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Outline

1. Sequential DA using ensemble Kalman filter.

2. ensemble Kalman filter → “full” Bayes DA.

3. Traffic example: DA in non-linear & non-Gaussian system.

4. DA in high-dimensional systems: what is reasonable?
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1. “Better to have the approximate solution to the correct problem than
the exact solution to the wrong problem” -J. Tukey
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Some to live by...

1. “Better to have the approximate solution to the correct problem than
the exact solution to the wrong problem” -J. Tukey

2. “’Flying is like milk, everybody needs it’ -D.Nychka.

3. “It is easier to solve a problem if you know a lot about it” -G.W. Bush.



Where are we?

1. Sequential DA using ensemble Kalman filter.

2. ensemble Kalman filter → “full” Bayes DA.

3. Traffic example: DA in non-linear & non-Gaussian system.

4. DA in high-dimensional systems: what is reasonable?



Data Assimilation & Atmospheric State Prediction

Approximation to reality:

Weather observations −→ yt = H(xt) + εt

Atmospheric State −→ xt = G(xt−1) + ηt

yt, data

xt, unobserved

H maps state to observation (linear or non-linear)

G highly nonlinear (chaotic, approximate, known)

ηt (parameterized) model error, stochastic forcing

εt (gaussian) observation error, cov(εt) = R

Goal: Real-time sequential assimilation and forecasting:

p(xt|Yt−1),yt
Bayes−→ p(xt|Yt)

G(·)−→ p(xt+1|Yt),yt+1
Bayes−→ p(xt+1|Yt+1)



Ensemble Kf algorithm

• Let xf
t,i ∼ p(xt|Yt−1) (i = 1, . . . ,M) be a sample from the prior.

- EnKF: With P̂f
t the sample covariance of {xf

t,i}, generate the posterior
by

xa
t,i = xf

t,i + K̂t

(
yt + et,i −Htx

f
t,i

)
, et,i ∼ (0,R).

- EnKf asymptotically optimal if p(xt|Yt−1) and p(yt|xt) Gaussian;

• Common misconceptions about EnKf:

1. Won’t work if p(xt|Yt−1) is non-Gaussian or G non-linear;
- will provide BLUP as M →∞.
- EnKf “respects” non-Gaussian properties in prior sample,

2. Must have M ∼ O(dim(xt));
- sample error depends on spectrum of Pf

t ;
- localization/tapering and square-root Kfs effectively remove errors
due to sampling (Furrer & Bengtsson, 2005).



EnKF applied to Lorenz 96

• Atmospheric system with variables as k longitudes: z1, . . . , z40. (Sub-
script denotes spatial location.)

• Equations: for j = 1, . . . , 40,

żj = zj−1(zj+1 − zj−2)− zj + F,

where F represents forcing.

• The equations contain quadratic nonlinearities mimicking advection:

u̇i ∝ ui
∂ui

∂x
≈ ui(ui′ − ui?)/δx.

• F is chosen so that phase space is bounded and the system exhibits
chaotic behavior.

• Simulations: m = 10, ’short’ lead time (δt = .05),
’observe’ z1, z3, . . . , z39: yj = zj + εj, εj ∼ N(0, 4),



Where are we?

1. Sequential DA using ensemble Kalman filter.

2. ensemble Kalman filter → “full” Bayes DA.

3. Traffic example: DA in non-linear & non-Gaussian system.

4. DA in high-dimensional systems: what is reasonable?



Particle Filter Approximation - I

• Consider the general state-space model

Observation: yt+1 ∼ p(yt+1|xt+1) (yt = H(xt) + εt)

State evolution: xt+1 ∼ p(xt+1|xt) (xt = G(xt−1) + ηt)

• (The numerator of) Bayes theorem in the sequential DA setting:

p(yt+1,xt+1) ∝ p(yt+1|xt+1)

∫
p(xt+1|xt,Y

t)p(xt|Yt)dxt.

- With xa
t,i ∼ p(xt|Yt), the numerator (and posterior) is approximated

by

p(yt+1,xt+1) ∝ p(yt+1|xt+1)
1

M

M∑
j=1

p(xt+1|xa
t,i).



Particle Filter Approximation - II

(continued) p(xt+1|Yt+1) ∝ p(yt+1|xt+1)
1
M

∑M
j=1 p(xt+1|xa

t,i)

- When the densities on RHS are Gaussian, this “yields” the EnKf.

- Implements Kf recursion as M →∞

• Generalization to non-Gaussian case:

Draw xf
t+1,i ∼ p(xt+1|xa

t,i), and let wi ∝ p(yt+1|xf
t+1,i)

- We could:

1. Accept xf
t+1,i, as a draw from posterior, with probability wi; or,

2. Approximate p(xt+1|Yt+1) ≈
∑M

i=1 wiδ(xt − xf
t+1,i); or,

3. Develop further to produce: wt,i → wt+1,i (particle filter).

- Implements Bayes theorem as M →∞



Particle Filter Approximation - III

• Particle filters/rejection/importance sampling algorithms are problem-
atic in high-dimensions:

- manifestation of the curse-of-dimensionality

• A particular remedy - The Auxiliary PF:

p(xt+1|yt+1) ∝ p(yt+1|xt+1)

∫
p(xt+1|xt)p(xt|Yt)dxt

≈ p(yt+1|xt+1)
∑

j

p(xt+1|xa
t,j)

=
∑

j

p(yt+1|xt+1)

p(yt+1|µt+1,j)
p(yt+1|µt+1,j)p(xt+1|xa

t,j)

=
∑

j

p(yt+1|xt+1)

p(yt+1|µt+1,j)
gt,jp(xt+1|xa

t,j)

- Here, p(yt+1|µt+1,j) is a “high-density” area of the likelihood.
- Will not “solve” problem of uneven weights.
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State-Space Dynamics

• We use the simple model of Nagel and Schrekenberg (1992) as described
in Helbing (2001):

A road stretch:

x xN 1... x. . . ...
VV

x.
VV i 1N−1N

i

Cell #1 Cell #2 Cell #3 Cell # L

N−1

– Let there be L cells numbered left to right.

– Vehicles at locations x1, . . . , xN , with velocities v1, . . . , vN .

– Location of the lead vehicle is x1; location of last vehicle is xN .

– The state of the system is x = {N, x1, . . . , xN , v1, . . . , vN}.
– The vi ∈ {0, 1, . . . , 5} and they satisfy xi + vi ≤ xi−1 − 1.



State-Space Dynamics

The state transition mechanism x → x′ is as follows:

1. Change velocities:

vi → v′i = max{0, min(vi + 1, xi−1 − xi − 1, 5)− ξi},

where ξi
iid∼ Bernoulli(p).

2. Move vehicles:
xi → x′i = xi + v′i

3. Adjust N : Remove lead vehicle and/or add new vehicle: e.g.,

– If x1 + v′1 > L, the lead car is removed w.p. pexit.

– a new car is added with probability pnew at location xN+1 chosen
uniformly in {1, 2, . . . , min(5, x′N − v′N − 1)}.

• The above defines p(xt+1|xt, p).



Density Field

Illustration using L = 200, N(start) = 50, p = .5, T = 500.



Density and Average Velocity

Illustration using L = 200, N(start) = 50, p = .5, T = 500.



Observation Model

• A simple model for the observations: with εi
iid∼ N(0, σ2),

Y i =

{
1 + εi, cell i occupied;
εi cell i not occupied.

– Assumption of independence (and normality) can be relaxed, but yields
more complicated updating mechanism.

• The above defines p(yt+1|xt, σ
2).



Particle Filter Approach

• A sequential importance sampler (e.g., particle filter) is obtained by a
recursion on the weights wi

t−1 × p(yt|xi
t) → wi

t:

prior︷ ︸︸ ︷
{zi

t, w
i
t−1} and

likelihood︷ ︸︸ ︷
p(yt|xt,i)

Bayes−→
Posterior︷ ︸︸ ︷

{xt,i, w
i
t−1 × p(yt|xt,i)}

– This produces a likelihood filter.

• We will adapt the PF to include observations from one-step ahead.



Our Scheme/Trick

• The particle approach:

p(xt+1|Yt+1) ∝ p(yt+1|xt+1)

∫
p(xt+1|xt)p(xt|Yt)dxt

≈ 1

M

M∑
i=1

p(xt+1|xi
t)p(yt+1|xt+1) (1)

– Because of the system properties, we can sample from (1) directly,
without using a rejection method or importance sampling.

Trick: Multiplying and dividing (1) by p(yt+1|zi
t)

p(xt+1|Yt+1) ∝ 1

M

M∑
i=1

p(yt+1|xi
t)

p(xt+1|xi
t)p(yt+1|xt+1)

p(yt+1|xi
t)

=
1

M

M∑
j=1

p(yt+1|xi
t)p(xt+1|xi

t,yt+1) (2)

– Both densities in (2) are computable.



Sampling Procedure

Want: p(xt+1|Yt+1) ≈ 1
M

∑M
j=1 p(yt+1|xi

t)p(xt+1|xi
t,yt+1)

• Assume a random sample xi
t ∼ p(xt|Yt) and generate a draw from

posterior:

1. Sample x̃i
t = xi

t with probability proportional to p(yt+1|xi
t)

2. Drawing xi
t+1 ∼ p(xt+1|x̃i

t,yt+1)

– We do this M times to obtain updated particles {xi
t+1,

1
M
}.



Evaluating p(yt+1|xj
t): Strategy

• In our setting, there are two aspects of the state-transition dynamics that
drastically simplify simulation and particle filter approximations:

1. vehicles are moved independently of one another; and, each vehicle
can only move to one of two possible positions

2. dependence of blocks of the yi’s (measurement on cell i) on vehicle
locations is very simple.

• Illustration: for particle j, let b(i) be the set of possible locations for
vehicle i at time t + 1

x x. .

b(i)

i−1i

iV

n(i)−1 n(i)

• Allows evaluation of p(yt+1|xj
t) =

∏
i p(y

b(i)
t+1|x

j
t)



Evaluating p(yt+1|xj
t): Specifically

x N−1xN

b(N−1)

2x x 1

b(N) b(2) b(1)

. .

b(0)

• Let b(i) index the data which depends on vehicle i. We want to evaluate

p(yt+1|xj
t) =

N∏
i=1

p(y
b(i)
t+1|x

j
t).

– After much cancelation,

p(yt+1|xj
t) ∝

p(y
b(1)
t+1 |x

j
t)∏

k∈b(1) φ
(

yk
t+1

σ

) N∏
i=2

[
(1− p) exp

(
y

n(i)
t+1

σ2

)
+ p exp

(
y

n(i)−1
t+1

σ2

)]
.

• Draw state xj
t with probability p(yt+1|xj

t )∑
k p(yt+1|xk

t )
.



Moving vehicles according to xj
t+1 ∼ p(xt+1|x̃j

t ,yt+1)

• Consider drawing xj
t+1 ∼ p(xt+1|x̃j

t ,yt+1). This can again be done vehicle
by vehicle:

x x. .

b(i)

i−1i

iV

n(i)−1 n(i)

– for vehicle i, we randomly choose the move corresponding to n(i) or
n(i)− 1, by evaluating the ratio

αi =
p(y

b(i)
t+1|ξi = 1)p(ξi = 1)

p(y
b(i)
t+1|ξi = 0)p(ξi = 0)

=
p exp

(
y

n(i)−1
t+1

σ2

)
(1− p) exp

(
y

n(i)
t+1

σ2

),

and ξi is then chosen to be 1 with probability αi/(1 + αi).



Filter Performance

• Left: Density and estimated density.

• Right: Probability forecast verification:



What now?

• Remains to be done

-Initialization.

-Recursive parameter estimation.

• For realistic application:

-Extend to correlated measurement errors.

-How general is sampling scheme when model is more complex?


