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• What is UQ?

• Overview of DACE – design, emulators, etc.

• Bayesian analysis of ensembles – pdfs

• ANOVA



What is UQ?
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Uncertainty Quantification: The process of quantifying uncertainties as-

sociated with model calculations of true, physical quantities of interest

(QOIs), with the goals of accounting for all sources of uncertainty and

quantifying the contributions of specific sources to the overall uncer-

tainty.

. . . “quantifying uncertainty” in a prediction for a QOI means making a

quantitative statement about the values that the QOI for the physical

system may take, often in a new, unobserved setting. The statement

could take the form of a bounding interval, a confidence interval, or

a probability distribution, perhaps accompanied by an assessment of

confidence in the statement.

- National Research Council (2012), Assessing the Reliability of Complex Models: Mathematical and
Statistical Foundations of Verification, Validation, and Uncertainty Quantification, Washington,
D.C.: The National Academies Press.
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Design and analysis of computer experiments (DACE):

• The forward problem:

– Given some input values, run the model to obtain outputs.

– Goals include exploration of input space or features of outputs,

sensitivity analysis, prediction, etc.

– Statistical issues: choice of inputs (design), propagation of un-

certainty, emulators, data assimilation, etc.

• The inverse problem:

– Given some input values, run the model to obtain outputs.

– Goals focus on finding good values of inputs based on comparing

outputs to observations.

– Statistical issues: choice of inputs (design), emulators, calibra-

tion, etc.



Design of Experiments
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Five important questions:

1. How much money (resources) do you have?

2. What do you want to know?

3. How much money (resources) do you have?

4. What do you know?

5. How much money (resources) do you have?

Goal: Given a fixed amount of resources, construct an experiment that

maximizes the amount of information that can be obtained.



Example 1: Full factorial experiment
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Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM)

• A 1-D global mean model has
been used over the years to test
parameterizations, chemistry and
dynamics.

• Outputs are a function of pressure
(focus on neutral temperature).

• A simple experiment with four fac-
tors, each at three levels: Solar
flux, joule heating, characteristic
energy, auroral production factor

• All possible combinations of each
factor were run: 3×3×3×3 = 81
total model runs.



Example 2: Space filling design
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Lyon-Fedder-Mobary (LFM) model of the magnetosphere

• LFM uses ideal magnetohydro-
dynamics (MHD) equations to
model the interaction between the
solar wind, the magnetosphere,
and the ionosphere.

• Outputs are spatial-temporal
fields (e.g., energy of electrons).

• Statistical approach to calibration
for three unknown parameters.

• A space filling design of 20 runs
was used.

(lfmres.mov)


lfmres.mov
Media File (video/quicktime)



Example 3: A fractional factorial
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North American Regional Climate Change Assessment Program (NARCCAP)

Phase I Phase II
NCEP GFDL CGCM3 HADCM3 CCSM

CRCM finished finished finished
ECP2 finished finished running
HRM3 finished finished finished
MM5I finished running finished
RCM3 finished finished finished
WRFG finished finished finished



Emulators

9

A statistical view of a computer model:

Y = f(x)

• x – model inputs (possibly multivariate and/or functional)

• Y – model outputs (possibly multivariate and/or functional)

• f – a black-box function that maps the inputs onto the outputs

An emulator is an approximation for f based on a collection of {xi,Yi}:

• regression models (i.e., multiple regression, splines, trees, etc.)

• Gaussian processes

• Neural networks and other machine learning methods

• And others...
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Gaussian process: let the random function Y (x) be a Gaussian process

if, for any finite collection of x1, . . . ,xn, the vector (y(x1), . . . , y(xn))′ has

a multivariate normal distribution.

• Must have a mean function (e.g., µ(x) = x′β) and a (stationary,

isotropic) covariance function (e.g., Matérn)

From the assumption of a Gaussian process, the joint distribution of

model output at the observed model inputs and a new x0 is given by(
Y

y(x0)

)
∼ N

((
µ

µ(x0)

)
,

(
Σ c
c′ σ2

))
.

and the emulator (f̂) is then a conditional Gaussian distribution with

mean and variance

E[y(x0)|Y] = µ(x0) + c′Σ−1(Y − µ)

Var[y(x0)|Y] = σ2 − c′Σ−1c



Building an emulator: A case study
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TIEGCM Neutral Temperature

Given 80 runs, can we pre-

dict the output for the 81st?



A Simple Model

12

• Expand each curve as a linear combination of basis functions:

fi(x) =
∑
k

βikφk(x)

where

– {φk} are known, fixed functions

– {βik} are coefficients related to the ith factor-level combination.



EOFs
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• Q: How to choose the basis functions?

• A: Empirical orthogonal functions (principal components)!

• Let Y denote the 97× 80 data matrix and write

Y = UDV ′ =
∑
i

diuiv
′
i

– 80 factor-level combinations and 97 pressure levels

• Choose the first few dominate empirical orthogonal functions (diui, i =

1, . . . ,m) and parameterize the coefficients (vi, i = 1, . . . ,m) through

the experimental conditions.



EOFs – Singular Values
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• Almost all of the vari-

ation is summarized

in the first 1 or 2 prin-

cipal components.



EOFs
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The statistical emulator
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

Y1
Y2
Y3
Y4
Y5
Y6
...
Y80


=





1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0

...
1 0 1 0 1 0 1 0 1


⊗ Z




β0
β1
...
β8

+



ε1
ε2
ε3
ε4
ε5
ε6
...
ε80


• Yi is a 97-vector

• Z is a 97× 2 matrix containing the EOFs

• βi is a 2-vector
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• Additive model (no interactions):

– All main effects “significant”

– 1st/2nd EOF: solar flux most important, followed by joule heat-

ing, characteristic energy, and auroral production factor

• Second-order interactions:

– First EOF

∗ All main effects important

∗ Solar flux/joule heating and characteristic energy/auroral pro-

duction factor

– Second EOF

∗ Characteristic energy not as important

∗ Solar flux/joule heating and characteristic energy/auroral pro-

duction factor



Estimated Coefficients
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Estimated Coefficients
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Cross-validation
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The Mystery Run
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The Bayesian Paradigm
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Postulate a model (pdf) for data that depends on some parameters:

Y1, . . . , Yn ∼ π(Y1, . . . , Yn|θ).

⇒ This forms the likelihood.

Postulate a model (pdf) for the parameters:

θ ∼ π(θ)

⇒ This forms the prior.

Inference follows by examining the posterior distribution:

π(θ|Y1, . . . , Yn) ∝ π(Y1, . . . , Yn|θ)π(θ)

posterior ∝ likelihood× prior

⇒ From Bayes’ Theorem.



A Simple Model
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Y1, . . . , Yn ∼ N
(
µ, σ2

)

µ|σ2 ∼ N
(
µ0, σ

2/κ0

)
σ2 ∼ Inv− χ2

(
ν0, σ

2
0

)
Posterior distribution for µ:

p (µ|Y1, . . . , Yn) = tνn
(
µn, σ

2
n, κn

)

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
Ȳ

κn = κ0 + n

νn = ν0 + n

νnσ
2
n = ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n

(
Ȳ − µ0

)2



A Simple Model
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Y1, . . . , Yn ∼ N
(
µ, σ2

)

µ|σ2 ∼ N
(
µ0, σ

2/κ0

)
σ2 ∼ Inv− χ2

(
ν0, σ

2
0

)
Posterior predictive distribution:

1. Sample σ2|{Yi} from Inv− χ2
(
νn, σ2

n

)
.

2. Sample µ|σ2, {Yi} from N
(
µn, σ2/κn

)
.

3. Sample Y ∗ from N
(
µ, σ2

)
.



Hierarchical Models
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• A common approach involves a three-level hierarchy:

Data model: [data|process, parameters]
Process model: [process|parameters]

Prior model: [parameters]

• Simplifies the problem by factoring a complicated distribution into

a series of conditional distributions.

– http://oneredpaperclip.blogspot.com/

• Inference involves sampling the posterior distribution:

[process, parameters|data] ∝
[data|process, parameters][process|parameters][parameters]



Model weighting and pdfs
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Data model:

X0 ∼ N
(
µ, λ−1

0

)
Xj ∼ N

(
µ, λ−1

j

)
Yj ∼ N

(
ν,
(
θλj

)−1
)

• X0 indicates an observed climate

• Xj, Yj indicates model output for the current/future time period.

• µ is current mean temperature, ν is future temperature

• λj are precision (inverse variance) parameters.

• θ allows the climate model variance to change between time periods.
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Turning the Bayesian crank gives inference on ∆ = ν − µ



Analyzing ensembles: ANOVA
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Analysis of variance (ANOVA) is a classical statistical technique for

quantifying the impact of known experimental factors (inputs) on the

output of an experiment.

North American Regional Climate Change Assessment Program (NARCCAP)

Phase I Phase II
NCEP GFDL CGCM3 HADCM3 CCSM

CRCM finished finished finished
ECP2 finished finished running
HRM3 finished finished finished
MM5I finished running finished
RCM3 finished finished finished
WRFG finished finished finished

What is the relative contribution of the GCM versus the RCM in the

NARCCAP experiment?
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Northern Rockies...

GFDL CGCM3 HADCM3 CCSM
CRCM 2.66 3.51 3.09
ECP2 1.59 ???? 1.59
HRM3 3.99 3.44 3.72
MM5I ???? 2.15 2.15
RCM3 2.75 2.70 2.72
WRFG 1.74 2.30 2.02

2.78 2.37 3.44 2.65 2.68

• Is there greater variability across rows or columns?

• How well does a model that suggest something systematic across

rows and/or columns actually fit?
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Consider a random effects ANOVA model:

Yij = µ+ RCMi + GCMj + εij

where

• Var[RCMi] = σ2
RCM, Var[GCMj] = σ2

GCM

• Var[εij] = σ2

• Cov[Yij, Yik] = σ2
RCM – shares an RCM

• Cov[Yij, Ykj] = σ2
GCM – shares a GCM
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Some issues
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• Fixed effects, random effects, Bayesian...

• Spatial and spatial-temporal dependence...

• Multiple testing...

• Non-Gaussian models...



Questions?
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Many opportunities for visits and

collaboration: ASP, RSVP, SIParCS,

GSP, IMAGe, TOY,...

Climate Informatics Workshop,

9/20-21; CIDU, 10/24-26; SAMSI

Massive Data, spring 2013.

ssain@ucar.edu

http://www.image.ucar.edu/∼ssain

Thank You!


