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Outline
• Formulation:

– Wave kinetics and adiabatic theory

– Mean field equations for large scales

• Specific Implementation

– Modulational instability and inverse cascades

– Self-consistent evolution of a tearing mode in the presence of drift wave
turbulence

• Summary



Motivation
• D.N.S. of high Reynolds number systems are computationally impractical due

to the high level of resolution necessary

• Filtering procedures are often employed as a means of preventing instabilities
from developing on the smallest resolved scales

• However, as is well known strong nonlocal interactions (in scale space) can
play an essential role in the evolution of many systems

• Furthermore, for systems which exhibit inverse cascades, it is necessary to treat
both the large and small scales on an equal footing

• Here we discuss a dynamic sub-grid scale model which self-consistently de-
scribes the evolution of both the small (unresolved) scales and the large (re-
solved) scales



Wave Kinetics (I)
• Consider a generic fluid equation of the form

∂φq
∂t

+ iωqφq =
∑
p+l=q

A (p, l)φpφl

• Convenient to separate the system into resolved/unresolved variables

φ<k ← large scale (resolved)

φ>k ← small scale (unresolved)

• Mean field equations can be obtained after performing an average over the
rapidly evolving scales

∂φ<q
∂t

+ iωqφ
<
q =

∑
p+l=q

A (p, l)φ<p φ
<
l +

∑
p+l=q

A (p, l)
〈
φ>p φ

>
l

〉
• Effect of unresolved scales is to introduce Reynolds stresses into the mean field

equation

• Seek equation describing the evolution of stress term



Wave Kinetics (II)
• Unresolved scales see resolved scales as slowly evolving background fields

– allows description of small scale evolution via ray tracing equations

• Corresponds to description of individual wave packets being advected and re-
fracted by mean fields

Formulate via adiabatic theory:

• In presence of mean fields, unresolved scales can be modeled via a wave kinetic
equation:

∂

∂t
Nk +

Advection︷ ︸︸ ︷
∂

∂k
(ωk + δωk) ·

∂

∂x
Nk−

Shearing︷ ︸︸ ︷
∂

∂x
(ωk + δωk) ·

∂

∂k
Nk = 0

ωk ← linear frequency, δωk ← nonlinear frequency modulation

• Here, Nk corresponds to adiabatically conserved quality

– usually (but not always) wave action density ≡ Ek/ωk



Wave Kinetics (III)
• Note that the above equation is isomorphic to collisionless Boltzmann equation

• Thus, can be understood to describe the evolution of a ’gas’ of quasi-particles
whose trajectories are described by:

ẋ =
∂

∂k
(ωk + δωk) , k̇ = − ∂

∂x
(ωk + δωk)

• Hamiltonian structure with, ωk + δωk ⇔ H , x⇔ q, k⇔ p

• Quasi-particles ’see’ mean fields through frequency modulations introduced by
the large scale mean fields

• Description well suited to systems exhibiting wave turbulence:

– Alfvenic turbulence

– Rossby wave turbulence

– Langmuir turbulence

– etc...



Wave Kinetics (IV)
Limitations of wave kinetic formalism:

• Neglects local interactions between unresolved scales in favor of nonlocal in-
teractions with resolved scales

• Requires temporal/spatial scale separation between resolved and unresolved
scales, i.e.

kc k

Ek

• Description especially appropriate for systems which exhibit “inverse cascades”

• However, local interactions can be modeled via the introduction of a “collision”
operator on the R.H.S. of the wave kinetic equation



Wave Kinetics (V)
• Closed set of equations given by:

resolved→
∂φ<q
∂t

+ iωqφ
<
q =

∑
p+l=q

A (p, l)φ<p φ
<
l +

∑
p+l=q

A (p, l)
〈
φ>p φ

>
l

〉

unresolved→ ∂

∂t
Nk +

∂

∂k
(ωk + δωk) ·

∂

∂x
Nk −

∂

∂x
(ωk + δωk) ·

∂

∂k
Nk = S

where ∑
p+l=q

A (p, l)
〈
φ>p φ

>
l

〉
∼

∑
k

B (k, q)Nk

• Small scale ’gas’ advected/refracted by mean
fields

• React back via stresses on mean fields
Wave Kinetic
Equation

Mean Field
Equations

Advection
ShearingStresses

Reyonlds



Nonlocal Interactions within 2-D
Hydrodynamics

• Consider small scale turbulent eddies evolving in the presence of a strong large
scale flow

• Evolution of small scale eddies described (Dubrulle and Nazarenko(1997)) by
wave kinetic equation

∂Nk

∂t
+ v0 ·

∂Nk

∂x
− ∂

∂x
(k · v0) ·

∂Nk

∂k
= 0

• where Nk = k4
⊥ |φk|

2 = k2
⊥Ek

• Here, key is that vorticity conserved along fluid trajectories

– corresponds to conservation of density of vortices/rotons intensity

– thus, enstrophy density, not wave action density (note ω = 0), conserved
along ray trajectories



Modulational Instability (I)
• Interesting to consider characteristics

k̇ = − ∂

∂x
(v0 · k) , ẋ =

∂

∂k
(v0 · k) = v0

• For simplicity consider a flow directed in the y direction and only varying in
the x direction

kx ≈ k0 − v′ykyt
⇒ k2

x ≈
(
v′ykyt

)2

• Perpendicular length scale of small scale eddy decreases

• Corresponds to transfer of enstrophy to higher wave number

t



Modulational Instability (II)
• Thus, since Nk = k2

⊥Ek con-
stant along characteristics, Ek

must go down

• Energy nonlocally (in scale
space) transferred to large
scale shear flow k

Ek
energy transfer

• Note self-consistency essential

– Strong large scale shear flow generated by inverse cascade

– Large scales react back via shearing⇒kills small scale drive

• Absence of dynamics on small scales leads to absurd results!



Drift Waves
• As a specific realization of the above model, consider the problem of a tearing

mode developing in the presence of drift wave turbulence

• Here, small scale drift wave dynamics described by Charney-Hawegawa-Mima
equation

0 =

(
∂

∂t
+

c

B0
(ẑ×∇φ<) · ∇

)
φ> + v∗e

∂

∂y
φ> − ρ2

s

(
∂

∂t
+

c

B0
(ẑ×∇φ<) · ∇

)
∇2
⊥φ

>

• A conservation law for the drift wave enstrophy density can be derived
(Smolyakov and Diamond(1999))

∂

∂t
Nk +

∂

∂k
(ωk + k ·V0) ·

∂

∂x
Nk −

∂

∂x
(ωk + k ·V0) ·

∂

∂k
Nk = S

S = γkNk −∆ωN 2
k , Nk =

(
1 + ρ2

sk
2
⊥
)2
Ik, Ik (x, t) ≡

∫
dqeiq·x

〈
φ>k+qφ

>
−k

〉



Mean Field Equations (I)
• Here we consider mean flow equations, interacting with drift waves

• Note that for electrostatic turbulence, lowest order coupling to micro turbu-
lence is through the polarization nonlinearity

0 =
∂

∂t
ψ< +

c

B0
(ẑ×∇φ<) · ∇ψ< − vA

∂

∂z
φ< − ηc∇2

⊥ψ
<

0 =
∂

∂t
∇2
⊥φ

< +
c

Bo
(ẑ×∇φ<) · ∇∇2

⊥φ
< − vA

∂

∂z
∇2
⊥ψ

<

− c

B0
(ẑ×∇ψ<) · ∇∇2

⊥ψ
< +

c

B0

〈
(ẑ×∇φ>) · ∇∇2

⊥φ
>
〉︸ ︷︷ ︸

Coupling to Micro Turbulence

•Where the average 〈...〉 is over fast spatial and temporal scales.

• To understand response of micro turbulence we calculate response of turbu-
lence spectrum to “seed” asymmetry, symbolically:〈

(ẑ×∇φ>) · ∇∇2
⊥φ

>
〉
∼ ∂2

∂x2

∫
dkM (k)

δNk

δφ<
φ<



Mean Field Equations (II)
• Response of drift wave turbulence calculated via wave kinetic equation:〈

(ẑ×∇φ>) · ∇∇2
⊥φ

>
〉
≈ − c2s

∫
dk

ρ2
sk

2
y

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2

)kx∂N 0
k

∂kx︸ ︷︷ ︸
νT

∂4φ<

∂x4

• Thus, for kx
dN 0

k

dkx
< 0:

νT < 0

T
im

e

Zonal Flow Shearing Tearing Mode Flow Shearing

• Physical mechanism underlying inverse cascade can be seen to be similar to
zonal flow excitation



Tearing Mode Equations
• Considering the limit where ∂/∂x � ∂/∂y, the linearized tearing mode equa-

tions are given by:

Vorticity Equation︷ ︸︸ ︷
γq
∂2φ<

∂x2
= iqyvA

x

Ls
J + νT

∂4φ<

∂x4
,

Induction Equation︷ ︸︸ ︷
ηcJ = γqψ

< − iqyvA
x

Ls
φ<

Useful simplification:

• for γTτ
(T )
η < 1, magnetic field is able to diffuse into visco-resistive layer. Thus

can approximate ψ< → ψ0 = const

• Leads to following set of interior equations (in dimensionless units)

0 = −∂
4Φ

∂σ4
− 1

α

∂2Φ

∂σ2
+ σ (1 + σΦ) ∆′ = −iωq

ηc
xν

∫
dσ (1 + σΦ)

σ = x/xν, α = i |νT | /
(
x2
Tωq

)
∆′ =

(
ψ′

(
0+

)
− ψ′

(
0−

))
/ψ0



Tearing Mode
• After performing the linear analysis, radial eigenmodes have the following

structure

usual F.K.R.→
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• vy = ∂φ/∂x, thus oscillations in the radial eigenmode correspond to oscillating
shear flows induced near the resonant surface

• Linear growth rate given by:

γq ∼ Re (ωq) ∼
ηc
xν

∆′ ∼ η
5/6
c

|νT |1/6

(
qyvA
Ls

)1/3

∆′

• Distortion of flow pattern near resonant surface, leads to slowing down of mag-
netic reconnection (McDevitt and Diamond(2006))

• Presence of self-induced shear, introduces real frequency



Summary
• Discussion of wave kinetic formalism as sub-grid scale model

• Self-consistent formulation of interaction of a tearing mode with drift wave
turbulence

• Identification of the negative turbulent viscosity as the dominant effect on low-
m tearing mode

• Calculation of linear growth rate of tearing mode in the presence of negative
viscosity

References
B. Dubrulle and S. Nazarenko, Physica D 110, 123 (1997).
A. Smolyakov and P. Diamond, Phys. Plasmas 6, 4410 (1999).
C. McDevitt and P. Diamond, Phys. Plasmas 13, 032302 (2006).


