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Turbulent flows are everywhere: the atmosphere, the oceans, the solar wind and solar 
convection zone, the interstellar medium and beyond.  Physical conditions are vastly 
different but they share a property of having large Reynolds number Re = U0L0/ν where 
U0 and L0 are characteristic velocity and length scale and ν  is the viscosity; the ratio of 
nonlinear inertial to viscous accelerations, Re  is the governing parameter of the 
equations of motion in the simplest case (one may also have to consider the Rossby 
number measuring rotation, the Nusselt number measuring convective flux, the Froude 
number for stratified flows, the Prandtl number measuring relative dissipative 
processes of say the temperature or the magnetic field vs.  the velocity, etc.).  When Re 
>> 1, a very large number of modes are a priori relevant and a major problem of 
turbulence is hence to solve for the statistical properties of such flows [1].  Progress can 
be made using a variety of techniques and contrasting them: theory, models, 
experiments, observations, and numerical simulations, either direct -- i.e., dealing with 
the primitive equations of motion, DNS -- or Large Eddy Simulations (LES) using some 
form of modeling for the unresolved small scales of the flow under study. 
  
 In this context, we shall describe results stemming from both high-resolution DNS and 
models of LES of three-dimensional Navier-Stokes and magnetohydrodynamic (MHD, 
including coupling to a magnetic field) and pose several questions that may be relevant 
from a statistical point of view ([2]  and references therein).  Different initial conditions 
and/or forcing functions will be considered (Taylor-Green, Beltrami (ABC), Orszag-
Tang, and ABC plus random fluctuations in the small scales), and resolutions of up to 
15363 regularly spaced grid points will be employed.  At each grid point, the three 
components of the velocity field, and in the MHD case, of the magnetic induction, are 
computed over several characteristic times, leading to data sets of substantial size.  As 
examples, three problems are: 
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• The problem of universality of statistical properties of turbulence, at either 
small or large scales or both:  Take a flow at a given Re at a given resolution of 
5123 points, and examine three snapshots; are they different in their statistical 
properties, specifically in their distribution function or its parameters?  The three 
sets can come from three different times of a same statistically-steady run, or 
from three DNS runs differing in regard to initial condition, forcing, omission of 
certain dynamics, or otherwise.  What about statistics of the energy dissipation? 

 
• Parameter optimization:  Take a 10243 Navier-Stokes DNS; find the optimal 

value, in a norm to be defined, for the parameter αν of the Lagrangian Averaged 
model at a given (lower) resolution (see [3]  for a rapid derivation of the model, 
and references therein). Does the optimal choice of αν change with  Re?  Then do 
the same thing for MHD, with now two parameters αν,m; in that latter case, what 
is the optimal ratio of αν / αm  as a function of the magnetic Prandtl number PM = 
νη, where η is the magnetic diffusivity? 

 
• Model-type optimization:   Given a high-resolution DNS together with several 

(related) LES (Leray, Clark, α models [4]; Smagorinsky?)  at smaller resolutions 
but all at the same Re, can you differentiate between them statistically?  Which 
model appears “best,” in some measure to be determined?  Are they criteria to 
determine the “best” measure?  What about scaling with Reynolds number? 
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