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Decision Center for a Desert City I

Background:

» NSF’s Decision Making Under Uncertainty (DMUU) Initiative

» Reframe climate change question to focus on decision making
» Create “what if” scenarios under conditions of policy change
» Boundary organization
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Water is life.

And water security - both quality
and quantity - is one of the most
critical issues facing our planet.




Today's Presentation

» Integrated modeling for decision support
+ WaterSim 1.0-5.0
* Process more than a product

» Approaches for dealing with uncertainty—
sensitivity analysis, scenario planning,
consultation and deliberation

» Research outputs

» Stakeholder engagement—what we
learned from decision makers



BOX 2.1. Examples of Sources of I_.Tnc.ertaint},'m

Problems with Data
* Missing components or errors in the data
* “Noise” in the data associated with biased or incomplete observations

* Random sampling error and biases (nonrepresentativeness) in a sample

Problems with Models

* Known processes but unknown functional relationships or errors in the struc-
ture of the model
Known structure but unknown or erroneous values of some important param-
eters

Known historical data and model structure but reasons to believe that the
parameters or model structure will change over time

Uncertainty about the predictability (e.g., chaotic or stochastic behavior) of the
system or effect

Uncertainties introduced by approximation techniques used to solve a set of
equations that characterize the model

Other Sources of Uncertainty
Ambiguously defined concepts and terminology
[nappropriate spatial or temporal units
Inappropriateness or lack of confidence in underlying assumptions

Uncertainty caused by projections of human behavior (e.g., future consump-
tion patterns or technological change), which is distinct from uncertainty from
“natural” sources (e.g., climate sensitivity, chaos)

S. H. Schneider and Kristin Kuntz-Duriseti. 2002. Uncertainty and climate change policy. Ciimate Change Policy: A Survey.
S. H Schneider, A. Rosencrantz, and J.0. Niles (eds). Island Press.



Other Sources of Uncertainty

» Designation of endangered species

» Legal designations of Native American
water rights

» Political forces
» Population and economic growth

» Enforcement of AZ Groundwater
Management Act

» Decisions by neighboring communities




Uncertainties in human systems

Phoenix, Arizona Metropolitan Area House Prices

$350,000

Inflation-adjusted house prices

Nominal house prices

$300,000

$250,000

$200,000

$150,000

i---lilllllll




Uncertainties in human systems
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Stationarity Assumption

Annual Flows on Salt/Verde River System

e Total Flow

n

maf/year

Source: USGS Stream Gages for Salt, Verde, and Tonto stations, 1946-2009



Infrastructure and Operations
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Low-frequency variability and persistent periods of low flow

Colorado River at Lees Ferry, AD 762 - 2002
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25-yr running means of reconstructed and observed annual flow of the

Colorado River at Lees Ferry, expressed as percentage of the 1906-2004
observed mean (Meko et al. 2007).



AL/SK FLOWS (1928-2000)

Annual Flows on Saskatchewan River at AL/SK
Border (1928-2000)
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Uncertainty IS growing.
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‘More knowledge, LLess
Certainty”

More knowledge, less certainty
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Problems of “Deep
Uncertainty”

» Parties cannot agree upon:

* The fundamental driving forces that
will shape the future and/or the
models that describe them

*The probabillity distributions used to
represent uncertainty and key
variables and parameters

*How to value alternative outcomes
(gains or losses?)



New Questions for Problems of
Deep Uncertainty

» What kind of future do we want and what decisions do
we need to make to get there?

» What is the range of how the future might look and how
do we avoid regrettable outcomes?

» “What if-ing” What are the consequences of particular
decisions in a complex system?
¢+ |nflection points
+ Critical feedbacks (water-energy nexus)

» What policies work best across a range of climate
futures?

» What are the costs of delaying decisions?

» What are the tradeoffs between these costs and the risk
of making expenditures that are not necessary?



WaterSim 4.0
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Trace effects on WaterSim
results
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Trace Analysis--Colorado
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WaterSim in Decision Theater




Implications of Climate on Watershed

Change in Colorado Runoff Under Model/Scenario Combinations
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Policy Tradeoffs
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Water use increases with urban
densities.

® \Water duty
— Log (water duty)
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Sensitivity Analysis
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Gober, P. and Kirkwood, C. W. 2010. Vulnerabillity
assessment of climate-induced water shortage in Phoenix,
PNAS, 107(50).

Colorado River (% historical flow)

Vulnerability assessment of climate-induced water

shortage in Phoenix

Patricia Gober™>*' and Cralg W. Kirkwood®
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Global warming has profound consequences for the climate of the
American Southwest and its overallocated water supplies. This
paper uses simulation modeling and the principles of deciion

under uncertainty to translate dimate information into
‘toods for vulnerability assessment and urban dimate adaptation. A
dynamic smulation model, WaterSim, is tsed to explore future
water-shortage conditions in Phoenbt. Results indicate that policy
action will be needed to attain water sustsirability in 2030, even
without reductions in river flows caused by climate change.
Challenging but feasible changes in Efestyle and dower rates of
population growth would allow the region to avold shartage
conditions and achieve groundwater sustainability under all but
the most dire dimate scnarios. Changes in ifestyle invaive more
native desert landscaping and fewer pods in addition to slower
growth and higher urban densities. There & not a singe most
Tikely or optimal future for Phoenbi. Urban dimate adaptation
involves using sciencebased modls to antidpate water shartage
and manage climate sk
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Business as usual vs. slow growth, high
density, desert landscaping, and no pools.

Colorado River (% historical flow)
65 70 75 80 85 90 95 100 105 110 115

Salt/\Verde Rivers (% historical flow)
N
o

-30
-28
27
26
25
2
7
21
20
-19
18
A7
16
15
14
13
12
=11
11
-10

-
o
o

B
=
o
G
©
2
P
L
Qa
=
2
o
(3]
=
x
Q
B
2
©
3 120

Net cumulative change in groundwater

B - -30TCM

-30to <-6 TCM
-6to<6TCM

B 6 TCM or greater

TCM = thousand cubic meters




Robust Policy Decisions
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Problems of Aggregation
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Can we manipulate growth and
consumption to reduce risk?

» Steer growth in favor of surplus districts
¢+ Who are the winners and losers?
* What is the redistributed pattern of growth?
+ How many people need to be redistributed?

» Reduce consumption to retain growth pattern
¢+ Where? How severe?

» Trigger outmigration at low GPCD (<120 GPCD)

¢+ How much growth is redistributed under varying
climate change conditions?

¢+ How soon do districts transition from growth to no-
growth futures?



D. D. White, E. A. Corley, and M. S. White (2008) \Water managers’
perceptions of the science-policy interface in Phoenix, Arizona. Society
and Natural Resources 21:230-245.
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The Decision Center for a Desert City operates as a boundary organization to faclitate

boundary-ordering devices and processes to stabilize negotiations between saentific and policy

spheres. Uncertanty discourse pervades the boundary space and is embraced as a framework
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Uncertainty was described as' ‘the nature of the beast,” “always present,” and “the
whole reason we exist.”



Larson et al. 2009. Divergent perspectives on water
resource sustainability in a public-policy-science context.
Environmental Science & Policy 12(7):1012-1023.
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Stakeholder Priorities for SRB

Major Concerns Priority

Water Quality

Water Governance

Water Quantity

Land-use Management

Competing Demands

Drought

Long-term climate change

Flooding




Crona, B.l. and Parker, J.N. 2011. Network determinants of knowledge
utilization: Preliminary lessons from a boundary organization. Science
Communication published online on 11 October 2011: DOI:
10.1177/1075547011408116.

Policy makers with more direct contacts with researchers are more likely to
utilize research. Policy makers interacting more with other policy makers
regarding research are also more likely to utilize it. This indicates the
Importance of policy makers’ in social networks and the importance of external
reputation of boundary organizations for successful knowledge transfer.
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