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What is Climate & why do we care

Hierarchy of atmospheric modeling strategies
— 1D Radiative Convective models
— 3D General Circulation models (GCMs)

Conceptual Framework for General Circulation Models

Scale interaction problem
— concept of resolvable and unresolvable scales of motion

Parameterization of physical processes
— approaches rooted in budgets of conserved variables

Model Validation and Model Solutions
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Question 1: How can we predict Climate (50 yrs)
if we can't predict Weather (10 days)?

Question 2: What is Climate?

e Average Weather

e Record high and low temperatures
e The temperature range

e Distribution of possible weather

e Extreme events
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(1) What is Climate?

Climate change
and its manifestation
in terms of weather
(climate extremes)
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Impacts of Climate Change

Observed Change 1950-1997
Snowpack Temperature
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Observed Temperature Records

(b) the past 1,000 years
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‘Anthropogenic’ Changes
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The Earth’s climate system
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Principles of Atmospheric Modeling

e Scientific basis for atmospheric simulation

— rooted in laws of classical mechanics/thermodynamics
— developed during 18th and 19th centuries (see Thompson, 1978)

— early mathematical model described by Arrhenius (1896)
— surface energy balance model

e Two modeling approaches developed over last century
— based on energy balance requirements
— dynamical models (e.g., explicit transports)
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Conceptual Framework for Modeling

e (Can't resolve all scales, so have to represent them

e Energy Balance / Reduced Models

— Mean State of the System

— Energy Budget, conservation, Radiative transfer
e Dynamical Models

— Finite element representation of system

— Fluid Dynamics on a rotating sphere

— Basic equations of motion

— Physical Parameterizations for moving energy

NCAR J. 1. Hack/A. Gettelman: June 2005



What is the greenhouse Effect?
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Atmospheric modeling hierarchy

Understanding has been aided by a hierarchy of approaches

Consider the flux form of thermodynamic energy equation

oT owT kwT |
CPE - --va ' (VT) - Cp‘% + CpT + Qra.d + Qconv (1)

where 7' - temperature; V - horizontal wind vector; p - pressure; w - vertical
pressure velocity; Qrad and Qeonv - net radiative and convective heating

e Simple Zero-Dimensional (Energy Balance) Climate Model

— Averaging (1) over horizontal and vertical space dimensions yields

d<T> -
%u37w=<8>—<F>

where S is net absorbed solar radiation and F is longwave radiation
emmitted to space

For a long-term stable climate, < 5§ > - < F>=0

N\
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Atmospheric modeling hierarchy

e Simple One-Dimensional (Radiative-Convective) Climate Model

— Averaging (1) over horizontal space dimensions yields

O<T>

:< Ta > < COIIV>
Yy Qraqa > + < Q

Cp

where a globally averaged vertical profile of T' can be determined from
~ expressions for < Qraq > and < Qconv >

e Higher-order models determined by form of averaging operators
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1D Radiative Convective Model

Manabe
& Wetherald 1967
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1D models:
Doubling CO2

TasLE 5. Change of equilibrium temperature of the earth’s
surface corresponding to various changes of CO;z content of the
atmosphere.

Fixed absolute Fixed relative

h
E[ H(I:D(%: humidity humidity
content Average Average
(ppm) cloudiness Clear cloudiness Clear
300 — 150 —1.25 —1.30 —=2.28 —2.80
300 — 600 +1.33 +1.36 +2.36 2,92

Manabe & Wetherald 1967
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Top of Atmosphere Radiation Component Fluxes

ERBE Absorbed Solar and Outgoing Longwave Fluxes
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TOTAL NET RADIATIVE FLUX (W/m~2)

Top of Atmosphere Net Radiation Budget and
Implied Meridional Energy Transport
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Atmospheric General Circulation Models
and Climate Simulation

e Reduced models of the climate system
— apply “averaging operator” to governing equations

e Atmospheric General Circulation Models (AGCMs)
— simulate detailed “weather” fluctuations in the fluid system
— day-to-day solution details are non-deterministic (Lorenz, 1962)
— apply “averaging operator” to detailed solution sequence

— utility lies in prediction of statistical properties of the fluid system
— chronological sequence of intermediate states unimportant

NCAR J. 3. Hack/A. Gettelman: June 2005



Physical processes regulating climate

Changes of
solar radiation

SPACE 4}

|| ATMOSPHERE
terrestrial
radiation

HzO, Nz, Oz, COz. O3, etc.

Aerosol

precipitation
atmosphere—land coupling atmosphere—

I ¥ SEA-ICE
NERORRY 77777

ice—ocean
coupling

Changes of land features, EARTH
orography, vegetation,
albedo, etc.

ice coupling

evaporation

heat exchange wind stress

Changes of

atmosphere—ocean coupling OCEAN
atmospheric composition

74Y

Changes of ocean basin
shape, salinity etc.

Figure 3.1: Schematic illustration of the components of the coupled atmosphere-ocean-ice-land climatic system. The full arrows are
examples of external processes, and the open arrows are examples of internal processes in climatic change (from Houghton, 1984).
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Modeling the Atmospheric General Circulation

Understanding of climate & global scale dynamics

NCAR

atmospheric predictability/basic fluid dynamics
physics/dynamics of phase change

radiative transfer (aerosols, chemical constituents, etc.)
atmospheric chemistry (trace gas sources/sinks, acid rain, etc.)

interactions between the atmosphere and ocean (e.q., El Nino,
etc.)

solar physics (solar-terrestrial interactions, solar dynamics, etc.)
impacts of anthropogenic and other biological activity

J. J. Hack/A. Gettelman: June 2005
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Meteorological Primitive Equations

e Applicable to wide scale of motions; > 1hour, >100km

NCAR

dV/dt+ fkxV+Vé=F, (horizontal momentum)

dT/dt — kTw/p = Q/c,, (thermodynamic energy)
V-V +08w/0p =0, (mass continuity)
8¢/0p+RT/p=0, (hydrostatic equilibrium,)
dg/dt = S,. (water vapor mass continuity)

Harmless looking terms F, ), and S, = “physics”

J. J. Hack/A. Gettelman: June 2005



Global Climate Model Physics

Terms £, ¢, and S, represent physical processes

e Equations of motion, F
— turbulent transport, generation, and dissipation of momentum

e Thermodynamic energy equation, Q
— convective-scale transport of heat
— convective-scale sources/sinks of heat (phase change)
— radiative sources/sinks of heat

e Water vapor mass continuity equation
— convective-scale transport of water substance
— convective-scale water sources/sinks (phase change)

NCAR J. 3. Hack/A. Gettelman: June 2005



Model Physical Parameterizations

Physical processes breakdown:

e Moist Processes
— Moist convection, shallow convection, large scale condensation

e Radiation and Clouds
— Cloud parameterization, radiation

e Surface Fluxes
— Fluxes from land, ocean and sea ice (from data or models)

e Turbulent mixing

— Planetary boundary layer parameterization, vertical diffusion, gravity
wave drag

NCAR J. 1. Hack/A. Gettelman: June 2005



Basic Logic in a GCM (Time-step Loop)

For a grid of atmospheric columns:

« 'Dynamics’: Iterate Basic Equations
Horizontal momentum, Thermodynamic energy,
Mass conservation, Hydrostatic equilibrium,
Water vapor mass conservation

« Transport ‘constituents’ (water vapor, aerosol, etc)

« Calculate forcing terms (“Physics”) for each column
Clouds & Precipitation, Radiation, etc

« Update dynamics fields with physics forcings
« Next time step (repeat)

NCAR J. 3. Hack/A. Gettelman: June 2005



Example of State of the Art Global Model Simulation

Precipitable Water (gray scale) and Precipitation Rate (orange)
T CCMa—T176-

Animation courtesy of NCAR SCD Visualization and Enabling Technologies Section

J. J. Hack/A. Gettelman: June 2005



Physical Parameterization

To close the governing equations, it is necessary to incorporate
the effects of physical processes that occur on scales below the
numerical truncation limit

e Physical parameterization
— express unresolved physical processes in terms of resolved processes
— generally empirical techniques

e Examples of parameterized physics
— dry and moist convection
— cloud amount/cloud optical properties
— radiative transfer
— planetary boundary layer transports
— surface energy exchanges
— horizontal and vertical dissipation processes

NCAR J. 3. Hack/A. Gettelman: June 2005
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Atmospheric Energy Transport

Synoptic-scale mechanisms

* hurricanes * extratropical storms

http://www.earth.nasa.gov J. 1. Hack/A. Gettelman: June 2005



Clouds are a fundamental component of larger-
scale organized energy transport mechanisms
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s of Atmospheric Aerosol

Energy Budget Impac

A massive sandstorm blowing off the
northwest African desert has blanketed
hundreds of thousands of square miles of the
eastern Atlantic Ocean with a dense cloud
of Saharan sand. The massive nature of this
particular storm was first seen in this SeaWiFS
image acquired on Saturday, 26 February 2000
when It reached over 1000 miles into the Atlantic.
These storms and the rising warm air can lift dust

¥ 15.000 feet or so above the African deserts and then

out across the Atlantic, many times reaching as far as

the Caribbean where they often require the local weather |

services to issue air pollution alerts as was recently

the case in San Juan, Puerto Rico. Recent studies by the

U.S.G.S.(http://catbert.er.usgs.gov/african_dust/)

have linked the decline of the coral reefs In the Caribbean

to the increasing frequency and intensity of Saharan Dust

events. Additionally, other studies suggest that Sahalian

Dust may play a rele in determining the frequency and

intensity of hurricanes formed in the eastern Atlantic Ocean

SFC and ORBIMAGE

(http://www.thirdworld.org/role.html)
Project, NASA

Powded b' the ee!WFS
J. J. Hack/A. Gettelman: June 2005
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Scales of Atmospheric Motions

| SO e

/ /f
/
/ / /
/ /
C,l’oud/Mesoscale/;lLurbulen,ce Models /
/
/ / /
/ / /
. / / ; A
. 10 km 100 km 1000 km 10,000 km \ 100,000 km
Microscale L Mesoscale t Synoptic scale Circumference of earth (40,000 km)

SPACE SCALE

n Anthes et al. (1975)

NCAR J. J. Hack/A. Gettelman: June 2005



Global Modeling and Horizontal Resolution
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Capturing Principle Phenomenological Scales
of Motion in Global Models

Simulation of Tropical Cyclone Impacts on Climate

A -
noRR g GOES-8 RGB=CHLCHSCHS 107022002 12:15 UTC

Oklahoma

MEXICO

n Courtesy, Raymond Zehr, NOAA CIRA
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High-Resolution Global Modeling

Simulation of Tropical Cyclone Impacts on Climate
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High-Resolution Global Modeling

Still a Need to Treat Subgrid-Scale Processes

Panama

= T42
g | Grid
|
« ~ 130 km »  Galapagos  Reference Panel
Islands
n Courtesy, NASA Goddard Space Flight Center Scientific Visualization Studio
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High-Resolution Global Modeling

Panama

Galapagos Satellite Image Courtesy, NASA GSFC Scientific Visualization Studio

n Islands
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Cumulus Convection

If the atmosphere is buoyantly unstable to small vertical
displacements, it can be said to be convectively unstable

e (Convective overturning
— with or without phase change
— space scale ~ 1-10km; time scale ~ 1 hour

e Moist convection
— most common and energetically important
— affects the general circulation on wide range of time scales
— provides fundamental coupling of dynamics and hydrological cycle

NCAR J. 3. Hack/A. Gettelman: June 2005



Process Models and Parameterization
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Clouds
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Convective
Clouds

Shallow
Convective
Clouds
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Precipitation Rain Uniform Rain
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SIMPLIFIED LARGE-SCALE: CONVECTIVE INTERACTION
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Parameterization of Cumulus Convection

To extract the details of how the observed profile is
maintained by moist convection, it is necessary to use an
abstraction for the collective behavior of convective motions

.......

e Convective mass flux
— how much overturning is associated with convective activity

e Breakdown of total diabatic forcing
— where is the water condensing and/or raining out
~ — what role do the convective eddy transports play

NCAR J. 1. Hack/A. Gettelman: June 2005



What are the key uncertainties?

Reflected Solar Incoming Outgoing
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Uncertainties (1):

» Low Clouds over the ocean:
Reflect Sunlight (cool) : Dominant Effect

N\
L

v v

\ More Clouds=Cooling Fewer Clouds=Warming
L\
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Marine Stratus: Low Clouds over the Ocean
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Low Clouds Over the Ocean

2 Models: Changes
are OPPOSITE!

NCAR CAM2 (Year70 @1%C0,/yr — CTRL)

AC. "1" !.,‘_ ‘_ % Y 4
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NCAR Change in Low Cloud Amount (Z/K) J05



Parameterization of Clouds

NCAR
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Uncertainties (2):

2. High Clouds:
Dominant effect 1s that they Trap heat (warm)

NCAR J. J. Hack/A. Gettelman: June 2005



N\

NCAR

Uncertainties (3):

Water Vapor: largest greenhouse gas
Increasing Temp=Increasing water Vapor (more greenhouse)

Effect 1s expected to ‘amplify’ warming through a ‘feedback’
[ | | | L I I I I I I I i

1D Radiative-Convective Model:
Higher humidity=>warmer surface
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How can we evaluate simulation quality?

e Continue to compare long term mean climatology
— average mass, energy, and momentum balances
— tells you where the physical approximations take you
— but you don’t necessarily know how you get there!

e Must also consider dominant modes of variability

— provides the opportunity to evaluate c/imate sensitivity
— response of the climate system to a specific forcing factor

— evaluate modeled response on a hierarchy of time scales

— exploit natural forcing factors to test model response
— diurnal and seasonal cycles
— El Nino Southern Oscillation (ENSO)
— intraseasonal variability; e.g., MJO
— solar variability
— volcanic aerosol loading

NCAR J. 1. Hack/A. Gettelman: June 2005



Comparison of Mean Simulation Properties
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Mean Biases
Relative humidity, March-May 3km (9,000ft)

Observed Simulated
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Observed

Variability: El Nino Composite
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Fig. 18.2 Sea surface temperature anomalies (°C) for a composite El Nifio (Rasmusson and

Carpenter, 1982), constructed by averaging over 6 events (1951, 1953, 1957, 1965,
1969, 1972; cf. Fig. 18.1). Shown are maps for May and December of the El Nifio
year and April of the following year. '
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Testing AGCM Sensitivity

Pacific SST Anomalies and ENSO

S5T Anomalies (105-10N}
dinpd °K)
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Hack (1998)
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Testing AGCM Sensitivity

Cloud (OLR) Anomalies and ENSO
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Observations: 20" Century Warming
Model Solutions with Human Forcing

Anomalies from 1890-1919 (°C)

Clilobal Average Temp?rature
I BT L

NCAR
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Improving simulation quality

e Examine role of parameterization techniques on transient behavior
— oversimplifications playing a role in inadequate variability?

e Understand role of scale interaction on transient and mean state

CCM?2 ITCZ behavior as function of horizontal resolution
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Fig. 6. January average, zonal average over Atlantic (30°W to illi i
7.5°E) pressure vertical velocity () for R1S, T21, T31, T42, T63, Williamson, Kiehl, and Hack (1995)
and T106 simulations. Contour interval is 20 mb day ~?, negative_

i (upward). regions stippled
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Coupled Models = Increased Technical Complexity

Ocean-Atmosphere Coupling

Atmospheric GCM

e gy s g o

SST and Sea Icé Wind Stress, P-E,
Distribution Net Heat Flux

Coupling
Interface

Grid Interpolations, Units Convérsions,
| Time Averaging (e.g. one day), Flux Corrections (if any)

'_____ﬁ_wﬂ_r ______ L} e

Sea Ice
Model

Ocean GCM

B Note: Ocean GCM's are as complex as Atmosphere GCM’s!

J. J. Hack/A. Gettelman: June 2005
NCAR



Climate Model '‘Evolution’

The development of climate models, past, present and future

Mid-1970s

Atmosphere

(PCC |

Mid-1980s Early 1990s Late 1990s

Atmosphere
Land surface

Sulphate Sulphate
aerosol aerosol

Non-sulphate
/ / =

Sulphur

Non-sulphate
cycle model

a-ice
. aerosols

N

Oce arbon .’u—-

cycle model

o

Dynamic
_vegetation

' INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Sulphate
aerosol ’
Non-sulphate

WG1 -TS BOX 3
FIGURE 1

WMO UNEP



Summary

e Global Climate Modeling
— complex and evolving scientific problem
— parameterization of physical processes pacing progress
— observational limitations pacing process understanding

e Parameterization of physical processes
— opportunities to explore alternative formulations
— exploit higher-order statistical relationships?
— exploration of scale interactions using modeling and observation

— high-resolution process modeling to supplement observations
— e.g., identify optimal truncation strategies for capturing major scale interactions

— better characterize statistical relationships between resolved and
unresolved scales

NCAR J. 1. Hack/A. Gettelman: June 2005
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The End
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