Scaling laws for dynamos in rotating spherical shells and applications to planetary magnetic fields

Ulrich Christensen

Max-Planck-Institute for Solar System Research, Katlenburg-Lindau, Germany

In collaboration with Julien Aubert, Carsten Kutzner, Peter Olson, Andreas Tilgner, Johannes Wicht

Outline of geodynamo models

Solve equations of thermal / compositional convection and magnetic induction in a rotating and electrically conducting spherical shell

- Fundamental MHD equations
- Some parameters not Earth-like
- Differences between models:
 - parameter values
 - boundary conditions
 - mode of driving convection

Successes of geodynamo modeling

Earth's radial magnetic field at CMB

Tilt of dipole axis vs. time in dynamo model

Dynamo model field at full resolution and filtered to ℓ < 13

Control parameters

	Name	Force balance	Earth value	Model values
Ra*	Rayleigh number	Buoyancy Retarding forces	5000 x critical	< 50 x critical
Е	Ekman number	Viscosity Coriolis force	10-14	≥ 3x10 ⁻⁶
Pr	Prandtl number	Viscosity Thermal diffusion	0.1 - 1	0.1 - 10
Pm	Magnetic Prandtl #	Viscosity Magnetic diffusion	10 ⁻⁶	0.06 - 10

Models all wrong ?

- Geodynamo models successfully reproduced the properties of the geomagnetic field
- This is surprising, because several control parameters are far from Earth values (viscosity and thermal diffusivity too large)
- Pessimistic view: Models give right answer for wrong reasons
- Optimistic assumption: Models are already in regime where diffusion plays no first-order role

Scaling laws

- Use many dynamo models, covering decent range in control parameters.
- Try to find laws that relate the characteristic velocity, magnetic field strength and heat flow to the control parameters
- If diffusion plays no role, these properties must be characterised by non-dimensional numbers unrelated to any diffusivity

Control parameters

Three diffusivities enter into the dynamo problem: v: viscous κ : thermal λ : magnetic Parameters describing diffusive effects: $E = v/\Omega D^2$ Ekman number $Pr = v/\kappa$ Prandtl number $Pm = v/\lambda$ magnetic Prandtl number Control parameter independent of any diffusivity: $Ra^* = \alpha g \Delta T / (\Omega^2 D)$ modified Rayleigh number Choose basic scales for time (Ω^{-1}) and magnetic field $([\rho\mu]^{1/2}\Omega D)$ that do not depend on diffusivities

Boussinesq equations

$$\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u}\right) + 2\vec{e}_z \times \vec{u} + \vec{\nabla} P = E \nabla^2 \vec{u} + Ra^* \frac{\vec{r}}{r_o} T + (\vec{\nabla} \times \vec{B}) \times \vec{B}$$

Inertia Coriolis Viscosity Buoyancy Lorentz

$$\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T = \begin{bmatrix} E_{\kappa} \nabla^2 T & (E_{\kappa} = \frac{E}{Pr}) \\ \text{Advection} & \text{Diffusion} \end{bmatrix}$$
$$\frac{\partial \vec{B}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{B} = \vec{B} \cdot \vec{\nabla} \vec{u} + \begin{bmatrix} E_{\lambda} \nabla^2 \vec{B} & (E_{\lambda} = \frac{E}{Pm}) \end{bmatrix}$$

Advection **Induction** Diffusion

Pm

Output parameters

- Ro = U/(D Ω) Rossby number non-dim velocity
- Lo =B/[$\rho\mu$]^{1/2} Ω D Lorentz number non-dim field strength
- $Nu^* = \gamma Q_{adv} / (\rho c_p \Delta T \Omega D^3)$

non-dim field strength Modified Nusselt number

Relations to conventional parameters

- Rayleigh number Ra
- Nusselt number Nu
- Elsasser number Λ
- magn. Reynolds # Rm

 $Ra^* = Ra E^2/Pr$

- $Nu^* = (Nu-1) E/Pr$
- $Lo = (\Lambda E/Pm)^{1/2}$
- Ro = Rm E/Pm

Data basis and case selection

- Total of 162 model cases (127 dynamos, 35 failed dynamos)
- Driven by fixed ΔT , no-slip boundaries
- All parameters varied by at least two orders of magnitude
- Each run for at least 50 advection times (some much longer)
- Symmetry in longitude assumed for $E \le 10^{-5}$

Selection criteria for scaling analysis:

- Self-sustained dynamo
- Dipole-dominated magnetic field (f_{dip} > 0.35)
- E ≤ 3 ×10⁻⁴
- Fully developed convection (Nusselt-# > 2.0)
- \rightarrow 70 model cases pass these criteria

Dynamo regimes (at Pr=1)

Typical magnetic spectra on outer boundary

As the Ekman number is lowered, dipolar dynamos occupy a broader region and are found at lower magnetic Prandtl #

Minimum magnetic Prandtl number

Pm_{min} ≈ 450 E^{3/4}

Earth values: $E \approx 10^{-14} \rightarrow Pm_m \approx 2x10^{-8}$

Critical magnetic Reynolds number

The mimimum magnetic Reynolds number for self-sustained dynamos is \approx 40, irrespective of the value of the magnetic Prandtl number.

Dynamo regimes ($0.1 \le Pr \le 10$)

Dipole dominance vs. Rossby number

Inertial vs. Coriolis force:

Local Rossby number Ro_L calculated with mean length scale ℓ in the kinetic energy spectrum

 $Ro_L = U/(\ell\Omega)$

When inertia dominates the dipolar regime breaks down

Flux-based Rayleigh number

Modified Rayleigh # based on buoyancy flux:

$$Ra_Q^* = \gamma g_o Q_{buoy} / (\rho c_p \Omega^3 D^2)$$

$$Ra_Q^* = Ra^*Nu^* = Ra(Nu-1)E^3Pr^{-2}$$

To very good approximation Ra_Q^* is equivalent to the power generated by buoyancy forces

 $\gamma = (1-\eta^2)/4\pi\eta$: geometry factor

Scaling of Nusselt number

Use of modified "diffusionless" parameters allows to collapse the data and express the dependence by a single power-law. Compared to non-rotating convection, the exponent is very large (≈ 0.5).

Dimensional heat flow For an exponent of 0.5:

$$Q_{adv} \sim \gamma \alpha g \rho c_p D^2 \Delta T^2 / \Omega$$

Advected heat flow is independent of thermal conductivity.

Earth's core: $Q_{adv} = 2 TW \rightarrow \Delta T_{superadiab} \approx 1 mK$

Requirement for validity is probably that the thermal boundary layer thickness is larger than the Ekman layer thickness, which in terms of non-dimensional parameters requires $Ra_Q^* < 400 \text{ E Pr}^2$. Satisfied in the numerical models and perhaps for thermal convection in the Earth's core.

Velocity: Rossby number

Velocity

Ro ~
$$Ra_Q^* ^{2/5}$$

Dependence on magnetic Prandtl number ?

Velocity scaling II

$Ro \sim Ra_{Q}^{*0.43} Pm^{-0.13}$

Two-parameter regression reduces misfit by factor 2.5.

But is dependence on the magnetic Prandtl number definitely required ?

Scaling ohmic dissipation time

Which law is right?

Karlsruhe laboratory dynamo

Magnetic Prandtl number
≈ 1 in numerical models
≈ 10⁻⁵ for liquid sodium

Scaling ohmic dissipation time

Better agreement with the simple scaling law

Velocity Scaling: stay simple

Let us assume that in general the magnetic Prandtl number has no influence (at least in the limit Pm << 1)

Ro = 0.85
$$Ra_{Q}^{*2/5}$$

Rayleigh number of the core

Core velocity estimated from secular variation: Large-scale flow ~ 0.5 mm/sec Total rms-flow ~ 1 mm/sec

Ro ~ 6 x 10⁻⁶

Core Rayleigh number $\rightarrow Ra_Q^* \sim 3 \times 10^{-13}$

The conventional Rayleigh number is 10²³ (5000xRa_c)

Light element flux and inner core growth rate

 $Ra_{Q}^{*} \sim 3 \times 10^{-13} \rightarrow Q_{buoy} \sim 3 \times 10^{4} \text{ kg s}^{-1}$

If convection is driven entirely by compositional flux associated with inner core growth, the growth rate is obtained as $dR_{ic}/dt = Q_{buoy} / (4\pi r_i^2 \Delta \rho_{ic})$.

 \rightarrow dR_{ic}/dt ~ 0.1 mm/yr

Implication: Inner core is old: 3.5 ± 1.5 Gyr

What controls the strength of the magnetic field?

Magnetostrophic balance often associated with an Elsasser number $\Lambda = B^2/\mu\eta\rho\Omega \sim O(1)$

In the numerical models, the Elsasser number varies widely.

 $\rightarrow\,$ Force balance not magnetostrophic, or Λ not good measure.

Alternative scaling: Magnetic field strength based on available power ?

Power-controlled field strength

- Power driving convection $\sim Ra_Q^*$
- Magnetic energy density $\sim 1/2 \text{ Lo}^2$
- Ratio magn. energy / dissipation = τ_{diss}
- **Prediction:**
- If $\text{Ro} \sim \text{Ra}_Q^{*2/5}$ and $\tau_{\text{diss}} \sim \text{Rm}^{-1} \sim \text{Pm} (\text{Ro} \text{ E})^{-1}$ then

Lo
$$/\sqrt{f_{ohm}}$$
 ~ Ra*_Q ^{0.3}

where f_{ohm} is the relative fraction of energy dissipated by ohmic losses (30 – 85% in the models)

Magnetic Field Scaling

Lo ~
$$Ra_Q^{*0.34}$$

Empirical fit is close to predicted dependence

Magnetic Field Scaling II

Assume $f_{ohm} \approx 1$ in the core

In dimensional form the magnetic field strength is

$$B \sim \mu^{1/2} \rho^{1/6} (gQ_{buoy}/D)^{1/3}$$

B independent of conductivity and rotation rate

Strength of core magnetic field

With the estimated buoyancy flux of 3.5 ×10⁴ kg/s the predicted magnetic field strength in the core is

B ≈ 1.2 mT

Compare to:

- "Observed" field at CMB: 0.39 mT ($\ell < 13$)
- B_s ≈ 0.4 mT inside core from torsional oscillations (Zatman & Bloxham, 1997)

How robust are the scaling laws?

Tests:

- Exclude cases with $E \ge 10^{-4}$ from fit
 - → Results virtually unchanged
- Exclude cases with Ro_ℓ > 0.05 (high inertia) from fit → Results virtually unchanged
- Attempt general least-squares fit of the form: Y = A Ra_Q^{*α} Pm^β E^γ Pr^δ where Y stands for Nu*, Ro, or Lo/√f_{ohm}
 → Exponents for E and Pr very small (<0.03)

Other planets: Jupiter

For the observed excess heat flow (5.4 W/m²) and reasonable estimates for other relevant parameters, the magnetic field in the dynamo region is $B \approx 8 \text{ mT}$.

This is in agreement with Jupiter's surface field strength roughly 10 times the Earth value.

Surface field strength \approx 1/100 Earth value.

Cannot be explained by low buoyancy flux, because it would imply magnetic Reynold number below critical.

Conclusions

- Numerical dynamo models reproduce observed properties of the geomagnetic field, even though viscous and thermal diffusivity are far too large.
- Scaling laws that are independent of diffusivities fit the model results well and lead to reasonable predictions for the Earth.
- This supports the view that the models are already in a regime similar to that of the Earth's core.
- The range of validity of laws must be explored. Is there a dependence on the magnetic Prandtl number? Laboratory dynamo experiments will help to decide.

Scaling of local Rossby number

Decent fit possible, but involves all four control parameters

 $Ro_{L} \sim Ra_{Q}^{*1/2}E^{-1/3}Pr^{1/5}Pm^{-1/5}$

Predicted Earth value is $Ro_L \approx 0.1 - 0.2$, very close to the transition point between dipolar and nondipolar dynamos.

Enstrophy balance

Vorticity ω Enstrophy = $\omega \cdot \omega$ "Energy of vorticity"

$$\begin{aligned} & \frac{\partial \vec{\omega}^2}{\partial t} = \\ & -\vec{\nabla} \times [\vec{\omega} \times \vec{u}] \cdot \vec{\omega} - 2 \frac{\partial \vec{u}}{\partial z} \cdot \vec{\omega} + E \nabla^2 \vec{\omega} \cdot \vec{\omega} + \frac{Ra^*}{r_o} \vec{\nabla} \times T\vec{r} \cdot \vec{\omega} + \vec{\nabla} \times [(\vec{\nabla} \times \vec{B}) \times \vec{B}] \cdot \vec{\omega} \end{aligned}$$
Inertia Coriolis Viscosity Buovancy Lorentz

Sources & sinks of enstrophy

Buoyancy is main source and Lorentz force and viscosity is main sink

Enstrophy budget

Coriolis ~ buoyancy Lorentz variable Inertia large in nondipolar case