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Talk Outline

• Simple Model/Data fusion (Data Assimilation) from a Bayesian Perspective

– univariate motivation

– multivariate (kriging, optimal interpolation)

• Sequential Approaches

– Kalman filter

• Monte Carlo Methods

– Sequential Importance Sampler (Particle Filter)

– Ensemble Kalman Filter

NOTE: Many thanks to Jeff Anderson (NCAR) for the use of some of his
figures (the nice ones!) from his talk “Ensemble Filtering for Geophysical
Data Assimilation” at:

http://www.samsi.info/200405/data/activity/workshop/index.html
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What is Data Assimilation?

• Combining Information

– “interpolating fields for subsequent use as initial data in a model integra-
tion” (Bennett, 2002)

– “statistical combination of observations and short-range forecasts” (Kalnay,
2003)

– “using all the available information, to define as accurate as possible the
state” (Talagrand, 1997)

• Statistical Perspective:Fusingdata (observations) withprior knowledge
(e.g., physical laws; model output) to get an estimate of the (distribution
of) the true state of the physical system

– Need statistical model for observations (data model; direct or indirect)

– Need (prior) statistical model for the system (process model)

∗ deterministic model (with additive errors)
∗ long term history of observations (e.g., climatology)
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Tropical Wind Example
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Bayesian Modeling

Notation:

• X - unobservable quantities of interest (e.g., true value of wind component)

• Y - observed data (e.g., wind observations at various locations)

The full probability model can always be factored into components:

p(X, Y ) = p(Y |X)p(X)

= p(X|Y )p(Y )

and thus

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes’ Rule)

providedp(Y ) 6= 0
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Primary Components of Bayesian Model

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes’ Rule)

• Prior distribution:p(X)

– may be informative or non-informative, subjective or objective

– we like to think of it as a “process or parameter model”
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p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes’ Rule)

• Data distribution:p(Y |X)

– observation model, sampling distribution, measurement model

– if viewed as a function ofX, it is known as a likelihood function,L(X|Y ).

– KEY: think of the dataconditionedupon the processX (relatively sim-
ple)
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p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes’ Rule)

• Marginal distribution:p(Y ) =
∫

p(Y |X)p(X)dX (assuming continuousX;
analogous form forX discrete)

– Also known as theprior predictive distribution

– does not depend onX
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p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes’ Rule)

• Marginal distribution:p(Y ) =
∫

p(Y |X)p(X)dX (assuming continuousX;
analogous form forX discrete)

– Also known as theprior predictive distribution

– does not depend onX
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p(X|Y ) =
p(Y |X)p(X)

p(Y )
(Bayes’ Rule)

• Posterior distribution:p(X|Y )

– Our primary interest for inference
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Summary: Bayesian Inference

To summarize, Bayesian statistics is based on a simple rule:Bayes’ Rule

p(X|Y ) =
p(Y |X)p(X)∫
p(Y |X)p(X)dX

∝ p(Y |X)p(X)

posterior distribution∝ “likelihood” × prior distribution

p(process|data) ∝ p(data|process)p(process)

• All inference forX based on the posterior,p(X|Y )

• Combines prior information and data

• (normalizing constant)p(Y ) =
∫

p(Y |X)p(X)dX

• It does not alter the result if we multiply the likelihood by any constant (or
any function ofY alone.) In this sense we can view the likelihood as any
constant multiple ofp(Y |X).

• Note that as a function ofY the likelihood is a pdf but as a function ofX it
is not (

∫
p(Y |X)dX may not be finite).
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Simple Example: Normal Data and Prior Distributions

Say we are interested in the univariate state variable:x (e.g., u-component of
wind at some location)

We have prior distribution:x ∼ N(µ, τ 2) (e.g., from a forecast model)

Conditioned on the true value of the process,x, we haven independent but noisy
observationsy = (y1, . . . , yn)′ and thus the data model:yi|x ∼ N(x, σ2). Then,

p(y|x) =
n∏

i=1
(1/
√

2πσ2) exp{−1/2(yi − x)2/σ2}

∝ exp{−1/2
n∑

i=1
(yi − x)2/σ2}

From Bayes’ rule:p(x|y) ∝ p(y|x)p(x)

12



Univariate Normal-Normal Example (cont.)

Using the data and prior models,

p(x|y) ∝ exp{−1/2[
n∑

i=1
(yi − x)2/σ2 + (x− µ)2/τ 2]}

∝ exp{−1/2[x2(n/σ2 + 1/τ 2)− 2(
∑

yi/σ
2 + µ/τ 2)x]}

NOTE: this is just the product of two Gaussian distributions. It can be shown
(completing the square) that this product is also a Gaussian, so the posterior is:

x|y ∼ N((n/σ2 + 1/τ 2)−1(
∑

yi/σ
2 + µ/τ 2), (n/σ2 + 1/τ 2)−1)
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Examining the Posterior Mean/Variance

We showed that the posterior distribution for Normal data and Normal prior is:

x|y ∼ N

(n/σ2 + 1/τ 2)−1(
n∑

i=1
yi/σ

2 + µ/τ 2), (n/σ2 + 1/τ 2)−1
 ,

The posterior variance is:

var(x|y) = (n/σ2 + 1/τ 2)−1

=

1− nτ 2

σ2 + nτ 2

 τ 2

We call the inverse of the variance theprecision. Thus, for normal data and
normal prior, each with known precision, the posterior precision equals the prior
precision plus the data (mean) precision.
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Posterior Mean (cont.)

Note that we can write the posterior mean:

E(x|y) =
σ2τ 2

σ2 + nτ 2
(nȳ/σ2 + µ/τ 2)

= wyȳ + wµµ

whereȳ =
∑

i yi/n, wy = nτ 2/(nτ 2 + σ2), wµ = σ2/(nτ 2 + σ2), wy + wµ = 1.

• Posterior mean is a weighted average of the prior mean (µ) and data mean(ȳ).

• If our prior beliefs are uncertain (τ 2 → ∞) then the likelihood swamps the
prior: p(x|y) → N(ȳ, σ2/n) (frequentist sampling dist)

• If we have lots of data (n →∞) thenp(x|y) → N(ȳ, 0)

• If we have little data (n → 0) thenp(x|y) → N(µ, τ 2)

• If σ2 = τ 2, prior mean has same weight as 1 extra observation of valueµ.

• If τ 2 → 0, the prior is infinitely more precise than the data

• if σ2 → 0, the data are perfectly precise
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The posterior mean can also be written:

E(x|y) = µ +

 nτ 2

σ2 + nτ 2

 (ȳ − µ)

= µ + K(ȳ − µ),

where we say that the prior mean (µ) is adjusted toward the sample mean (ȳ)
andK = (nτ 2)/(σ2 + nτ 2) is the “gain”.

Analogously, the posterior variance can be rewritten:

var(x|y) = (1−K)τ 2

where the posterior variance is updated from the prior variance according to the
gain,K.

These last two equations are critical for understanding data assimilation.
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Numerical Example 1

Say our prior distribution isx ∼ N(20, 3), and our data model isyi|x ∼ N(x, 1).
In this case the data are relatively precise compared to the prior. We have two
observationsy = (19, 23)′.

posterior mean = 20 + (6/7)(21-20) = 20.86
posterior variance = (1 - 6/7)3 = 0.43
The posterior distribution is:x|y ∼ N(20.86, 0.43)
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Numerical Example 2

Say our prior distribution isx ∼ N(20, 3), and our data model isyi|x ∼ N(x, 10).
In this case the data are relatively imprecise compared to the prior. We have two
observationsy = (19, 23)′.

posterior mean = 20 + (6/16)(21-20) = 20.375
posterior variance = (1 - 6/16)3 = 1.875
The posterior distribution is:x|y ∼ N(20.375, 1.875)
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Mixture Priors

Suppose we have likelihoodp(yi|x) andp1(x) andp2(x) are both conjugate den-
sities that give rise to the posteriorsp1(x|yi) andp2(x|yi), respectively.

Let w1 andw2 be any non-negative real numbers such thatw1 + w2 = 1, and
write themixture prior:

p(x) = w1p1(x) + w2p2(x).
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Then, it is easy to show that the posterior corresponding top(x) is:

p(x|y) = w∗
1p1(x|y) + w∗

2p2(x|y),

where

w∗
i ∝ wi

∫
p(y|x)pi(x)dx, i = 1, 2

with the constant of proportionality such thatw∗
1 + w∗

2 = 1. (Note, generally, we
can take any convex combination of two or more conjugate priors corresponding
to a convex combination of respective posteriors.)
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Multivariate Normal-Normal Case

Assume we are interested in then× 1 vector processx (e.g., u-winds at several
locations), that has prior distribution:

x ∼ N(µ,P),

where for now we assume that the meanµ and variance/covariance matrixP
are known.

In addition, we observe thep × 1 data vectory and assume the following data
model:

y|x ∼ N(Hx,R),

where thep × n observation matrixH, that maps the process (e.g., true wind
component) to the observations (e.g., wind observations), and the observation
error covariance matrixR are assumed to be known.
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Multivariate Normal-Normal (cont.)

We are interested in the posterior distribution ofx|y which is given by:

p(x|y) ∝ p(y|x)p(x)

As with the univariate case, the product of two normals in this context is also
normal, and thus the posterior distribution is:

x|y ∼ N((H′R−1H + P−1)−1(H′R−1y + P−1µ), (H′R−1H + P−1)−1)
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Multivariate Normal-Normal Posterior Mean/Variance

As with the univariate case, we can rewrite the posterior mean:

E(x|y) = (H′R−1H + P−1)−1H′R−1y + (H′R−1H + P−1)−1P−1µ

= µ + K(y −Hµ)

where K = PH′(R + HPH′)−1 is the “gain”.

Similarly, the posterior variance/covariance matrix can be written:

var(x|y) = (H′R−1H + P−1)−1

= (I−KH)P

These formulas are the basis of DA!
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Relationship to Kriging/Optimal Interpolation

We consider the relationship to Kriging (geostatistics)/Optimal Interpolation
(meteorology,oceanography) by a simple example.

Assumex = [x(s1), x(s2), x(s3)]
′ at spatial locationssi, i = 1, 2, 3. Also, assume

we have observations ats2 ands3 but nots1: y = [y(s2), y(s3)]
′ and thusH is

defined as:

H =

 0 1 0

0 0 1


Assume the prior covariance matrix that describes the (forecast) error covariance
matrix is given by:

P =


c11 c12 c13

c21 c22 c23

c31 c32 c33


Note that even though we only have observations for locations 2 and 3, it is
critical that we have the covariance information between all state locations of
interest (e.g., 1,2 and 3).
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Kriging/OI example (cont.)

In this case, the “gain” is given by:

K = PH′(R + HPH′)−1 =


c12 c13

c22 c23

c32 c33


R +

 c22 c23

c32 c33



−1

For simplicity, assumeR = σ2I (i.e., independent measurement error; “nugget
effect” in kriging).

Then, for example, the marginal posterior mean forx(s1) is given by:

E(x(s1)|y) = µ(s1) + w12(y(s2)− µ(s2)) + w13(y(s3)− µ(s3))

where the interpolation weights,w1 = [w12, w13]
′, are given by:

w′
1 =

(
c12 c13

)  c22 + σ2 c23

c32 c33 + σ2


−1

Thus, the prior mean is adjusted by a weighted combination of the anomalies
(difference between observation and prior mean) at each data location.
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Kriging/OI Example (cont.)

The marginal mean-squared prediction error (posterior variance) is given by:

var(x(s1)|y) = c11 −
(

c12 c13

)  c22 + σ2 c23

c32 c33 + σ2


−1  c12

c13



NOTE: Such spatial prediction (interpolation) is the optimal (best linear unbi-
ased) prediction (assuming the parameters,R, Q are known.)

• In spatial statistics this is known assimple kriging(Matheron 1963)

• In atmospheric/oceanographic science this is known asoptimal interpola-
tion (Gandin 1963).

It is relatively simple to accommodate more complicated (unknown) prior means
(ordinary kriging if mean is constant but unknown;universal krigingif mean
is a linear function of covariates). These methods are easily expressed in the
framework oflinear mixed modelsin statistics or as variational (optimization)
problems.

26



Numerical Example

Assume we have two observationsy2 = 16, y3 = 23 and we are interested
predicting the true processxi at these locations and a third locationx1. Our
prior mean isµi = 18, i = 1, 2, 3 and our prior covariance matrix is:

P =


1 .61 .22

.61 1 .37

.22 .37 1


Our measurement error covariance matrix isR = 0.5I

In this case, our gain (interpolation weights) is (are):

K =


0.3914 0.0528

0.6453 0.0870

0.0870 0.6453
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Numerical Example (cont.)

Our posterior mean is:

E(x|y) =


17.4810

17.1442

21.0527


with posterior covariance:

var(x|y) =


0.7508 0.1957 0.0264

0.1957 0.3227 0.0435

0.0264 0.0435 0.3227



• the optimal prediction at location 1 gives more weight to observation 2 than
3 (since it is more highly correlated (i.e., closer))

• the prediction variance at location 1 is greater than location 2 and 3 since
there is no data for location 1
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“Real” Example

Consider an NCEP u-wind forecast over the tropical Pacific for 00 UTC, 7
Nov 1996: (This is our prior mean.)
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Example (cont.)

Consider data from NSCAT scatterometer at the same time (5473 observations):
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Example (cont.)

Posterior Mean:
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Example (cont.)

Posterior Variance:
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Connections to Variational Approaches

It is well-known (e.g., Lorenc 1986; Talagrand 1997) that the op-
timal interpolation problem can equivalently be posed as a varia-
tional problem.

In particular, the posterior mode (and mean in this case) of the
multivariate normal/normal model is also found by minimizing the
objective function:

J(x) = (y −Hx)′R−1(y −Hx) + (x− µ)′P−1(x− µ)

Although formally equivalent to the Bayes formulation, for high-
dimensional processes it is often more computationally efficient to
approach the problem from this variational perspective.
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Sequential Approaches

In many respects, it would be more efficient if as new data becomes
available, one could simply update the previous (optimal) estimate
of the state process without having to start from scratch.

The Kalman filter is an ideal framework for such sequential up-
dating. The Kalman filter can be derived from many different per-
spectives. Here, we take a Bayesian (probabilistic) perspective.

Select References: Kalman 1960, Jazwinski 1970, Ghil 1989, Ghil and Malanotte-
Rizzoli 1991, West and Harrison 1997, andmanyothers!
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Filtering, Smoothing, and Forecasting

Consider a vector process:

xt ≡ [x(s1; t), . . . , x(sn; t)]′

atn states (e.g., spatial locations)sj, j = 1, . . . , n and timet.
Considerpt-dimensional observation vectors at timet:

yt ≡ [y(r1; t), . . . , y(rpt; t)]
′

We are interested in the distribution:

p(xt|y1, . . . ,yT )

If

t = T → filtering (analysis)

1 < t < T → smoothing(4Dvar)

t > T → forecasting(prediction)
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Kalman Filter: Linear Systems

Consider the measurement (data) model:

yt = Htxt + εt, εt ∼ indep N(0,Rt) (1)

whereHt is the observation operator that maps the process to the observations,
andRt is the (potentially) time-varying observation (measurement) error covari-
ance matrix.

Also, consider the evolution (or process) model:

xt+1 = Mtxt + ηt, ηt ∼ indep N(0,Qt) (2)

whereMt is the (linear) model operator or propagator that maps the evolution
of the process in time, andQt is a noise covariance matrix perhaps representing
stochastic forcing or features not resolved by the model.

Typically, it is assumed that the measurement and model noise processes are
independent. We have also assumed noise processes have zero mean, although
this need not be the case in general.
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Kalman Filter: Notation

Let,
Yt ≡ {y1, . . . ,yt}, Xt ≡ {x0, . . . ,xt}

Define the conditional expectations for “analysis”(filter) and “forecast”:

xt|t ≡ E[xt|Yt]

xt|t−1 ≡ E[xt|Yt−1]

Similarly, define the conditional error covariance matrices for analysis and fore-
cast, respectively:

Pt|t = E[(xt − xt|t)(xt − xt|t)
′|Yt]

Pt|t−1 = E[(xt − xt|t−1)(xt − xt|t−1)
′|Yt−1]

Then, for normal error models (as considered here), we define the filter (analy-
sis) and forecast distributions, respectively:

xt|Yt ∼ N(xt|t,Pt|t) (3)

xt|Yt−1 ∼ N(xt|t−1,Pt|t−1) (4)
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Kalman Filter Derivation

The forecast distribution (4) can be obtained via Bayes’ rule when one considers
it as just theposterior predictive distribution:

p(xt|Yt−1) =
∫

p(xt,xt−1|Yt−1)dxt−1

=
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1

where the first distribution on the RHS is just the process evolution model (2)
and the second distribution on the RHS is the posterior (analysis) distribution
for the previous time (3).

Using conditional expectation and conditional variance arguments,

xt|t−1 = E(xt|Yt−1) = E(E(xt|xt−1)|Yt−1) = E(Mtxt−1|Yt−1) = Mtxt−1|t−1

(5)

Pt|t−1 = var(xt|Yt−1) = E(var(xt|xt−1)|Yt−1) + var(E(xt|xt−1)|Yt−1)

= E(Qt|Yt−1) + var(Mtxt−1|Yt−1)

= Qt + MtPt−1|t−1M
′
t (6)
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Similarly, we can obtain the analysis distribution by Bayes’ rule:

p(xt|Yt) = p(xt|yt,Yt−1)

∝ p(yt|xt,Yt−1)p(xt|Yt−1)

= p(yt|xt)p(xt|Yt−1) (7)

where the first dist on the RHS of (7) is just the data model (1) and the 2nd dist
on the RHS is the forecast distribution (4) with mean (5) and variance (6).

As before for the normal:normal case, we get

xt|Yt ∼ N
(
(H′

tR
−1
t Ht + P−1

t|t−1)
−1(H′

tR
−1
t yt + P−1

t|t−1xt|t−1), (H
′
tR

−1
t Ht + P−1

t|t−1)
−1

)
(8)

Using the same matrix derivation as for the non-sequential case, we can write
equivalently the mean and variance of (8):

xt|t = xt|t−1 + Kt(yt −Htxt|t−1) (9)

Pt|t = (I−KtHt)Pt|t−1 (10)

where the Kalman gain is given by

Kt = Pt|t−1H
′
t(H

′
tPt|t−1Ht + Rt)

−1. (11)
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Kalman Filter Algorithm

Given the parameter matricesHt, Mt, Qt, Rt for t = 1, . . . , T and initial con-
ditions (or background state)̂x0|0 ≡ xb, P̂0|0 ≡ Pb, one can use the following
Kalman filter algorithm to obtain sequential estimates of the state and associated
covariance matrices:

for t = 1 to T

1. get forecastŝxt|t−1 andP̂t|t−1 from (5) and (6), respectively

2. get gainK̂t, and analysiŝxt|t, andP̂t|t from (11), (9) and (10), respectively

end

NOTE: In Statistics, one does not typically know the parameter matrices (espe-
cially, Mt, Qt andRt). In cases where these are not time-varying, and the di-
mensionalityn is relatively low, one can use the E-M algorithm (Shumway and
Stoffer, 1982) or numerical maximum likelihood methods (Gupta and Mehra,
1974) to obtain estimates.See Jon Stroud’s talks at this workshop. Such
approaches are not practical for high-dimensional problems.
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Simple Kalman Filter Example

Assume we have the univariate measurement model:

yt = xt + εt, εt ∼ N(0, .1)

(i.e.,R = .1, H = 1)

Also assume we have the forecast (or process) model:

xt+1 = 0.7xt + ηt, ηt ∼ N(0, .5)

(i.e.,Q = .5, M = .7)

Given an initial conditionx0 ∼ N(0, 1) we simulatedxt andyt for t = 1, . . . , 100.
In addition, we let the data at times 40 to 43 and 80 to 83 be missing.

Our goal: get back the filtered “state”xt for all times,t = 1, . . . , 100 given the
datayt.
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Simulated “truth” and “data”
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Simple KF Example: Kalman Filter Algorithm

The Kalman Filter is simple to program for this univariate example (Q = .5,
R = .1, M = .7, H = 1):

1. setx̂0|0 = 0, P̂0|0 = Q = .5

2. For t = 1, . . . , 100

(a) x̂t|t−1 = Mx̂t−1|t−1

(b) P̂t|t−1 = Q + MP̂t−1|t−1M

(c) K̂t = P̂t|t−1H [HP̂t|t−1H + R]−1

(d) x̂t|t = x̂t|t−1 + K̂i[yt −Hx̂t|t−1]

(e) P̂t|t = [1− K̂tH ]P̂t|t−1

NOTE: if there is a missing observationsyt then the steps (c)-(e) are skipped and
x̂t|t = x̂t|t−1, P̂t|t = P̂t|t−1.
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Simple KF Example: State Recovery
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Simple KF Example: Prediction Variance
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Nonlinear and Non-Gaussian Models

One traditional approach to handling nonlinear observation and/or evolution
models is by local (tangent linear) linearization of the model and evolution op-
erators. In the sequential case, this is known asextended Kalman filtering.

Additionally, some types of non-Gaussian error structures can be accommodated
by allowing error structures to be convex mixtures of Gaussian distributions.

In principle, one can accommodate nonlinear and non-Gaussian processes di-
rectly in the Bayes context. Recall, the forecast and analysis distributions can
be obtained from

p(xt|Yt−1) =
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1)

These are valid regardless of the distribution form or nonlinearity in the condi-
tional mean. However, typically there is no closed-form for these distributions
and in high-dimensions, the dimensionality of the integrals prohibit direct nu-
merical solution.

Alternatively, we may utilize Monte Carlo methods to evaluate these integrals.
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Monte Carlo Sampling and Bayesian Statistics

Recall, a main use of Monte Carlo is estimation of integrals (or expectations for
probability models).

As before, let the data be represented by:

Yt ≡ {y1, . . . , yt}

and let the state-process be represented by:

Xt ≡ {x0, . . . , xt}

Let f be a function of the state variable of interestXt and assume a Bayesian
context in which we have dataYt and are interested in:

E(f (Xt)|Yt) =
∫

f (Xt)p(Xt|Yt)dXt =

∫
f (Xt)p(Yt|Xt)p(Xt)dXt∫

p(Yt|Xt)p(Xt)dXt

(assuming the integrals exist)
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Monte Carlo Sampling and Bayesian Statistics (cont.)

A Monte Carlo (MC) estimate can be obtained:

1. generateN pseudo-random realizations,X
(i)
t from p(Xt|Yt), i = 1, . . . , N

2. evaluatef for each realization and compute the arithmetic average of the
results,Ê(f (Xt)|Yt) = (1/N)

∑N
i=1 f (X

(i)
t )

Under independent sampling this average converges (a.s.) toE(f (Xt)|Yt) as
N → ∞. [This holds if realizations are stationary (or ergodic) though not
necessarily independent. Also, the rate of convergence is independent of the
dimensionality of the integrand].

Note, we can also approximate the distributionp(Xt|Yt) by:

p̂(Xt|Yt) ≡ pN(Xt|Yt) =
1

N

N∑
i=1

δ
X

(i)
t

whereδ
X

(i)
t

is a Dirac-delta mass atX(i)
t .
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Sequential Monte Carlo

Recall the familiar sequential update distributions:

p(xt|Yt−1) =
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1)

Assuming we can obtain samplesx
(i)
t−1|t−1, i = 1, . . . , N from p(xt−1|Yt−1), then

a sequential MC algorithm would consist of the following steps:

• (i)

pN(xt−1|Yt−1) =
1

N

N∑
i=1

δ
x

(i)
t−1|t−1

• (ii)

pN(xt|Yt−1) =
1

N

N∑
i=1

p(xt|x(i)
t−1|t−1)

• (iii)

pN(xt|Yt) ∝ p(yt|xt)
N∑

i=1
p(xt|x(i)

t−1|t−1)/N
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Importance Sampling

When direct simulation ofp(Xt|Yt) is difficult/impossible, we can useImpor-
tance Sampling. The idea is:

• Consider another distribution with the same support asp(Xt|Yt), sayq(Xt|Yt),
that is comparatively easy to sample from.

• GenerateN samplesX(i)
t from q(Xt|Yt) and evaluatef (Xt) for each

• To use these to estimateE(f (Xt)|Y ) we must weight each sample (ensem-
ble) member to adjust for the fact that the samples arenot from the target
posterior:

Ê(f (Xt)|Yt) =
N∑

i=1
wif (X

(i)
t ),

and, we can approximate the posterior distribution by:

pN(Xt|Yt) =
N∑

i=1
wiδX

(i)
t
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Importance Sampling Weights

How does one get the IS weights?

E(f (Xt)|Yt) =
∫

f (Xt)
p(Xt|Yt)

q(Xt|Yt)
q(Xt|Yt)dXt

=
∫

f (Xt)wt(Xt)q(Xt|Yt)dXt

where

wt(Xt) =
p(Xt|Yt)

q(Xt|Yt)

are the unnormalized importance sampling weights and

w̃t(X
(i)
t ) ≡ wt(X

(i))∑N
j=1 wt(X(j))

are the normalized IS weights (note, by using these normalized weights, wedo
not need to know the normalizer forp(Xt|Yt) or q(Xt|Yt))!
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Importance Distribution

There are many reasonable IS proposal distributionsq( ) that one could use. An
intuitive one in our case is to choose the “prior” or forward model distribution:

q(Xt|Yt) = p(Xt) = p(x0)
t∏

k=1
p(xk|xk−1)

In this case, the unnormalized weights are just given by the likelihood:

wt(Xt) =
p(Xt|Yt)

p(Xt)
=

p(Yt|Xt)p(Xt)

p(Xt)
= p(Yt|Xt)

These weights can be computed iteratively:

wt(Xt) = p(Yt|Xt) =
t∏

k=1
p(Yk|Xk) = p(yt|xt)wt−1(Xt−1)

This then allows one to implement the importance sampler sequentially.
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Sequential Importance Sampler

• (i) Start with the samples (i.e.,particles) and weights from the posterior at
time t− 1:

pN(xt−1|Yt−1) =
N∑

i=1
δ
x

(i)
t−1|t−1

w
(i)
t−1

• (ii) For each particle, simulate from the forecast evolution (transition) den-
sity:

pN(xt|Yt−1) =
N∑

i=1
p(xt|x(i)

t−1|t−1)w
(i)
t−1

• (iii) Reweight each particle according to the likelihood (the particles that
are “closer” to the data get higher weights), and resample to obtain updated
points and weights (and thus a representation of the posterior) at timet:

pN(xt|Yt) ∝ p(yt|xt)
N∑

i=1
p(xt|x(i)

t−1|t−1)w
(i)
t−1
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Sequential Importance Resampler (SIR): Bootstrap Filter

Unfortunately, ast increases the importance weights degenerate
(i.e., only one particle has non-zero importance weight) and the
posterior is not adequately represented.

One way to address this problem is to eliminate the particles having
low importance weights and to multiply particles that have high
weights (e.g., Gordon et al. 1993).

There are many approaches to dealing with this degeneracy prob-
lem and it is still an active area of research. See the review in
Doucet et al. 2001 .
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Bootstrap Filter Algorithm (Doucet, de Freitas, Gordon, 2001)

1. Initialization, t = 0

• for i = 1, . . . N samplex(i)
0|0 ∼ p(x0|0) and sett = 1

2. Importance sampling step

• for i = 1, . . . , N samplex̃(i)
t ∼ p(xt|x(i)

t−1) and setX̃(i)
t = {X(i)

t−1, x̃
(i)
t }

• for i = 1, . . . , N evaluate the importance weights̃w
(i)
t = p(yt|x̃(i)

t ) (note:

in this algorithm these weights are not proportional to the weights at the previous time

(t− 1) due to the resampling in Step 3, which induces equal weights on the resample)

• normalize IS weights

3. Selection step

• resample with replacementN particles{X(i)
t : i = 1, . . . , N} from the

set{X̃(i)
t : i = 1, . . . , N} according to importance weights.

• sett = t + 1 and go to step 2
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Ensemble Kalman Filter

Sequential importance sampling (orparticle filtering ) can be used in the non-
linear/non-Gaussian filtering problem in principle (see Doucet et al. 2001 for
a comprehensive overview). However, these approaches have serious problems
(e.g., degeneracy of the weights) in very high dimensional problems (like one
would see for an atmospheric DA problem). This methodology is still the subject
of intense research.

A closely related idea is to use Monte Carlo in the context of the Kalman filter.
One loses some of the generality of the importance sampling approach but gains
much in terms of computational efficiency.

These “ensemble” based assimilation algorithms are known asensemble Kalman
filters (e.g., Evensen 1994; Evensen and van Leeuven 1996, and many, many
others!). The basic approach uses Monte Carlo samples to approximate the fore-
cast distribution (but, critically, uses the nonlinear forward model). In particular,
one estimates the the prior (forecast) means and variance/covariance matrices
with the Monte Carlo samples (ensemble). These are then used in the linear KF
update formulas to obtain the analysis distribution.
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“Clasical” EnKF Approach: Approximation of SIS

• (i) Assume one hasN independent samples from the posterior at timet− 1

(i.e., weights,w(i)
t−1 = 1/N ):

pN(xt−1|Yt−1) =
N∑

i=1
δ
x

(i)
t−1|t−1

× 1/N

• (ii) Since it is assumed that we have independent samples from the posterior
at timet − 1, we can use straight MC to obtain samples from the forecast
distribution (again, like SIS but with weights =1/N ):

pN(xt|Yt−1) =
N∑

i=1
p(xt|x(i)

t−1|t−1)× 1/N

NOTE: we assume this forecast distribution can be characterized by its first two moments

(or, equivalently, that it is normal with meanx(i)
t|t−1 and (estimated) variance/covariance

matrix P̂t|t−1).

• (iii) The update (posterior at timet) is then given by:

pN(xt|Yt) ∝ p(yt|xt)
N∑

i=1
N(xt|x(i)

t|t−1, P̂t|t−1)× 1/N

Note, if we assume the measurement distribution is normal, then this mixture can be com-

puted exactly using the KF update equations.
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EnKF Algorithm

1. Choose initial estimates of the filter mean and variance:x̂0|0 andP̂0|0

2. for t = 1, . . . , T

(a) GenerateN independent samples,x
(i)
t−1|t−1 from:

x
(i)
t−1|t−1 ∼ N(x̂t−1|t−1, P̂t−1|t−1), i = 1, . . . , N

(b) Forecast each of the samples from (a) forward using the evolution model:
e.g.,

x
(i)
t|t−1 = m(x

(i)
t−1|t−1) + η

(i)
t , η

(i)
t ∼ N(0,Q)

NOTE: in problems where there is assumed no model error, then one
just evolves the sample forward using them( ) model evolution, but no
additive noise.

(c) Use the forecast samples to calculate a sample forecast covariance ma-
trix:

P̂t|t−1 =
1

N − 1

N∑
i=1

(x
(i)
t|t−1 − x̂t|t−1)(x

(i)
t|t−1 − x̂t|t−1)

′

wherex̂t|t−1 = (1/N)
∑N

i=1 x
(i)
t|t−1
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(d) DrawN samples (yi
t) from the measurement distribution:

y
(i)
t ∼ N(yt,R), i = 1, . . . , N

NOTE: this was not part of the original EnKF algorithm but was later
shown to be necessary to obtain posterior distributions with adequate
spread.

(e) Use the Kalman Filter update equations to update each forecast sample
given the sampled observations:

x
(i)
t|t = x

(i)
t|t−1 + Kt(y

(i)
t −Htx

(i)
t|t−1)

where
Kt = P̂t|t−1H

′
t(HtP̂t|t−1H

′
t + R)−1

In addition,

P̂t|t =
1

N − 1

N∑
i=1

(x
(i)
t|t − x̂t|t)(x

(i)
t|t − x̂t|t)

′

wherex̂t|t = (1/N)
∑N

i=1 x
(i)
t|t .
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EnKF Algorithm: Modifications

• Typically,N is relatively small because it is too expensive to run the forward
model.N = 100 is often sufficient.

• Problem: Covariance estimates are not stable and not of full rank when
the dimension ofxt is larger thanN . The standard “fix” is to consider the
shur product (or Hadamard product). This is an “element-by-element”
multiplication of the ensemble estimated covariance matrix by a correlation
matrix S that has “compact support”. That is, usePt|t−1 ◦ S where◦ is the
Shur product andS is a correlation matrix.

(NOTE: the product of a covariance matrix and a correlation matrix is a
covariance matrix.)

• Computational Efficiency: It is computationally more efficient to calculate
the elements ofKt directly, rather thanPt|t−1:

P̂t|t−1H
′
t =

1

N − 1

N∑
i=1

(x
(i)
t|t−1 − xt|t−1)(Htx

(i)
t|t−1 −Hxt|t−1)

′

HtP̂t|t−1H
′
t =

1

N − 1

N∑
i=1

(Htx
(i)
t|t−1 −Hxt|t−1)(Htx

(i)
t|t−1 −Hxt|t−1)

′
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Simple AR(1) Example

From before, recall the simple AR(1) simulation example:
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EnKF Results

Consider the EnKF filter results:
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EnKF Results

Consider the EnKF filter results:
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Future Directions

• Monte Carlo based filters are beginning to be implemented by several oper-
ational centers.

• There are still many issues (statistical and operational) that are to be worked
out concerning these methods.

– type of samples

– parameter uncertainty

– smoothing problem

– efficiency

– algorithms

• Given the computational efficiency of these approaches, and their perfor-
mance, they are sure to become a dominant approach for model/data fusion.
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