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Adaptive observations ...

1. Atmospheric models

2. A (biased) view of sequential data
assimilation in a perfect model setting

3. The adaptive observations problem

4. A general Bayesian solution

5. Using ensemble forecasts I - particle filter
implementation of the general solution

6. Using ensemble forecasts II - an EnKF
approach

7. Experiments in an atmospheric ‘toy model’
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Atmospheric models

Atmosphere

Earth’s 
Surface

Coupled, nonlinear set of pde’s governs the flow of the
atmosphere (wind, temperature, surface pressure ... )

dx/dt = M(x, t) - state vector order 107
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Atmospheric models: east-west winds
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Atmospheric models: mid-level temperature
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Atmospheric models: surface pressure (PS)
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Atmospheric models: PS Day 1/20
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Atmospheric models: PS Day 2/20
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Atmospheric models: PS Day 3/20
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Atmospheric models: PS Day 4/20
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Atmospheric models: PS Day 5/20
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Atmospheric models: PS Day 6/20
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Atmospheric models: PS Day 7/20
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Atmospheric models: PS Day 8/20
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Atmospheric models: PS Day 9/20
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Atmospheric models: PS Day 10/20
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Atmospheric models: PS Day 11/20
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Atmospheric models: PS Day 12/20
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Atmospheric models: PS Day 13/20
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Atmospheric models: PS Day 14/20
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Atmospheric models: PS Day 15/20
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Atmospheric models: PS Day 16/20
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Atmospheric models: PS Day 17/20

– p.23/54



Atmospheric models: PS Day 18/20
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Atmospheric models: PS Day 19/20
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Atmospheric models: PS Day 20/20
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Next ...

1. Atmospheric models

2. A (biased) view of sequential data
assimilation in a perfect model setting

3. The adaptive observations problem

4. A general Bayesian solution

5. Using ensemble forecasts I - particle filter
implementation of the general solution

6. Using ensemble forecasts II - an EnKF
approach

7. Experiments in an atmospheric ‘toy model’
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Objective - estimate the state xti given
observations
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Observations of atmospheric quantities are
uncertain and incomplete
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Adopt a probabilistic point of view - solve for
conditional probabilities
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Assume that at ti we have some pdf for the
system state p(xti)
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Time evolution - Liouville equation
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Updating - at ti+1 update system pdf using
Bayes rule
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Problem! x is order 107
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Time evolution - evolve an ensemble of state
estimates - samples of the pdf
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Practical applications of interest - ensemble
size << degrees of freedom
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

In practice - approximations are introduced in
update algorithm - Gaussianity (KF)
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Within subspace spanned by the ensemble -
mean and covariance updated consistent with
Kalman Filter update equations (EnKF)
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Deterministic Ensemble Kalman Filters - we
use EAKF (Anderson 2001, 2003)

– p.28/54



A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Damping sampling error is critical - can
handle sampling error systematically with
EnKF algorithms
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

The ability to handle sampling error →
algorithms can be applied to systems with
many d.o.f.
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Fully nonlinear sequential filters have
achieved marginal success in systems with
many d.o.f.
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Can we interpret ensembles generated via
approximate data assimilation schemes
probabilistically?
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A (biased) view of sequential data assimilation

T_i T_i+1 T_i+2

M(x_t, t) M(x_t, t)

y_t = H(x_t) + e_t   Prior

  Posterior

Imperfect models - difficult to implement -
even harder to interpret probabilistically
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Next ...

1. Atmospheric models

2. A (biased) view of sequential data
assimilation in a perfect model setting

3. The adaptive observations problem

4. A general Bayesian solution

5. Using ensemble forecasts I - particle filter
implementation of the general solution

6. Using ensemble forecasts II - an EnKF
approach

7. Experiments in an atmospheric ‘toy model’
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The adaptive observations problem

Routine observational network

y
routine
t = Hroutine

t (xt) + εroutine
t

Adaptive observations - supplement to the
routine network
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The adaptive observations problem: an example

 Lat

Lon

Today’s global observing network

Operator:    y_t = H(x_t) + e_t 
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The adaptive observations problem: an example

 Lat

Lon

Intense LOW developing over Pacific
and is expected to make landfall 4 days
from now

 L
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The adaptive observations problem: an example

 Lat

Lon

LOW is poorly observed ...
Supplement with Adaptive Observations
to improve prediction

 L
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The adaptive observations problem: an example

 Lat

Lon

What is the optimal FLIGHT PATH of an 
airplane equipped to drop dropsondes?
Operator:   y_t = [ H_t; H_t]x_t + e_t

 L
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The adaptive observations problem: an example

 Florida

Adaptive Observations: important source

of information for Hurricane prediction
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The adaptive observations problem: importance

Provide supplemental observations in data
sparse regions (hurricanes, winter storms)

Data denial

Recent field study in Atlantic (THORPEX)
shows positive benefits

Winter Storm Reconnaissance Program
(WSRP) operational at NCEP since 1999 -
uses ensemble based methods
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The adaptive observations problem: importance
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sparse regions (hurricanes, winter storms)

Data denial

Recent field study in Atlantic (THORPEX)
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Next ...

1. Atmospheric models

2. A (biased) view of sequential data
assimilation in a perfect model setting

3. The adaptive observations problem

4. A general Bayesian solution

5. Using ensemble forecasts I - particle filter
implementation of the general solution

6. Using ensemble forecasts II - an EnKF
approach

7. Experiments in an atmospheric ‘toy model’
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A general Bayesian solution: specific problem

t_initial (t_i) t_adaptive (t_a) t_verification (t_v)

H-routine,t_a 
        +
H-adaptive,t_a

F(t_v|H-adaptive,t_a)
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A general Bayesian solution: analytically

Perfect, deterministic dynamics dx/dt = M(x, t)

Apply to one adaptive observation time - can extend

Assume all distributions can be obtained analytically
(may need MC approximations in practice)

For a given Hadaptive
ta , compute F (tv|Hadaptive

ta )

Idea: try many different Hadaptive
ta to minimize

F (tv|Hadaptive
ta ) (flight paths)

Trial observing network: Hroutine
ta , Hadaptive

ta

Entire calculation takes place at ti

– p.35/54
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A general Bayesian solution: analytically

Given p(xti)

Integrate Liouville equation to obtain p(xta)

Let yta be some specified set of observations
consistent w/ trial observing network

p(xta|yta) = p(xta)p(yta |xta)
p(yta)

Integrate Liouville equation to obtain p(xtv |yta)

Apply some norm to p(xtv |yta) - to measure
uncertainty

Denote L(p(xtv |yta))
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A general Bayesian solution: analytically

Example: L(p(xtv |yta)) =
∫

(xtv − xtv)
2
p(xtv |yta)dxtv

A reasonable method of assigning a number to
F (tv|Hadaptive

ta ) ...

Compute expectation of L(p(xtv |yta)) over all possible
observations consistent with trial network

F (tv|Hadaptive
ta ) =

∫
L(p(xtv |yta))p(yta)dyta

p(yta) =
∫

p(xta)p(yta|xta)dxta

Generally not possible analytically - revert to MC
approximations for all above calculations
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Next ...

1. Atmospheric models

2. A (biased) view of sequential data
assimilation in a perfect model setting

3. The adaptive observations problem

4. A general Bayesian solution
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6. Using ensemble forecasts II - an EnKF
approach
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General solution: particle filter approach

 t_i  t_a     t_v

H-routine,t_i
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General solution: particle filter approach

  t_i   t_a      t_v

H-routine, t_i

Generate ensemble forecast out to - t_v 
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General solution: particle filter approach

 t_i  t_a      t_v

H-routine,t_i
Trial nework at t_a - 

H-routine,t_a  ‘+’  H-adaptive,t_a 
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General solution: particle filter approach

Forecast for ta - x
f
i,ta

with i = 1, ..., N and weights wf
i,ta

Generate j = 1, ..., J random samples of
p(yta) =

∫
p(xta)p(yta|xta)dxta

For jth sample, re-weight: wu
i,ta,j ∼

e(−[yta,j−Hadaptive
ta

(xf
i,ta

)]T R−1

ta
[yta,j−Hadaptive

ta
(xf

i,ta
)]/2)wf

i,ta

Updated weights apply for tv - compute jth value for
norm using x

f
i,tv

and wu
i,ta,j

Take expectation over J samples approximates
F (tv|Hadaptive

ta ) =
∫

L(p(xtv |yta))p(yta)dyta

Problems with sampling errors for small ensembles?

– p.40/54
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Next ...

1. Atmospheric models

2. A (biased) view of sequential data
assimilation in a perfect model setting

3. The adaptive observations problem

4. A general Bayesian solution

5. Using ensemble forecasts I - particle filter
implementation of the general solution

6. Using ensemble forecasts II - an EnKF
approach

7. Experiments in an atmospheric ‘toy model’
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Approximate solution: EnKF approach

 t_i  t_a     t_v

H-routine,t_i
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Approximate solution: EnKF approach

  t_i   t_a      t_v

H-routine, t_i

Generate ensemble forecast out to - t_v 

– p.42/54



Approximate solution: EnKF approach

 t_i  t_a      t_v

H-routine,t_i
Trial nework at t_a - 

H-routine,t_a  ‘+’  H-adaptive,t_a 
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Approximate solution: EnKF approach

  t_i  t_a      t_v

H-routine,t_i
 Idea: Use an EnKF based algorithm to update 

the ensemble forecast
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Approximate solution: EnKF approach

  t_i   t_a      t_v

H-routine,t_i
 This generates an estimate of F(t_v | H-adaptive,t_a)
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Approximate solution: EnKF approach

  t_i   t_a      t_v

H-routine,t_i
 *** The KEY - the ensemble forecast need only be 

generated once ***  
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Approximate solution: EnKF approach

  t_i   t_a      t_v

H-routine,t_i
 Can evaluate many H-adaptive,t_a without repeatedly 

integrating the forecast model - Comp. Efficient
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Approximate solution: EnKF approach

Interpret ensemble forecast from ti as a sample of a
PRIOR p(xta,xtv)

Let the observation values at ta be:
yta = [Hroutine

ta
;Hadaptive

ta ]xf
ta

The updated joint state distribution, given the
hypothetical network at ta:

p(xta,xtv |yta) =
p(xta,xtv)p(yta)

Normalization
(0)

Update PRIOR using and EnKF (Gaussian
specifications)
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A computationally efficient scheme: theory

Use updated ensemble to compute
covariance for xtv - can then quantify
F (Hadaptive

ta
)

Theory for Deterministic EnSRF implementations
with no covariance localization

Without covariance localization - DEnSRF
implementations are equivalent NCEP’s operational
scheme (Bishop et al. 2001)

No repeated integrations of forecast model in
evaluating many Hadaptive

ta
- operationally feasible

– p.44/54
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Experiments in an atmospheric ‘toy model’

dxj

dt
= −xj−2xj−1 + xj−1xj+1 − xj + F

Non-linear advection, forcing, linear dissipation, energy

conservation E = (x2
1 + ... + x2

40)

F = 8 sensitive dependence on IC’s, j = 1, ..., 40, cyclic

Climatology
√

σclimate = 3.6 and x = 2.3

Look at small perturbations to steady state solution, xj = F ,

δxj =
∑

k exp(−iωt)exp(ikj)

ω(k) = −[sin(k) + sin(2k)]F + i[(cos(k) − cos(2k))F − 1]
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Experiments in an atmospheric ‘toy model’

Lorenz 1996 (F = 8, j = 1, ..., 40)

dT = 0.05 units = 6 ‘hours’

Look at results from 10000
consecutive experiments

Find optimal location of one
accurate observation at each 
t_a

Verification region - x1

N = 20, EAKF assimilation
with inflation and GC localization

T_v - T_a = T_a - T_i = L(dT)

T_i

T_a

T_v

  X1

Xj

Xj

L(dT)

L(dT)
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Experiments in an atmospheric ‘toy model’
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Experiments in an atmospheric ‘toy model’
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Experiments in an atmospheric ‘toy model’

T_i

T_t

T_v

X_j

X_1

X_j
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Experiments in an atmospheric ‘toy model’
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Experiments in an atmospheric ‘toy model’
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Summary and conclusions

Outlined general theory in perfect model setting -
particle filter implementation

Computationally efficient approximation - ETKF
scheme used operationally at NCEP

Key result - handling sampling errors crucial to
improving operational ETKF scheme
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Key future areas in adaptive observations

Using optimization - non-trivial - flight paths, air
traffic control, physical restrictions ...

Data denial (THORPEX)

How do we quantify uncertainty under influence of

Hadaptive
ta

in the imperfect model case?
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