Intermittency in MHD turbulence: DNS and Lagrangian averaged modeling

Jonathan Pietarila Graham¹, Pablo Mininni², Annick Pouquet², and Darryl Holm³

29th June 2006 CMG - Geophysical Turbulence Program Workshop jgraham@ucar.edu ¹NCAR/GTP & CU, ²NCAR/GTP, ³LANL & Imperial College

Interesting Properties of the $\alpha-{\rm model}$

- Lots of names: Camassa-Holm Eqs, Lagrangian averaged model, α -model, Lagrangian averaged magnetohydrodynamics (LAMHD), MHD α -model
- regularization of fluid equations
- conserves Kelvin's Thm (HD), Alfvén's Thm (MHD), and ideal invariants
- Kármán-Howarth theorem
- no need to run DNS and then switch on
- generally applicable MHD LES? (instabilities, dynamo, ...)

MHD- α

$$\mathbf{u}_{s} = (1 - \alpha_{K}^{2} \nabla^{2})^{-1} \mathbf{u} \qquad \mathbf{b}_{s} = (1 - \alpha_{M}^{2} \nabla^{2})^{-1} \mathbf{b}$$
$$\partial_{t} \mathbf{u} + \omega \times \mathbf{u}_{s} = -\nabla P + \mathbf{j} \times \mathbf{b}_{s} + \nu \nabla^{2} \mathbf{u} + \mathcal{F}_{K}$$
$$\partial_{t} \mathbf{b}_{s} = \nabla \times (\mathbf{u}_{s} \times \nabla \mathbf{b}_{s}) + \eta \nabla^{2} \mathbf{b} + \mathcal{F}_{M}$$
$$\nabla \cdot \mathbf{u}_{s} = 0 \qquad \nabla \cdot \mathbf{b}_{s} = 0$$

Decay Laws

$$\frac{dE}{dt} = \frac{d}{dt} \langle \frac{1}{2} (\mathbf{u} \cdot \mathbf{u}_s + \mathbf{b} \cdot \mathbf{b}_s) \rangle = -\nu \langle \boldsymbol{\omega} \cdot \boldsymbol{\omega}_s \rangle - \eta \langle j^2 \rangle$$
$$\frac{dH_C}{dt} = \frac{d}{dt} \langle \frac{1}{2} \mathbf{u} \cdot \mathbf{b}_s \rangle = -\frac{1}{2} \eta \langle \boldsymbol{\omega} \cdot \mathbf{j} \rangle - \frac{1}{2} \nu \langle \boldsymbol{\omega} \cdot \mathbf{j}_s \rangle$$
$$(2D) \frac{d\mathcal{A}}{dt} = \frac{d}{dt} \langle \frac{1}{2} a_{s_z}^2 \rangle = -\eta \langle \mathbf{b} \cdot \mathbf{b}_s \rangle$$

Interesting Properties of the $\alpha-{\rm model}$

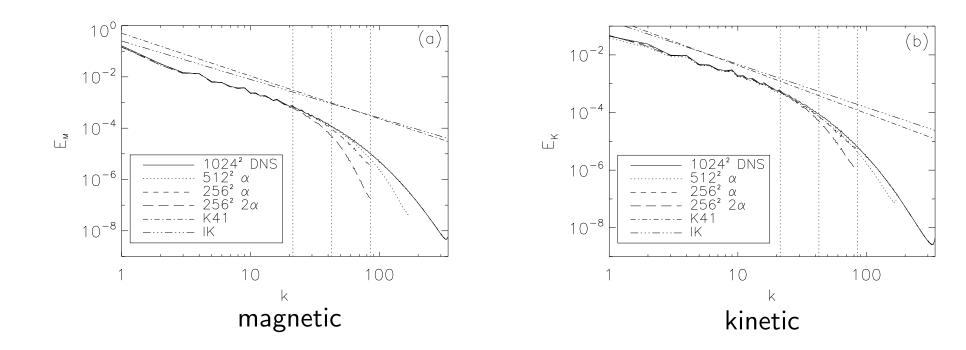
- Lots of names: Camassa-Holm Eqs, Lagrangian averaged model, α -model, Lagrangian averaged magnetohydrodynamics (LAMHD), MHD α -model
- regularization of fluid equations
- conserves Kelvin's Thm (HD), Alfvén's Thm (MHD), and ideal invariants
- Kármán-Howarth theorem
- no need to run DNS and then switch on
- generally applicable MHD LES? (instabilities, dynamo, ...)

Previous Tests of the MHD $\alpha{-}{\rm model}$

2D'	time evolution of energies	\checkmark	
	time evolution of cross-helicity	\approx	
	energy spectra	+	
	dynamic alignment	%	
	PDFs	except tails	
	inverse cascade of vector potential	<	
3D‡	time evolution of energies	\checkmark	
	time evolution of magnetic helicity	~	
	energy spectra	\checkmark	
	dynamic alignment	<	
	inverse cascade of magnetic helicity	<	
	dynamo	\checkmark	

[†] Mininni et al. *Phys. Fluids* **17**, 035112 (2005). [‡] Mininni et al. *Phys. Rev. E* **71**, 046304 (2005), Ponty et al. *Phys. Rev. Lett.* **94**, 164502 (2005).

Results - Spectra



Previous Tests of the MHD $\alpha{-}{\rm model}$

2D'	time evolution of energies	\checkmark	
	time evolution of cross-helicity	\approx	
	energy spectra	+	
	dynamic alignment	%	
	PDFs	except tails	
	inverse cascade of vector potential	<	
3D‡	time evolution of energies	\checkmark	
	time evolution of magnetic helicity	~	
	energy spectra	\checkmark	
	dynamic alignment	<	
	inverse cascade of magnetic helicity	<	
	dynamo	\checkmark	

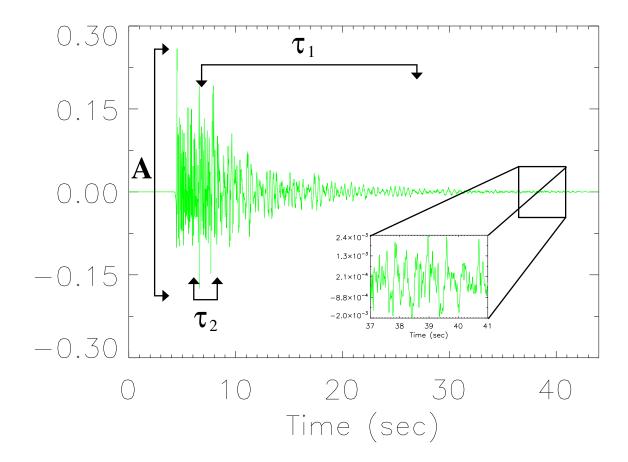
[†] Mininni et al. *Phys. Fluids* **17**, 035112 (2005). [‡] Mininni et al. *Phys. Rev. E* **71**, 046304 (2005), Ponty et al. *Phys. Rev. Lett.* **94**, 164502 (2005).

Goals of this work

More difficult (still a posteriori) tests

- \bullet rapid sign changes \rightarrow cancellation exponent
 - current sheets
 - magnetic reconnection
- intermittency (non-Gaussian statistics) \rightarrow anomalous scaling
 - reversals of Earth's magnetic field?
 - phase & amplitude variations of solar cycle
 - possible explanation for Maunder-like minima

EXPOSITION - Increments of Intermittent Signal



EXPOSITION - Structure Function Scaling for Self-Similarity

$$\delta f(\tau) \equiv f(t+\tau) - f(t) \tag{1}$$

$$\mathfrak{S}_{p}^{f}(\tau) \equiv \langle |\delta f(\tau)|^{p} \rangle^{1}$$
⁽²⁾

$$\delta f(\lambda T) = \lambda^h \delta f(T) \tag{3}$$

self-similarity

$$\tau \equiv \lambda T$$

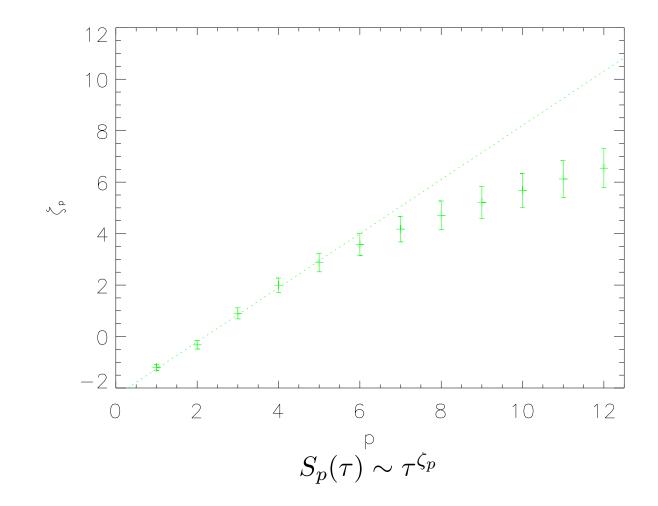
$$\mathfrak{S}_{p}^{f}(\tau) = \langle |\lambda^{h} \delta f(T)|^{p} \rangle = \lambda^{h \cdot p} \langle |\delta f(T)|^{p} \rangle \sim \tau^{\zeta_{p}^{f}}$$

$$\zeta_{p}^{f} = h \cdot p \qquad (4)$$

If the statistical features of the system are independent of spatial scale, it is described as self-similar and it's scaling will be linear, $\zeta_p^f \sim p$.

 $^1 \text{Angle}$ brackets, $\langle \cdot \rangle$, denote integration over the entire domain.

EXPOSITION - Anomalous Scaling of Exponents



Numerical Tests

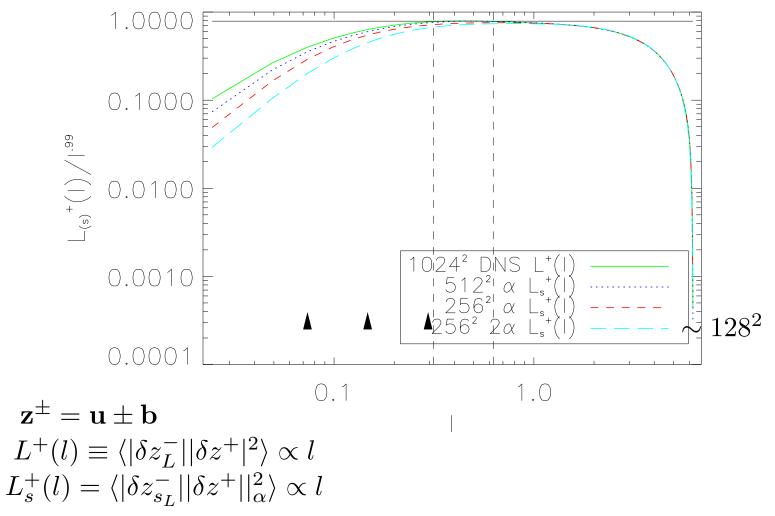
Table 1: Resolution, N, model parameter, α , viscosity, $\nu = \eta$, forcing, $\mathcal{F}_M, \mathcal{F}_K$, initial conditions, $u_o = b_0$, Taylor Reynolds number, R_{λ} ,[†]

Run	Ν	$lpha \cdot N$	$\nu = \eta$	\mathcal{F}_M	\mathcal{F}_K	$u_o = b_0$	R_{λ}
а	2048	0 (DNS)	10^{-4}	0	0	1	1500
b	1024	6	10^{-4}	0	0	1	1700
С	512	6	10^{-4}	0	0	1	1700
d	1024	0 (DNS)	$1.6 \cdot 10^{-4}$	0.2	0.45	0	1600
е	512	6	$1.6 \cdot 10^{-4}$	0.2	0.45	0	1300
f	256	6	$1.6 \cdot 10^{-4}$	0.2	0.45	0	1100
g	$256 \sim 128$	12	$1.6 \cdot 10^{-4}$	0.2	0.45	0	1000
+ 5	λa				<u> </u>		

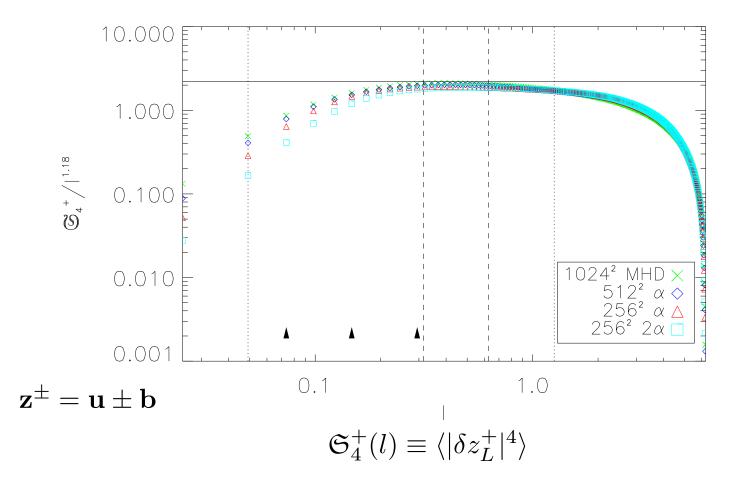
 ${}^{\dagger}R_{\lambda} = \frac{\lambda v_{rms}}{\nu}$, at peak of the dissipation, $t \approx 6.5$, for freely decaying runs (a-c) and averaged over $t = [50, 150] \times 9$ for forced runs (d-g).

$$\alpha^{-1} = k_{max}/2$$

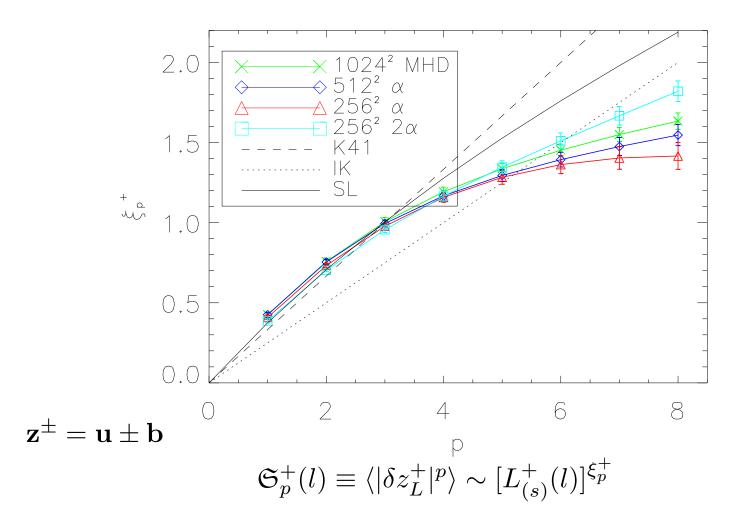
Kármán-Howarth Thm Scaling - Numerical Results



Scaling - Forced Numerical Results



Anomalous Scaling Exponents - Forced



 $\begin{aligned} & \textbf{EXPOSITION - Cancellation Exponent} \\ \mu_i(l) &= \int_{Q_i(l)} d\mathbf{x} \, j_z(\mathbf{x}) \, / \int_{Q(L)} d\mathbf{x} \, |j_z(\mathbf{x})| \end{aligned}$ Analysis of cancellation in two-dimensional . . . 93

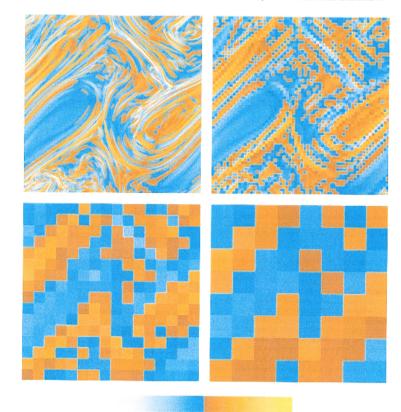


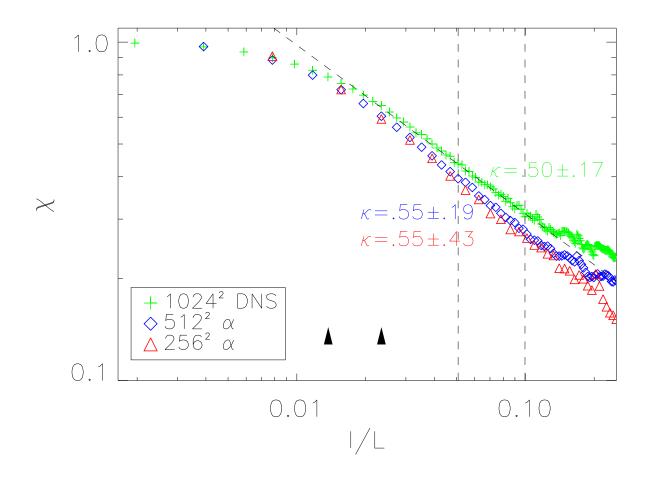
FIG. 3. (Cultor) The coarse-gradued signed measure of the current J at time t=7.3 for four different box sizes, namely HL=0.001, HL=0.016, HL=

$$\chi(l) = \sum_{Q_i(l)} |\mu_i(l)|$$
$$\chi(l) \sim l^{-\kappa}$$
$$\kappa = (d - D)/2$$

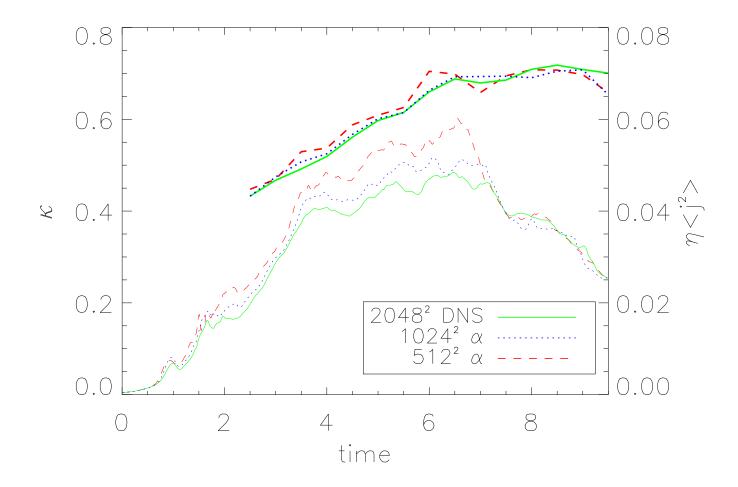
Intermittency in MHD turbulence: DNS and Lagrangian averaged modeling

15

Results - Partition Function



Results - Cancellation Exponent



Summary & Future Directions

- α -model satisfies scalings of MHD
- reproduces intermittent features of turbulent flows
- alters small scales, but preserves some stats
- Future Directions
 - BC's (and geometries)
 - $P_M \neq 1$
 - $\alpha\text{-model}$ and related regularizations: Leray & Clark for 3D HD