flux
associated with inner core growth, the growth rate is
obtained as   dRic/dt = Qbuoy / (4πri

2Δρic).

→ dRic/dt ~ 0.1 mm/yr

Implication: Inner core is old: 
3.5 ± 1.5 Gyr



What controls the strength of the
magnetic field?

Magnetostrophic balance often
associated with an Elsasser
number Λ = B2/μηρΩ ~  O(1)

In the numerical models, the 
Elsasser number varies widely.

→ Force balance not magneto-
strophic, or Λ not good measure.

Alternative scaling: 
Magnetic field strength  
based on available power ?

Λ



Power driving convection ~  RaQ*   

Magnetic energy density ~  1/2   Lo2

Ratio magn. energy / dissipation = τdiss

Prediction:
If Ro ~ RaQ*2/5 and  τdiss ~  Rm-1 ~ Pm (Ro E)-1 then

where fohm is the relative fraction of energy dissipated
by ohmic losses (30 – 85% in the models)

Power-controlled field strength

Lo /√fohm ~   Ra*Q
0.3



Magnetic Field Scaling

Lo ~  Ra*Q
0.34
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Assume fohm≈1  in the core

In dimensional form the magnetic field strength is

Magnetic Field Scaling II

B  ~  µ1/2 ρ1/6  (gQbuoy/D)1/3   

B independent of conductivity and rotation rate



With the estimated buoyancy flux of  3.5 ×104 kg/s 
the predicted magnetic field strength in the core is

B ≈ 1.2 mT

Strength of core magnetic field

Compare to:
• „Observed“ field at CMB: 0.39 mT  (ℓ < 13)
• Bs ≈ 0.4 mT inside core from torsional oscillations

(Zatman & Bloxham, 1997)



How robust are the scaling laws?

Tests:
• Exclude cases with E ≥ 10-4 from fit

→ Results virtually unchanged
• Exclude cases with Roℓ > 0.05 (high inertia) 

from fit    → Results virtually unchanged
• Attempt general least-squares fit of the form:

Y = A  RaQ*α Pmβ Eγ Prδ
where Y stands for Nu*, Ro, or Lo/√fohm

→ Exponents for E and Pr very small (<0.03)



Other planets: Jupiter

For the observed excess
heat flow (5.4 W/m2) and 
reasonable estimates for
other relevant parameters, 
the magnetic field in the
dynamo region is B ≈ 8 mT.

This is in agreement with
Jupiter‘s surface field
strength roughly 10 times
the Earth value.

Metallic hydrogen

Surface field



Mercury

Surface field strength ≈ 1/100 Earth value. 

Cannot be explained by low buoyancy flux, because it
would imply magnetic Reynold number below critical.



Conclusions

• Numerical dynamo models reproduce observed properties of 
the geomagnetic field, even though viscous and thermal 
diffusivity are far too large.

• Scaling laws that are independent of diffusivities fit the model
results well and lead to reasonable predictions for the Earth.

• This supports the view that the models are already in a 
regime similar to that of the Earth‘s core.

• The range of validity of laws must be explored. Is there a 
dependence on the magnetic Prandtl number?  Laboratory 
dynamo experiments will help to decide.





Scaling of local Rossby number
Decent fit possible, but
involves all four control
parameters

RoL ~  RaQ
*1/2E-1/3Pr1/5Pm-1/5

Predicted Earth value is
RoL ≈ 0.1 - 0.2, very close
to the transition point 
between dipolar and non-
dipolar dynamos.

Core



Enstrophy balance
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Vorticity ω
Enstrophy =  ω • ω „Energy of vorticity“



Sources & 
sinks of 
enstrophy

Buoyancy is main
source and Lorentz 
force and viscosity is
main sink



Enstrophy
budgetI C B LV       I C B LV      I C B L V

I C B LV       I C B LV      I C B L V
Coriolis ~ buoyancy
Lorentz variable
Inertia large in non-
dipolar case
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