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Topics
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The closure problem and physical parameterizations for NWPmodels.
Basic structure and dynamics of the PBL.
Some open questions in PBL parameterization and uncer-tainty in mesoscale forecasting.
A column model to emulate a full 3D mesoscale model, andexperience with it. Distinction from soil estimation for thesake of soil estimation.



Mesoscales
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Horizontal wind spectra in the frequency domain.

Vinnichenko 1970 Vander Hoven 1957



Reynolds Averaging
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Key assumption is that Reynolds averaging is valid for nu-merical weather prediction scales.
Viscous e�ects operate on scales much smaller than energeticeddies.
Break variables into mean and turbulent (mean 0) compo-nents, where the �lter length corresponds to a \spectralgap," or a minimum in energy at a particular range of scales:

 =  +  0
Find equations in the mean to solve, and parameterize theperturbation quantities, including covariance terms.



Closure

IMAGE TOY Workshop, Nov 2006

Prognostic equations for  can be written after averaging andother simpli�cations:
@ i@t = Advection+ body forcings+ @u0j 0@xj
u0j 0 = f (U; V;W; T;Q;P)

body forcings = f (U; V;W; T;Q;P)
Subgrid-scale tendencies and body forcings are typically func-tions of resolved-scale variables and parameters P.
Parameters are normally �xed values, and can be marginallyphysical.



Physical Parameterization
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Any unresolved process that can a�ect resolved variables.



Physical Parameterization
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Many cloud processes are below grid scale.



The Planetary Boundary Layer
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Strong coupling with surface; turbulence. Weak or no coupling to surface; intermittency.



The Planetary Boundary Layer
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 Local Time !
Night Day Night



Growth Through Entrainment
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Heat 
uxes from thesurface generate tur-bulent eddies thatphysically mix the airfrom aloft into thegrowing PBL.



PBL Depth
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A di�cult problem: how to parameterize the entrainmentrate? Typically some function of the surface 
uxes, withparameters.
Conservative scalars (potential temperature, moisture, pollu-tants) are generally well-mixed within the PBL.
Moisture and temperature in the PBL, and inversion strength,are key to thunderstorm prediction.



Soil Moisture

IMAGE TOY Workshop, Nov 2006

Soil moisture partitions the latent and sensible heat 
uxesthrough the surface. It can be prognostic or diagnostic.



PBL Analysis and Forecasting
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Observations in the PBL above the surface are sparse orlow-quality.
Mesoscale models rely on parameterizations, which are gen-erally de�cient, to determine the PBL.
Mesoscale models are necessary for both the analysis (dataassimilation) and forecast problems, when high spatial reso-lution is required.

Better PBL analyses can improve thunderstorm nowcasting, airquality and plume forecasting.



Column Model Environment
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A 1-D PBL modeling framework: various land-surface andPBL parameterizations, forced. Original model developmentby Mariusz Pagowski, NOAA/ESRL.
Internal dynamics for ageostrophic wind, di�usion equation,etc.
Geostrophic and radiative forcing from a mesoscale model(e.g. RUC or WRF) or observations.
Assimilation of any relevant observations. Here focus on sur-face obs: T2, Q2, U10, V10 assimilated half-hourly to getinformation about the atmospheric state.

Cheap! Thousands of realizations possible with a quick turn-around



Model Formulation
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@U
@t = f (V � Vg)� @

@zu0w0
@V
@t = �f (U � Ug)� @

@zv0w0
@�
@t = � @

@zw0�0
@Q
@t = � @

@zw0q0

Prognostic in U , V , �, and Q with parameterization providing clo-sure. Parameterization is the same as in the Weather Researchand Forecast (WRF) model.



A Parameter to Modify Soil Moisture
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An exchange coe�cient for moisture, Qc, is computed:
Qc = M�1w0q0q0 � q1

M is a moisture availability parameter f0,1g.
�1 is density at the �rst atmospheric model level.
q0 and q1 are moisture contents at the surface and the �rstatmospheric level, repsectively.
w0q0 is the parameterized kinematic moisture 
ux.

Provides a lower boundary condition (forcing) for the atmo-spheric model.



Context (opinions)
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Numerical weather prediction (NWP) is messy and at timesugly, but its success is undeniable.
An honest person will talk about parameter tuning in NWP.
Community inertia toward more complex approaches.
An alternative may be to seek simpler approaches that makeuse of objectively tunable parameters.

In many cases there is no reason to expect that parameters arestationary in time and space.



Observations to Inform the Model
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Observations are the only direct source of information aboutthe truth.
Observations and model are combined in data assimilation.
In data assimilation, observations have the potential to tell ussomething about the model, including values of parameters.



Linear Statistical Analysis Equation
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xa = xb+ K �yo � Hxb�

K = PbHT �HPbHT+ R��1

xb = xf from the previous forecast cycle (background)
H is the forward operator, relating x to yo

K weights xb versus yo and describes the covariance betweenerror at the observation sites and error on the model grid
Pb is the background error covariance matrix (unknown!)
R is the observation error covariance matrix, including instru-ment and representativeness error (unknown!)



Linear Statistical Analysis Equation
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xa = xb+ K �yo � Hxb�

K = PbHT �HPbHT+ R��1

If K is correct, this gives the best linear unbiased estimate ofthe state xa

Estimating Pb and R is the crux
Ensemble methods provide an approach: estimate Pb directlyfrom an ensemble forecast (an ensemble �lter)



An Ensemble Filter
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8

How an Ensemble Filter Works

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...

y

*
*
*
*

H H
H

y

tk+2

tk

Model Observation Increment/Update

xa = xb+ PbHT�HPbHT��1 �HPbHT� �HPbHT+ R��1 �yo � Hxb� (1)



Skill in PBL State Estimates
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Figure2: MAE profilesof
�

for theassimilationexperiments(solid)andclimatologicalsimulations
(dashed),presentedin orderof increasingtimefrom initialization(0700LT). Verificationtimesare
(a)1300LT, (b) 1900LT, (c) 0100LT, and(d) 0700LT.

32

Using only screen-height(surface) observations,skillful pro�les are es-timated at all times ofday: (a) 1PM LT, (b)7PM LT, (c) 1AM LT,and (d) 7AM LT.



State Augmentation
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Data assimilation to estimate a discrete system state Z at time t.
Z is a joint state, with both state variables and parameters.
X represents state variables.
x is a set of parameters, which may or may not be physical.

Then Z = (X;x).
Given all observations up to the current time, Yt, we want toestimate p(ZtjYt).
These experiments are to estimate parameters in a land-surfacescheme, given screen-height observations and an evolving model.



Estimate a Single Parameter

IMAGE TOY Workshop, Nov 2006

Spread and error Individual estimates Correlations

Forecast Hour Forecast Hour Forecast Hour
Single parameters (moisture availability) can be estimated whenthe true value is known.



Correlations Without Assimilation
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Correlations With Assimilation

IMAGE TOY Workshop, Nov 2006

05/03 05/04 05/05 05/06 05/07 05/08 05/09 05/10 05/11 05/12 05/13 05/14

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 Analysis Day

r(
 M

,T
2)

Estimated
Not Estimated

05/03 05/04 05/05 05/06 05/07 05/08 05/09 05/10 05/11 05/12 05/13 05/14

−0.5

0

0.5

 Analysis Day

r(
 T

H
C

,T
2)

Estimated
Not Estimated

Correlation coe�cientsof T2 with parameters
M and THC, for 100ensemble members in-tegrated for 10 days.Parameter distributionsare estimated while as-similating.Correlations change,transitions morepronounced.



Dependent Parameters
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Distribution Improves Assimilation
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Fixed, avg = 0.73046
Distributed, avg = 0.26874 Compared to single�xed parameter val-ues, distributed pa-rameters result in abetter �t to observa-tions. The e�ect isparticularly true dur-ing transitions.



Estimation Improves Assimilation
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Error in the Pro�le
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Di�erences in er-ror (estimated {�xed distribution)show the pro�le isgenerally improved,especially during thegrowth phase of thePBL.



Summary and Open Questions: Parameter Estimation
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State augmentation is a useful parameter estimation ap-proach in observation system simulation experiments (OSSEs),but is much more di�cult in real-data applications.
Much more work to do:

How can we deal with non-Gaussianity in the parameters?
Can we �nd distributions that make a better forecast in theface of other, unknown, model errors?
Can we �nd appropriate stochastic processes to propagatethe parameter distributions in time?



Motivating Stochastic Approaches in PBL Forecasting
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Theoretical: uncertainty in model parameterization is rarelyaddressed in a meaningful way.
Empirical: ubiquitous underdispersion in mesoscale ensem-ble forecasts suggests that something to approximate modeluncertainty is needed.
Practical: as a function of the resolved state, parameteriza-tions respond to errors in the resolved state (and thus otherparameterization schemes).
Process: the response of the PBL to stochasticity, whichcertainly exists in the real atmosphere, is not well understood.



Example: Radiation at the Surface
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Incoming solar radiation and outgoing infrared radiation in-teract with clouds.
Do PBL winds, either modeled or in the real atmosphere,react to the modulated radiation in a meaningful way?
What temporal and spatial scales of clouds are important?



Daytime Radiative Flux at the Surface
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May−June 2002−2005 Daytime May-June daytime dis-tribution is bimodalwith a broad range ofwhiteness. This resultsfrom shallow convection(boundary layer clouds),and frequent longer-livedthick clouds associatedwith deep convection.



Model the E�ects of Shallow Convection
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May−June 2002−2005 Daytime The e�ect of the thickestclouds (I < 250 W/m2)removed somewhat arbi-trarily. To model the fulle�ects, we need a pro-cess to switch betweenthe regimes.



Normalized Series
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Normalized series showsintermittency.



Autocorrelation
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Very slow decay with os-cillations from lag � 250.Weak to moderate auto-correlations are evident.



Partial Autocorrelation
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Statistical signi�cance ishigh through about 10lags. Results seem tosuggest that an ARMAmodel is appropriate forthe part of the distribu-tion representing shallowconvection.



Next Steps
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Fit ARMA model, and �nd process to switch cloud regimesregimes.
Introduce statistical model in column system.
Investigate response of the column to variations in the sta-tistical model, in terms of time scale and physical mechanism.

What is the expected e�ect on PBL winds? How can we usethis to produce a forecast system that accounts for uncer-tainty?



Another Potential Focus
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The stable (nocturnal) boundary layer is characterized byintermittent bursts of turbulence that appear random.
Parameterization generally handles laminar 
ow, and doesnot account for the intermittency.
An extra term could be added to the equations to accountfor it.

Stochastic approaches have been proposed for dealing with thestable boundary layer, but not pursued.



Closing Thoughts
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The assumptions that go into Reynolds or other averagingtechiques, are violated daily in NWP applications.
It is time to re-think parameterization; statistical and stochas-tic approaches are one viable approach.
Relatively speaking, deep convection has received the mostattention, but the PBL is important at both NWP and cli-mate time scales.
I propose a column model to e�ciently address some of thechallanges in PBL parameterization, but caution is necessaryto ensure results will extrapolate to the 3D problem.


