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Day 2 - Climate Talk outline 

Sources of uncertainty in climate 
predictions
Intro to climate model hierarchy
Climate System Response 
Characterizing Model uncertainty
Segue to climate science talks
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What drives uncertainty?

IPCC AR4, Chapter 10 

Uncertainty from combination of: 
Model response and forcings
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Sources of Uncertainty in 
Climate Projections

Structural & Parametric uncertainty
Forcing, Response, Internal Variability
Response time-scales, spatial-scales
How to quantify Uncertainties

Forward sensitivity runs
Inverse estimates of parameters
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Courtesy	
  of	
  Julia	
  Slingo	
  (via	
  Eric	
  Guilyardi)

What limits our ability to understand uncertainty in models?
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Climate Model Hierarchy
Simplest model = Energy Balance Model
EMIC = Earth-system model of 
Intermediate Complexity
Most complex = Earth System Model

Climate Models are designed for specific 
purposes and uncertainty analysis is 
not often one of them.
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Model Complexity: Components
Atmosphere/Ocean/Land/Ice = 
Atmosphere-Ocean General Circulation 
Model := AOGCM
Add: Atmospheric Chemistry, Carbon-
cycle, Vegetation = Earth System Model 
= ESM
Add Human/Societal dimension = 
Integrated Earth System Model = iESM
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Model Complexity: Structure

Structure:  
Reduced dimensions (3D model to 2D)
Reduce governing equations 

Conservation of energy, mass, 
moisture, momentum, angular 
momentum

Resolution
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MIT Integrated Global System Model 
(IGSM2)

Sokolov et al. (2005, JP-Report 124)

Emissions Model

Earth System Model

Output
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MIT Integrated Global System Model 
(IGSM2)
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MIT Integrated Global System Model 
(IGSM2)

Sokolov et al. (2005, JP-Report 124)
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Climate Model History

Components/Complexity
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Climate Model History

From IPCC Fourth Assessment Report
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What matters for long-term climate 
prediction?

Controls on: 
Long-term warming
Delay by ocean
Net forcing
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What matters for long-term climate 
prediction?

Controls on: 
Long-term warming
Delay by ocean
Net forcing

•Uncertainties in: 
- Climate Sensitivity
- Rate of Ocean Heat 

Uptake
- Forcing by Aerosols, 

Carbon-cycle
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Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean 
surface temperature anomaly (ΔT): 
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Consider the energy balance equation for the global-mean 
surface temperature anomaly (ΔT): 

Change in global 
mean heat content 

Future 
Forcings Net Feedbacks 

λ =  1/S
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Major Climate Projection Uncertainties

Consider the energy balance equation for the global-mean 
surface temperature anomaly (ΔT): 

Change in global 
mean heat content 

Future 
Forcings Net Feedbacks 

λ =  1/S

Flux of heat 
into deep-

ocean

Conceptually:  This is a good framework for organizing where 
the uncertainty exists.  

In practice:  For state-of-the-art models, each uncertainty is an 
aggregate quantity and cannot be identified with any one specific 

model component or process. 
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Uncertainty in Atmospheric 
Model Feedbacks

Uncertainty in Water Vapor, Cloud, 
Albedo, Lapse Rate, and All Combined
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Characterizing Model 
Uncertainty

Multi-model Ensemble (MME)
Perturbed Physics Ensemble (PPE)

(Or Perturbed Parameter Ensemble)
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Model Intercomparison 
Projects = MIPs

All modeling groups contribute model 
results for specified scenarios
Each group creates its “best” model
Samples Structural Uncertainty due to 
model development choices
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Model Intercomparison 
Projects = MIPs

Examples:  
AMIP  = Atmospheric-GCM MIP
CMIP = Coupled-AOGCM MIP 
PMIP = Paleoclimate MIP
CFMIP = Cloud Feedback MIP

CMIP1, CMIP2, CMIP3, CMIP5, ....
New models, new MIP.

Program for Climate Model Diagnostics 
and Intercomparison = PCMDI 
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Example CMIP3:   IPCC AR4, Chapter 10
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Perturbed Physics Ensembles  (PPE)
Single-model framework

Individual model parameters varied to 
adjust physics components

Samples parametric uncertainty 
leading to model response uncertainty
Focus on perturbing feedbacks in the 
climate system
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Perturbed Physics Ensembles  (PPE)
2017 Model simulations

Climate Sensitivity

414 Model simulations
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Returning to Simpler Models

Example of Uncertainty Propagation 
using the IGSM2 System
Sample uncertainty across multiple 
components
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Included Uncertainties
• Emissions Uncertainty from MIT EPPA4

• Population:  6-13 billion, Energy Resources, Efficiency/
Technology

• Climate System Response 
(Calibrated in Forest et al. 2008)

–  Climate Sensitivity
–  Rate of Heat uptake by Deep Ocean 
–  Radiative Forcing Strength of Aerosols

• Carbon Cycle Uncertainty:
–  CO2 Fertilization Effect on Ecosystem 
–  Rate of Carbon Uptake by Deep-Ocean

• Trends in Precip. Freq. on CH4 + N2O
(Statistics scaled using by AR4 model trends)
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Transient Climate Response (5, 
50, 90%):  (1.5, 1.9, 2.3K)
Thermal SLR: (4, 8,13 cm)
at time of CO2 doubling 
(1%/yr  increasing CO2 conc.)

Climate Sensitivity and Ocean 
Heat Update Consistent with 

Observations

After: Forest et al. (2008, Tellus A)
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Uncertainty in Global 
Climate Response in 2100

Global-mean, Decadal-mean, Surface Air Temperature
Based on Sokolov et al. (2009); Webster et al. (2011)
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The Uncertainty Cake
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