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® The closure problem and physical parameterizations for NWP
models.

® Basic structure and dynamics of the PBL.

® Some open questions in PBL parameterization and uncer-
tainty in mesoscale forecasting.

e A column model to emulate a full 3D mesoscale model, and
experience with it. Distinction from soil estimation for the
sake of soil estimation.
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Horizontal wind spectra in the frequency domain.
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e Key assumption is that Reynolds averaging is valid for nu-
merical weather prediction scales.

® \iscous effects operate on scales much smaller than energetic
eddies.

® Break variables into mean and turbulent (mean 0) compo-
nents, where the filter length corresponds to a ‘spectral
gap,” or a minimum in energy at a particular range of scales:

=9+

® Find equations in the mean to solve, and parameterize the
perturbation quantities, including covariance terms.
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Prognostic equations for i can be written after averaging and
other simplifications:

8_' 8,“/. /
Vi = Advection + body forcings + ﬂb
ot 83:]

Wl = f(U,V,W,T,Q,P)
body forcings f WU, V,W, T,Q,P)

® Subgrid-scale tendencies and body forcings are typically func-
tions of resolved-scale variables and parameters P.

® Parameters are normally fixed values, and can be marginally
physical.
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Physical Parameterization

Absorption/reflection
by earth's surface

The COMET Program

Any unresolved process that can affect resolved variables.
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Processes CP Schemes Need to Account For
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The COMET Program

Many cloud processes are below grid scale.
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Heat fluxes from the
surface generate tur-
bulent eddies that
physically mix the air
from aloft into the
growing PBL.




e A difficult problem: how to parameterize the entrainment
rate? Typically some function of the surface fluxes, with
parameters.

e Conservative scalars (potential temperature, moisture, pollu-
tants) are generally well-mixed within the PBL.

® Moisture and temperature in the PBL, and inversion strength,
are key to thunderstorm prediction.
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The COMET Program

Soil moisture partitions the latent and sensible heat fluxes
through the surface. It can be prognostic or diagnostic.
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e (Observations in the PBL above the surface are sparse or
low-quality.

®* Mesoscale models rely on parameterizations, which are gen-
erally deficient, to determine the PBL.

* Mesoscale models are necessary for both the analysis (data
assimilation) and forecast problems, when high spatial reso-
lution is required.

Better PBL analyses can improve thunderstorm nowcasting, air
quality and plume forecasting.
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e A 1-D PBL modeling framework: various land-surface and
PBL parameterizations, forced. Original model development
by Mariusz Pagowski, NOAA/ESRL.

® Internal dynamics for ageostrophic wind, diffusion equation,
etc.

® Geostrophic and radiative forcing from a mesoscale model
(e.g. RUC or WRF) or observations.

® Assimilation of any relevant observations. Here focus on sur-
face obs: T, Q>, Uipg, Vip assimilated half-hourly to get
information about the atmospheric state.

Cheap! Thousands of realizations possible with a quick turn-around
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Prognostic in U, V, 8, and Q with parameterization providing clo-
sure. Parameterization is the same as in the Weather Research
and Forecast (WRF) model.
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An exchange coefficient for moisture, ¢, is computed:

_ Mpyuw'q
q0 — q1

Qe

® M is a moisture availability parameter {0,1}.
® pq is density at the first atmospheric model level.

® go and g7 are moisture contents at the surface and the first
atmospheric level, repsectively.

* w/q’ is the parameterized kinematic moisture flux.

Provides a lower boundary condition (forcing) for the atmo-
spheric model.
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e Numerical weather prediction (NWP) is messy and at times
ugly, but its success is undeniable.

®* An honest person will talk about parameter tuning in NWP.

e Community inertia toward more complex approaches.

®* An alternative may be to seek simpler approaches that make
use of objectively tunable parameters.

In many cases there is no reason to expect that parameters are
stationary in time and space.
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® Observations are the only direct source of information about
the truth.

e Observations and model are combined in data assimilation.

® In data assimilation, observations have the potential to tell us
something about the model, including values of parameters.
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@ = xP+K (yo — be>
~1
K = PPHT (HPPHT +R)
e xb =xf from the previous forecast cycle (background)

* H is the forward operator, relating x to y°

e K weights x? versus y° and describes the covariance between
error at the observation sites and error on the model grid

e Pb js the background error covariance matrix (unknown!)

® R is the observation error covariance matrix, including instru-
ment and representativeness error (unknown!)
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@ = xP+K (yo — be>
K = PPHT (HPPHT 4R) ™

e If K is correct, this gives the best linear unbiased estimate of
the state x°

e Estimating PP and R is the crux

® Ensemble methods provide an approach: estimate pb directly
from an ensemble forecast (an ensemble filter)
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Using only screen-height
(surface) observations,
skillful profiles are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (¢) 1AM LT,
and (d) 7TAM LT,




Data assimilation to estimate a discrete system state Z at time ¢.

Z is a joint state, with both state variables and parameters.
X represents state variables.

X IS a set of parameters, which may or may not be physical.

Then Z = (X, x).

Given all observations up to the current time, Y;, we want to
estimate p(Z¢|Yy).

These experiments are to estimate parameters in a land-surface
scheme, given screen-height observations and an evolving model.
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Single parameters (moisture availability) can be estimated when
the true value is known.
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Correlation coefficients
of 1> with parameters
M and THC, for 100
ensemble members in-
tegrated for 10 days.
Parameter distributions
are fixed.

Distributions chosen as
B8 with ¢ = 0.1M and
0.01THC.
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Correlation coefficients
of 1> with parameters
M and THC, for 100
ensemble members in-
tegrated for 10 days.

Parameter distributions
are estimated while as-

similating.

Correlations change,
transitions more
pronounced.
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dependent when esti-
mated. Here is at 00
UTC for over 10 days,
but this is true at any
time.

Cannot be distin-
qguished, thus could be
replaced by a single
parameter.
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Compared to single
fixed parameter val-
ues, distributed pa-
rameters result in a
better fit to observa-
tions. The effect is
particularly true dur-
ing transitions.



1.4

1.2

MAE T, (K)
o
®

o
o

0.4

| |
‘NWN"

|

I

- Estimated, avg = 0.17513

= Not Estimated, avg = 0.26874

M\i L,‘

05/04 05/05
Analysis Time (UTC)

|
05/06 05/07

IMAGE TOY Workshop, Nov 2006

Compared to fixed
distributed parameter
values, estimated pa-
rameters result in a
better fit to observa-
tions.
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e State augmentation is a useful parameter estimation ap-
proach in observation system simulation experiments (OSSEs),
but is much more difficult in real-data applications.

Much more work to do:

® How can we deal with non-Gaussianity in the parameters?

® Can we find distributions that make a better forecast in the
face of other, unknown, model errors?

® Can we find appropriate stochastic processes to propagate
the parameter distributions in time?
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® Theoretical: uncertainty in model parameterization is rarely
addressed in a meaningful way.

® Empirical: ubiquitous underdispersion in mesoscale ensem-
ble forecasts suggests that something to approximate model
uncertainty is needed.

® Practical: as a function of the resolved state, parameteriza-
tions respond to errors in the resolved state (and thus other
parameterization schemes).

® Process: the response of the PBL to stochasticity, which
certainly exists in the real atmosphere, is not well understood.
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® [ncoming solar radiation and outgoing infrared radiation in-
teract with clouds.

e Do PBL winds, either modeled or in the real atmosphere,
react to the modulated radiation in a meaningful way?

® \What temporal and spatial scales of clouds are important?
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May-June daytime dis-
tribution IS bimodal
with a broad range of
whiteness. This results
from shallow convection
(boundary layer clouds),
and frequent longer-lived
thick clouds associated
with deep convection.



10000

8000+

Number

2000t

Hl iay-June 2002-2005 Daytime

6000

4000t

900

400 600 800 1000

The effect of the thickest
clouds (I < 250 W/m?)
removed somewhat arbi-
trarily. To model the full
effects, we need a pro-
cess to switch between
the regimes.

Direct Normal Shortwave Irradiance at the Surface (W/mzj

IMAGE TOY Workshop, Nov 2006



N/\g 5

=

3 . M | Normalized series shows

£ M M intermittency.

© 05 1

3

&

5 0 )

©

= -0.4 -

£

o

z i

g

Q-15 .

o

[¢D]

N

s -2 .

£

§ | | | | | | |

23 0.5 1 1.5 2 2.5 3 3.5

Sample « 10°

IMAGE TOY Workshop, Nov 2006



AUtocorrelaton

O'10 50 100 150 200 250 300 350 400 450 500

Lag (minutes)

IMAGE TOY Workshop, Nov 2006

1 Very slow decay with os-

cillations from lag ~ 250.
Weak to moderate auto-
correlations are evident.



-01 ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 4

Lag (minutes)

IMAGE TOY Workshop, Nov 2006

| Statistical significance is

high through about 10
lags. Results seem to
suggest that an ARMA
model is appropriate for
the part of the distribu-

| tion representing shallow

convection.



* Fit ARMA model, and find process to switch cloud regimes
regimes.

® Introduce statistical model in column system.

® Investigate response of the column to variations in the sta-
tistical model, in terms of time scale and physical mechanism.

® \What is the expected effect on PBL winds? How can we use
this to produce a forecast system that accounts for uncer-
tainty?
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e The stable (nocturnal) boundary layer is characterized by
intermittent bursts of turbulence that appear random.

® Parameterization generally handles laminar flow, and does
not account for the intermittency.

® An extra term could be added to the equations to account
for it.

Stochastic approaches have been proposed for dealing with the
stable boundary layer, but not pursued.
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® The assumptions that go into Reynolds or other averaging
techiques, are violated daily in NWP applications.

e Jtistime to re-think parameterization; statistical and stochas-
tic approaches are one viable approach.

® Relatively speaking, deep convection has received the most
attention, but the PBL is important at both NWP and cli-
mate time scales.

® | propose a column model to efficiently address some of the
challanges in PBL parameterization, but caution is necessary
to ensure results will extrapolate to the 3D problem.
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