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[1] This study examines the temporal variability of ocean heat uptake in observations and
in climate models. Previous work suggests that coupled Atmosphere-Ocean General
Circulation Models (A-OGCMs) may have underestimated the observed natural variability
of ocean heat content, particularly on decadal and longer timescales. To address this issue,
we rely on observed estimates of heat content from the 2004 World Ocean Atlas (available
at http://www.nodc.noaa.gov/OC5/indprod.html, hereinafter referred to as WOA-2004)
compiled by Levitus et al., 2005. Given information about the distribution of observations
in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling
that Levitus et al. use to produce the spatially complete temperature fields required to
compute heat content variations. We first show that in ocean basins with limited
observational coverage, there are important differences between ocean temperature
variability estimated from observed and infilled portions of the basin. We then employ
data from control simulations performed with eight different A-OGCMs as a test bed for
studying the effects of sparse, space-varying and time-varying observational coverage.
Subsampling model data with actual observational coverage has a large impact on the
inferred temperature variability in the top 300 and 3000 m of the ocean. This arises from
changes in both sampling depth and in the geographical areas sampled. Our results
illustrate that subsampling model data at the locations of available observations increases
the variability, reducing the discrepancy between models and observations.
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1. Introduction

[2] Increases in observed ocean heat content over the
second half of the 20th century were first reported by
Levitus et al. [2000]. The World Ocean Atlas was compiled
and released by Levitus and colleagues in 2000 and facil-
itated the first systematic comparisons between modeled
and observed ocean heat content changes. Prior to that time,
most of the formal detection and attribution studies seeking
to identify human effects on climate had focused on temper-
atures near the Earth’s surface. The availability of the 2000
World Ocean Atlas (hereinafter referred to as WOA-2000)
allowed climate scientists to perform detection and attribu-
tion work with temperature changes in the global ocean.
This provided a useful consistency check on model esti-
mates of ocean heat uptake, as well as on detection and
attribution results that had been obtained previously with
atmospheric variables (see Mitchell et al. [2001] for a
review).

[3] The first ocean detection studies were by Barnett et
al. [2001] and Levitus et al. [2001]. Barnett et al. analyzed
output from the Parallel Climate Model (PCM; Washington
et al. [2000]) and showed that the PCM ‘‘fingerprint’’ of
ocean heat content changes in response to increases in well-
mixed greenhouse gases (GHGs) was statistically identifi-
able in the WOA-2000 data. Similar conclusions were
reached by Levitus et al. [2001] and Reichert et al.
[2002], using A-OGCMs developed at the Geophysical
Fluid Dynamics Laboratory (GFDL-R30) and at the Max-
Planck Institute for Meteorology (ECHAM4/OPYC3). In
both A-OGCMs, it was found that observed ocean heat
content changes could be successfully reproduced, but only
by including anthropogenic forcing. Levitus et al. [2001]
also noted that the observed ocean heat content changes
were far larger than those in other components of the Earth’s
heat budget.
[4] The availability of observed estimates of ocean

heat content changes provides an important constraint on
A-OGCM simulations of late 20th century climate change.
Ocean heat content data from WOA-2000 are now used
routinely to constrain estimates of climate sensitivity [e.g.,
Forest et al., 2000; Gregory et al., 2002] and to evaluate the
fidelity with which models simulate the secular changes and
variability in ocean heat content [Hansen et al., 2002; Sun

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, C05019, doi:10.1029/2005JC003136, 2006

1Program For Climate Model Diagnosis and Intercomparison, Lawrence
Livermore National Laboratory, Livermore, California, USA.

2Scripps Institution of Oceanography, La Jolla, California, USA.
3National Center for Atmospheric Research, Boulder, Colorado, USA.

Copyright 2006 by the American Geophysical Union.
0148-0227/06/2005JC003136$09.00

C05019 1 of 20



and Hansen, 2003; Gent and Danabasoglu, 2004; Gregory
et al., 2004; Gent et al., 2006; Hansen et al., 2005].
[5] Most models used in the above-mentioned studies

successfully capture the long-term trends in observed ocean
heat content, but have not been able to reproduce the
observed variability on interannual to decadal timescales.
For the uppermost 300 m of the global ocean, Levitus et al.
[2000] found interannual variability in heat content of the
order of 3 � 1022J, which corresponds to a volume–mean
temperature change of 0.075�C. Between the mid-1970s
and mid-1980s, the WOA-2000 data indicate a decrease in
the heat content of the 0–300 m layer of nearly 6 � 1022J,
corresponding to a volume-mean temperature decrease of
ca. 0.15�C. Over the same period, the heat content of the 0–
3000 m layer decreases by 7.5 � 1022J.
[6] Ocean heat content changes are considerably less

variable in most models. Part of this difference is related
to the neglect of volcanic forcing in certain model runs (e.g.,
in Barnett et al. [2001] and Reichert et al. [2002]). There is
evidence from WOA-2000 of some synchronicity in the
timing of explosive volcanic eruptions and global-scale
decreases in ocean heat content. The variability of ocean
heat content is slightly enhanced in model climate change
experiments that incorporate some representation of volca-
nic forcing. However, inclusion of volcanic effects and solar
irradiance changes cannot reconcile modeled and observed
variability differences [Levitus et al., 2001; Hansen et al.,
2002]. This discrepancy has raised questions [Hegerl and
Bindoff, 2005] about the reliability of model-based esti-
mates of natural variability, which are a key component of
detection and attribution studies. The results of such work
could be biased if current A-OGCMs significantly under-
estimated the unforced variability of ocean heat content.
[7] It is therefore important to evaluate how well current

climate models simulate forced and unforced ocean heat
content changes. Assessing the reliability of model simu-
lations requires an understanding of uncertainties in both
climate models and in the observations themselves [Santer
et al., 2003]. A key question here is whether estimates of
observed ocean heat content variability are significantly
affected by the way in which ocean temperatures have been
sampled. In the present study, we investigate whether the
variability differences between models and data are partly
related to sparse coverage of ocean observations, systematic
changes in the depth and geographical location of observa-
tions, and the infilling methods used to generate spatially
complete temperature fields.
[8] Our analysis considers commonly used measures of

heat content, integrated over two different depths (the top
300 and 3000 m of the ocean). The observational data that
we use are from a new and updated version of the World
Ocean Atlas (available at http://www.nodc.noaa.gov/OC5/
indprod.html, hereinafter referred to as WOA-2004) recently
released by Levitus et al., 2005. This new data set includes
observations not available at the time of the earlier release
of WOA-2000. Relative to WOA-2000, the updated heat
content time series show smaller increases in ocean heat
content in the late 1990s. The heat content variability on
interannual to interdecadal timescales is very similar to the
variability in WOA-2000.
[9] Alternate estimates of the time evolution of ocean

heat content are available. Examples include the indepen-

dent observational analysis of Ishii et al. [2003] and the
ocean reanalysis products of Carton et al. [2000a, 2000b]
and Stammer et al. [2002, 2003], which employ ocean
models to assimilate in situ data. We rely here on the
WOA-2004 data, which remains our best source of infor-
mation on long-term ocean climate change and the data set
that is most frequently used to evaluate models.
[10] Section 2 provides a brief introduction to the ob-

served estimates of heat content. We examine the observa-
tions and their implied variability in detail in section 3.
Section 4 uses a suite of A-OGCMs to assess the effect of
incomplete observational coverage on the simulated vari-
ability of ocean temperatures. We present some conclusions
in section 5 and address the possible implications of our
work for climate model evaluation and for climate change
detection studies.

2. Background

[11] The world ocean has been poorly observed, with
systematic variations in coverage over space and time. The
Northern Hemisphere (NH) oceans are generally better
observed than the Southern Hemisphere (SH) oceans, since
most observations are concentrated along NH commercial
shipping routes. The number of observations is low in the
early part of the record (1950s), reaches maximum values in
the 1980s and 1990s, and declines slightly in the past few
years, because not all recent observations have been incor-
porated into the database. In tandem with changes in the
geographical coverage of ocean measurements, advances in
instrumentation and the expansion of monitoring programs
have systematically improved our ability to monitor tem-
perature changes in deeper portions of the ocean.
[12] Ocean heat content (HC) is calculated from temper-

ature data using the relation

HC ¼ Cp � r� T � V ð1Þ

where Cp is the specific heat of seawater at constant
pressure, r is the density of seawater, and T and V are ocean
temperature and volume, respectively.
[13] In order to compute changes in HC over time,

temperature must be measured over the entire volume of
the ocean. If this condition is not fulfilled, temperatures
must be estimated in the ‘‘unobserved’’ portions of the
ocean. In both WOA-2000 and WOA-2004, infilling was
performed with an objective analysis technique [Stephens et
al., 2002]. The heat content calculations are therefore
dependent on the coverage and representativeness of the
observations and on the reliability of the analysis technique
used for infilling.
[14] Recent work by Gregory et al. [2004] suggests that

sparse, time-varying data coverage in several ocean basins
contributes to the apparent mismatch in ocean heat content
variability between the HadCM3 A-OGCM [Gordon et al.,
2000] and WOA-2000. To study coverage effects, Gregory
et al. relied on the raw observations available in the World
Ocean Database (WOD-1998; Levitus et al. [1998]) and
interpolated these onto the HadCM3 Ocean grid (nominally
1.25� latitude � 1.25� longitude and 20 vertical levels).
They then subsampled a HadCM3 simulation of 20th
century climate change (driven by combined anthropogenic
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and natural forcings) at model grid points corresponding to
the locations of actual observations.
[15] An innovative aspect of the Gregory et al. [2004]

investigation was their use of two different methods to infill
the model results in ocean areas and levels with no
observations. The first method assumed that for each ocean
model layer, the average model temperature anomaly of the
‘‘observed’’ portion of the layer was representative of the
average anomaly of the entire layer. The second method
simply assumed zero temperature anomaly in the ‘‘unob-
served’’ portion of each ocean model layer. These two
methods (which are identical when data coverage is com-
plete) help to quantify the possible effects of incomplete
coverage on observed estimates of ocean heat content
changes.
[16] In the relatively well observed top 360 m of the NH

oceans (between 0�–65�N), Gregory et al. [2004] found
that the variability in ocean heat content was comparable in
WOD-1998 and HadCM3. In this region, the observed and
simulated changes in heat content anomalies (calculated
using the two infilling strategies described above) were
virtually identical after ca. 1970. Over the more sparsely
observed 0–3000 m layer of the global ocean (between
65�N–65�S), there were large differences between the heat
content anomalies in the model and in observations, even
after 1970. The vertical structure of ocean temperature
variability was also different. Subsampling the model data
enhanced the subsurface variability, pointing toward sparse
data coverage as a contributory factor to the model data
variability discrepancies.
[17] Gregory et al. [2004] concluded that analysts must

be cognizant of such data coverage differences and exercise
caution in using the WOA-2000 observational estimates to
assess the fidelity with which A-OGCMs simulate heat
content changes. In a followup study, Allison [2004] com-
pared the Levitus et al. [2000] heat content data to results
from the ENACT project (Enhanced ocean data Assimila-
tion and Climate prediction), which applied data assimila-
tion techniques to generate spatially complete ocean
temperature fields. The global-scale heat content variability
in WOA-2000 and ENACT was similar, except for the
subsurface variability maximum at 500 m depth in the
former, which was absent in ENACT. Allison [2004]
also examined a climate change experiment performed
with a high-resolution OGCM (HadCEM, with a 40-level,
1/3� latitude � 1/3� longitude eddy-permitting ocean
model). The variability of ocean heat content in HadCEM
was higher than in HadCM3, suggesting that model resolu-
tion may also contribute to model-observed variability
differences.

3. Observed Data

3.1. Data Sources

[18] WOA-2004 is a gridded data set available on a
regular 1� latitude � 1� longitude grid at 33 standard levels.
Data are provided as annual, seasonal, and monthly clima-
tologies calculated for the 1957–1990 period and as anoma-
lies from this climatology. For the upper 700 m of the ocean
(16 standard levels), anomalies are in the form of annual
means for the 49-year period 1955–2003. Over the top
3000 m of the oceans (28 standard levels), running 5-year

mean anomalies are provided for the 40 overlapping pentads
between 1955–1998.
[19] WOA-2004 is based on many millions of tempera-

ture observations that have been made with a variety of
different instruments over the 1955–2003 time period.
These observations have been collected in the World Ocean
Database (WOD). Raw observations in the WOD are
quality controlled and binned into grid cells. The arithmetic
means of individual grid cells are then objectively analyzed
to fill in grid cells that do not contain data. The infilling
method employs both climatological mean information and
temperatures from a ‘‘region of influence’’ around grid cells
with missing data. The quality control procedures and
analysis method are described in detail in Stephens et al.
[2002].
[20] In the present study, we employ the ‘‘dd’’ (data

distribution) field reported in the World Ocean Atlas. For
each year or pentad, grid cells with dd values � 1 (i.e., with
at least one observation in the grid cell) were used to define
the observed data coverage mask. This focuses attention on
areas of the ocean that are actually observed. The coverage
mask varies in time and space (latitude, longitude and
depth).

3.2. Description of Observed Coverage Changes

[21] To investigate the effect of observed coverage
changes, we consider (at each time and grid point) the
standard levels from the surface down to the depth of
interest (300 and 3000 m in our case) and sum the thickness
associated with each standard level if at least one observa-
tion exists at that level. Levels with no observations are
skipped. The levels and their thicknesses in this summation
are the same as the standard levels used in the heat content
calculations of Levitus et al. [2005]. The results provide a
measure of the column of water represented by observa-
tions. Figure 1 shows this effective depth of coverage for
four individual years: 1964, 1974, 1984, and 1994 (years
10, 20, 30, and 40 of WOA-2004).
[22] Figure 1 (left) is derived from annual mean data for

the top 300 m of the ocean. Figure 1 (right) is based on
pentadal mean data (centered on 1964, 1974, etc.) for the
0–3000 m range and provide information on the effective
depth of coverage over a much larger volume of the ocean.
The larger spatial extent for data in the 3000 m range is a
result of using pentadal means, for which the dd � 1
criterion is more easily fulfilled.
[23] Results for both depth ranges show systematic

changes in the areal extent and depth of ocean temperature
observations. The extent of observational coverage has
increased over time. Even in 1994, however, there is sparse
coverage of the Arctic and Southern Oceans. The mean
depth of coverage for the 0–300 m layer increased from
226 m in 1964 to 286 m in 1994. For the 0–3000 m layer,
the bulk of the measurements of deeper portions of the
ocean are restricted to the North Atlantic and (in recent
decades) to individual transects in the North Pacific and
South Atlantic. The effective depth of coverage increased
from 763 to 1277 m over this 40-year period.
[24] To provide a more detailed picture of data coverage

changes in the upper layers of the ocean, we use the dd
criterion to compute (separately for each ocean basin and
each depth level from 0 to 300 m) the fractional volume of
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each basin and level that is observed. The time evolution of
these coverage changes is shown in Figure 2. In the first
decade of the WOA-2004 data set, the coverage in less than
20% in most basins and layers. Coverage is systematically
higher in the NH ocean basins, increasing to maximum
values of 60–70% in North Atlantic and North Pacific in
the 1980s and then declining to ca. 50% in the last decade.
Data coverage in the SH ocean basins never exceeds 40%

and is often substantially less than this. One curious feature
of the Indian Ocean results (both NH and SH) is that
biennial measurement campaigns are clearly identifiable in
the spatially averaged coverage data.
[25] Figure 2 also illustrates the systematic increase in the

effective depth of coverage in each ocean basin. This is
largely due to the introduction of expendable bathythermo-
graphs (XBTs) in the 1970s. These large, nonrandom

Figure 1. Changes over time in the effective depth (in meters) represented by observations in
WOA-2004. (left) Years 1964, 1974, 1984, and 1994 for the top 300 m. (right) Effective depth of
coverage for the top 3000 m for pentads centered on the same 4 years. Note the different color
scales used for the two depth ranges.
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changes in the vertical and areal extent of observational
coverage suggest that estimates of the mean changes and
variability in global-scale ocean heat content may be sen-
sitive to details of the selected infilling method.

3.3. Estimating Effects of Observed Coverage Changes
and Infilling

[26] To address this issue, we partition the WOA-2004
temperature data into ‘‘observed’’ and ‘‘infilled’’ subsets,
with the former defined by the ‘‘dd’’ criterion. The total heat
content is a linear combination of the heat content in these
two subsets, weighted by the volume fractions of each
subset. Because the coverage varies with time, the fractional
weights also change over time:

TNet tð Þ ¼ To tð Þ � fo tð Þ þ Ti tð Þ � fi tð Þ ð2Þ

where To and Ti are the mean temperatures over the
‘‘observed’’ and ‘‘infilled’’ volumes, respectively, at time t
and the weights fo(t) + fi(t) = 1.
[27] Figure 3 shows values of TNet(t), To(t), and Ti(t) for

the top 300 m of various ocean basins. Values of fo(t) are
also plotted. The latter help to highlight the systematically
lower observational coverage in the SH and the large
coverage changes over time (see Figure 2). Apart from
the increased coverage in NH basins from the mid-1970s to
the mid-1990s, the ‘‘observed’’ fraction of the upper ocean
has been consistently less than 50% and is close to zero in
SH basins at the beginning of the WOA-2004 record. TNet(t)
is therefore strongly influenced by the behavior of Ti(t), and
time series of TNet(t) and Ti(t) are virtually superposed for
the SH ocean basins. In contrast, To(t) is noticeably different
from TNet(t) in SH oceans, particularly when fo(t) is very
small in the 1950s. The better observed NH basins show
much closer agreement between the TNet(t) and To(t) time
series, particularly during times of maximum coverage.
[28] Table 1 summarizes some of the key statistical

properties of these time series. As noted previously, the
best observed basins are the North Atlantic and North
Pacific, with time-mean coverage of 49 and 52%, respec-
tively, and maximum coverage of 67 and 76%. The tempo-

Table 1. Summary Statistics for WOA-2004 Volume–Mean Temperature Change Over the Top 300 ma

Basin

Fractional
Volume
Coverage

Volume Mean Temperature Change

Standard
Deviation
(Detrended
Series)

Linear Trend
(Standard Error)

�10�3 �C per year.
Lag 1

Autocorrelation

Max Min Mean Net Obs. Net Obs. Net Obs.

1 2 3 4 5 6 7 8 9 10

S. Atlantic 0.33 0.01 0.18 0.09 0.14 0.415 (±0.050) 0.626 (±0.136) 0.61 0.75
N. Atlantic 0.67 0.21 0.49 0.12 0.13 0.604 (±0.118) 0.660 (±0.162) 0.87 0.90
ATLANTIC OCEAN 0.47 0.12 0.35 0.09 0.12 0.517 (±0.057) 0.630 (±0.102) 0.84 0.89
S. Indian 0.27 0.01 0.16 0.08 0.11 0.266 (±0.107) 0.370 (±0.094) 0.67 0.38
N. Indian 0.67 0.03 0.42 0.11 0.14 0.229 (±0.110) 0.428 (±0.140) 0.37 0.45
INDIAN OCEAN 0.32 0.01 0.20 0.07 0.09 0.261 (±0.093) 0.358 (±0.083) 0.66 0.55
S. Pacific 0.35 0.04 0.20 0.08 0.12 0.224 (±0.076) 0.312 (±0.150) 0.36 0.55
N. Pacific 0.76 0.23 0.52 0.07 0.08 0.179* (±0.105) 0.153* (±0.138) 0.62 0.65
PACIFIC OCEAN 0.53 0.15 0.34 0.06 0.07 0.204 (±0.085) 0.192* (±0.146) 0.65 0.77
S. Hemisphere 0.30 0.03 0.19 0.06 0.10 0.279 (±0.060) 0.399 (±0.098) 0.69 0.68
N. Hemisphere 0.70 0.22 0.50 0.08 0.09 0.338 (±0.090) 0.360 (±0.150) 0.79 0.85
WORLD OCEAN 0.46 0.12 0.31 0.06 0.07 0.304 (±0.071) 0.349 (±0.111) 0.84 0.86

aAsterisks denote trends that are not significantly different from zero at the 5% level. Standard errors (adjusted using the lag-1 autocorrelation of
regression residuals, as in Santer et al. [2000b]) are shown in parentheses.

Figure 4. Temporal autocorrelation as a function of lag
(from 0 to 16 years) for volume–mean temperature changes
in the top 300 m of the (a) South Indian Ocean and (b) North
Atlantic Ocean. Results are for TNet(t), To(t), and Ti(t) (see
section 3.3).
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ral standard deviation of TNet(t) is consistently smaller than
that of To(t) in all ocean basins considered. Similarly, the
linear trend in TNet(t) over 1955–2003 is smaller than the
trend in To(t) (in 10 of 12 cases). Such differences must be
related to the infilling of large volumes of the ocean with
zero anomalies, which tends to damp the positive trends in
To(t).
[29] In terms of both trends and temporal standard devia-

tions, the differences between TNet(t) and To(t) tend to be
largest for poorly observed ocean basins. This implies that
for these portions of the ocean, infilling can noticeably alter
the overall changes and temporal variability of the To(t)
data.
[30] Differences in r1, the lag-1 temporal autocorrelation

of the TNet(t) and To(t) anomaly data, are also largest in
basins with sparse observational coverage (Table 1). This is
particularly evident for the South Indian Ocean, where r1 =
0.67 for TNet(t) and r1 = 0.38 for To(t). The r values for the
South Indian Ocean TNet(t) data are systematically higher
than those of To(t) out to lag 7 (see Figure 4a) and
systematically lower than those of To(t) from lags 9 to 16.
For this ocean basin, the temporal autocorrelation structure
of TNet(t) is dominated by temperature changes in infilled
rather than in observed areas. In contrast, in a well-observed
basin like the North Atlantic (Figure 4b), the temporal
autocorrelation structure of TNet(t) is largely driven by
temperature changes in To(t).
[31] In summary, the results presented in this section

suggest that infilling can have a nonnegligible effect on
basic statistical properties of the TNet(t) time series, partic-
ularly for poorly observed basins. Our focus has been on the
top 300 m of the oceans, for which data coverage is
considerably higher than in the deep ocean. The TNet(t)
versus To(t) differences identified for the upper ocean are
therefore likely to be larger and more serious for the 0–
3000 m layer.

4. Simulated Variability of Ocean Temperatures

4.1. Model Data

[32] Climate models with spatially complete data provide
a useful test bed for exploring the effects of changing
observational coverage [Santer et al., 2000a; Duffy et al.,
2001]. Here, we rely on results from eight different
A-OGCMs that participated in the Coupled Model Inter-
comparison Project (CMIP; Meehl et al. [2000]). Under the
CMIP2+ phase of this project, modeling groups contributed

output from a pair of simulations. The first was a control
simulation with no changes in external forcings. In the
second experiment (hereafter referred to as the 1% CO2

run), CO2 was increased at a compounded rate of 1% per
year, leading to a doubling of atmospheric CO2 by year 70.
[33] The models involved in CMIP2+ differ in many

important aspects, including horizontal and vertical resolu-
tion, dynamics, the underlying physical parameterizations,
and in their use of flux adjustment. Unlike the 1% CO2 runs,
model control simulations were not carried out with specific
output requirements and vary in length from 80 to 300 years.
Table 2 lists the models used in this study with details of
their vintage, lengths of individual runs, etc. The CMIP2+
data are available through the Program for Climate Model
Diagnosis and Intercomparison (PCMDI) at http://www-
pcmdi.llnl.gov. This Web site provides detailed references
documenting key features of the A-OGCMs participating in
CMIP2+.
[34] The climatological mean performance of the OGCM

components of the CMIP2+ models has been documented in
Gleckler et al. [2004]. In the present study, we analyze the
effect of observed coverage changes on the simulated
variability of ocean temperatures in the CMIP2+ control
runs. Our focus is on interannual and decadal timescale
variability in the CMIP2+ control runs, although we also
consider the effects of coverage changes in the context of
the CO2 increase experiments.

4.2. Decorrelation Times in Model Control Runs

[35] Before exploring the effects of observational cover-
age changes on model-based variability estimates, it is
useful to briefly compare the temporal variability of ocean
temperatures in the eight CMIP2+ control runs. We use the
decorrelation time rt as the basis for this comparison. We
define rt by computing annual mean temperature anomalies
(relative to the initial year of the control run), vertically
averaging these anomalies over the top 300 m of the ocean,
and then determining the lag t (in years) at which the
temporal autocorrelation falls below 0.5. In Figure 4a, for
example, the decorrelation time is three years for upper
ocean (top 300 m) temperature anomalies in the South
Indian Ocean.
[36] Values of rt are calculated at each grid point for each

model control run. Because the length of these integrations
is variable, we stipulated that the maximum lag could not
exceed n/3, where n is the total length of the control run,
thus yielding an upper bound on rt. Since the spectrum is

Table 2. Table of CMIP2+ Models Analyzed in This Study, Listed Alphabetically by Model Acronyma

Model Sponsor, Country

Years Archived

Control 1% CO2

BCM_Version1, 2002 University of Bergen (UB), Norway 1–300 101–180
CCCma_CGCM2, 2002 Canadian Centre for Climate

Modeling and Analysis (CCCma), Canada
51–130 51–130

CSIRO_Mk2, 1997 Commonwealth Scientific and Industrial
Research Organization (CSIRO), Australia

351–450 351–450

ECHO-G, 1999 Model and Data Group (MD),Germany 310–409 310–387
GFDL_R30_c, 1996 Geophysical Fluid Dynamics

Laboratory (GFDL), USA
1–300 51–130

HadCM3, 1997 Meteorological Office (MO),UK 101–180 101–180
MRI_CGCM2.3, 2002 Meteorological Research Institute

(MRI), Japan
1–150 1–150

PCM, 1999 Department of Energy (DOE), USA 1–300 151–232
aInformation is also provided on the vintage of the simulations and the years of the archived control and 1% CO2 runs.
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related to the Fourier transform of the autocorrelation
function [Jenkins and Watts, 1968], maps of rt provide
basic information on the spatial distribution of ocean
temperature variability at different timescales.
[37] Figure 5 shows that there is a large range in rt, both

geographically and across the eight CMIP2+ models. A few
features are common to all models, such as the short
decorrelation times (�1–2 years) in the tropics and in the

vicinity of the western boundary currents. Large intermodel
differences in rt are evident in the Southern Ocean, where
the BCM, GFDL R30, ECHO-G, and PCM models have
areas with decorrelation times of decades or longer. The
other CMIP2+ models have much shorter decorrelation
times in this region.
[38] Some aspects of the spatial distribution of rt are

closely linked to features of each model’s oceanic circula-

Figure 5. Geographical distribution of decorrelation time (in years) for the annual mean volume–mean
temperature anomalies calculated over the top 300 m of the ocean in the CMIP2+ model control runs.
Maximum lag (shown at the upper right corner for each panel) is n/3, where n is the total length of the
control run. Note nonlinear color scale.
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tion, as is evident when surface currents are superimposed
on Figure 5 (not shown). Other aspects of the rt fields (such
as some of the long decorrelation times in the Southern
Ocean) are more difficult to diagnose and may arise from
some combination of bona fide low-frequency variability of
the coupled system and/or residual model drift in the control
runs. Here, our primary interest is not in the causes of this
variability, but rather in a gross characterization of its spatial
structure, timescales, and intermodel differences. Such in-
formation will be useful in understanding how the sampling
of A-OGCM upper ocean temperature fields with incom-
plete observational coverage (Figure 1) may alter the
simulated variability.

4.3. Regridding of Model Ocean Temperature Data

[39] The simulated ocean temperature data are on grids of
varying resolutions and geometries. In sampling model
output with the observed data coverage mask, either the
observations must be transformed to the model grid, or the
model output must be transformed to the grid used in WOA-
2004. In the first approach, the individual WOD observa-
tions that have been incorporated into the WOA-2004 are
‘‘binned’’ as in the work of Levitus et al. [2005], but now on
the model grid. This generates a coverage mask unique to
each model, a somewhat cumbersome process when dealing
with multiple models.
[40] The second approach, transforming individual model

grids to the WOA-2004 grid, has the advantage that it
allows different sampling strategies to be implemented in

a consistent way across a range of models. However,
regridding can change the resolution and even the geometry
of the grid and thereby alter both the volume and temper-
ature and hence the heat content. Since we are attempting to
quantify the effects of subsampling on ocean heat content, it
is important to verify that errors introduced by the selected
regridding procedure are within acceptable limits.
[41] Ocean model output is not archived at the standard

WOA-2004 levels and must be regridded both vertically and
horizontally. We performed the regridding in two separate
steps (first horizontally and then vertically). Results are not
affected by the order of operation. Two different horizontal
and two different vertical regridding procedures were ex-
amined, yielding a total of four different regridding combi-
nations. We used all of these combinations to transform the
control and 1% CO2 runs from each of the eight CMIP2+
models to the WOA-2004 grid.
[42] Figure 6 shows the volume-weighted temperature

changes (1% CO2 run minus control) over the top 300 m
of the global ocean for individual models. Results are
displayed on the original model grid and after regridding.
The effect of regridding is small relative to the overall
temperature change at the end of the climate change
experiment. Additionally, regridding does not distort the
variability of 0–300 m temperature changes. These results
hold for different depth ranges and ocean basins and for
both ocean heat content and volume-averaged temperature
change. In all cases, the effect of regridding is no more than
3% of the overall temperature or heat content change (on the

Figure 6. Effect of regridding on the volume–mean temperature change in the top 300 m of the
CMIP2+ 1% CO2 runs. Results are for four different regridding methods (thin lines). Bold lines denote
changes calculated on the original model grid.
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original model grid) at the end of the 1% CO2 experiment
and is generally 	3% of the final change. Because of this
very small sensitivity to the choice of regridding method,
we use only one method when sampling model output with
observational coverage.

4.4. SubsamplingModel DataWith Observed Coverage

[43] We rely on two dd-based observational coverage
masks (see section 3.1 and Figure 1). The first is for the
0–300 m layer and utilizes 49 years of annual mean data.
The second is for the 0–3000 m layer and uses 40 over-
lapping pentadal means (with overlap by all but one year).
After transforming model control and 1% CO2 run output to
the WOA-2004 grid, we apply the observational masks to
the regridded annual and pentadal data. Since the model
experiments are longer than the WOA-2004 temperature
records, masking was repeated cyclically (that is, year 50 of
the annual mean 0–300 m temperature data from the control
run was sampled with the observational coverage in the first
year (1955) of the WOA-2004 data, etc.)
[44] Consider first the evolution of global mean ocean

temperatures, averaged over 0–300 m in the eight CMIP2+

control runs. Consistent with the terminology used for the
observations, we denote this by TNet

0 (t), where the prime
denotes a simulated result and ‘‘Net’’ signifies no subsam-
pling. The subsampled version of this is TSub

0 (t). Values of
TNet

0 (t) range from 284 K in PCM to 288 K in the
CSIRO_Mk2 model (Figure 7a). For each individual model,
the variability of absolute values of TNet

0 (t) is small relative
to the intermodel differences in TNet

0 (t).
[45] Subsampling model control run data with observed

coverage increases both the mean and variability of TSub
0 (t)

relative to TNet
0 (t) (see Figure 7b). The increase in the mean

is by roughly 2–3 K and arises from preferential sampling
of the warmer near-surface layers of the ocean (see
Figure 2). The effect of subsampling is illustrated by
subtracting TNet

0 (t) from TSub
0 (t) (Figure 7c). The temporal

variability in this difference time series is highly correlated
in all models, a strong indication that it is induced by the
subsampling.
[46] We next examine the annual mean anomalies of

the 0–300 m temperature data, denoted by DTNet
0 (t) and

DTSub
0 (t). Anomalies are defined as the departures of TNet

0 (t)
and TSub

0 (t) from their respective values in the first year of

Figure 7. Time series of annual mean volume–mean temperature in (a) TNet
0 (t), (b) TSub

0 (t), and
(c) TSub

0 (t)–TNet
0 (t). Results are from control runs of the eight individual CMIP2+ models and are for the

top 300 m of the global ocean. Analogous time series calculated with anomaly data rather than absolute
data are shown for (d) DTNet

0 (t), (e) DTSub
0 (t), and (f) DTSub

0 (t)–DTNet
0 (t).
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the control run. This definition helps to illustrate the
residual climate drift in DTNet

0 (t) in the CCCma, BCM and
MRI control runs (Figure 7d).
[47] As in the case of the absolute temperature data

(Figures 7a and 7b), subsampling the 0–300 m temperature
anomaly fields increases the variability in DTSub

0 (t) relative
to DTNet

0 (t) (Figures 7d and 7e). However, the variability
induced by subsampling the anomaly fields is not strongly
correlated between models, as it was for absolute temper-
atures (compare with Figures 7c and 7f). We attempt to
understand this result in section 4.5.

4.5. Effect of Subsampling: CSIRO_Mk2 Control Run

4.5.1. Global Ocean Results
[48] To investigate in more detail the enhanced variability

induced by subsampling, we confine our attention to a
single model (CSIRO_Mk2). Figure 8 shows the time
evolution of temperatures in the upper 300 m of the global
ocean in the CSIRO_Mk2 control run. Results are for
absolute temperatures (Figures 8a and 8c) and anomalies
(Figures 8b and 8d). Figure 8 (top) gives the vertically

integrated 0–300 m temperature results, while Figure 8
(bottom) displays changes at discrete levels. The white lines
in Figures 8c and 8d indicate the effective depth of obser-
vational coverage (see Figure 2).
[49] As noted in section 4.4, subsampling model data

with WOA-2004 coverage introduces a warm bias in TSub
0 (t)

relative to TNet
0 (t). This bias arises because TSub

0 (t) prefer-
entially samples warmer upper layers, as is clearly evident
in Figures 8a and 8c. Subsampling also amplifies the
variability of both TNet

0 (t) and DTNet
0 (t) (Figures 8a and 8b).

[50] The observational results in Figures 1 and 2 indicate
that there have been significant temporal changes in both
the areal extent of observational coverage and the depth at
which observations are taken. One advantage of using
spatially complete model data is that we can deconvolve
these two effects and estimate the relative contributions of
depth and areal coverage changes to the variability differ-
ences induced by subsampling.
[51] We perform this deconvolution in two different

ways. In the ‘‘Spatial Sampling’’ (SS) strategy we designate
the entire 0–300 m water column (at any given model grid

Figure 8. Changes in global ocean temperature in the first 49 years of the CSIRO control run. Results are for
(a, c) absolute temperatures and (b, d) anomalies. (top) Volume-averaged changes for the top 300 m of the
ocean. (bottom) Temperature changes are given at discrete levels; the white lines denote the effective depth of
coverage. For details regarding the SS and DS samplingmethods (green and blue lines), refer to section 4.5.1.
Black and red lines in Figures 8a and 8b denote unsubsampled and subsampled data, respectively.
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point and in any given year) as ‘‘observed’’ if the annual
mean dd mask indicates that a valid observation was present
at any level between 0 and 300 m for that grid point and
year. This strategy minimizes the effect of temporal changes
in the depth of coverage and isolates the effect of changes in
areal coverage. In the ‘‘Depth Sampling’’ (DS) strategy, we
assume that areal coverage of the 0–300 m layer is spatially
complete and time-invariant. The only change over time is
in the average depth of observational coverage (see white
lines in Figures 8c and 8d).
[52] Consider first the effects of subsampling absolute

temperatures with the SS and DS approaches (Figure 8a).
For the first 30 years of the CSIRO control, DS yields
temperatures that are warmer than in TNet

0 (t), supporting our
earlier conclusion that this bias is introduced by preferential

sampling of warmer near-surface layers in the early years of
WOA-2004. A comparison of the SS, DS, and TSub

0 (t)
results shows that the systematic increase in sampling depth
is responsible for much of the low-frequency variance in
TSub

0 (t). Conversely, comparison of the SS and TSub
0 (t) time

series reveals that the high-frequency variability in TSub
0 (t) is

largely dictated by changes in geographical coverage and
not by changes in sampling depth.
[53] In the case of the anomaly fields (which is the

relevant field for a direct comparison with WOA-2004),
the DS and DTNet

0 (t) time series are virtually identical, as are
SS and DTSub

0 (t) (Figure 8b). This illustrates that the
temporal variability in DTSub

0 (t) arises primarily from
changes in the location and areal extent of sampling. The
fact that sampling depth changes have relatively little

Figure 9. As for Figures 8b and 8d, but for the first 40 pentads of the 0–3000 m layer.
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impact on the variability of DTSub
0 (t) is due to the broad

vertical coherence of temperature anomalies in the upper
300 m of the CSIRO control run (Figure 8d).
[54] We performed a similar subsampling exercise for

global ocean temperature anomalies in the top 3000 m of
the CSIRO control run (Figure 9). Results differ markedly
from those obtained for the 0–300 m anomaly data. For the

0–3000 m data, DTNet
0 (t) is highly similar to the SS time

series (Figure 9a). The DS results are consistently warmer
than DTNet

0 (t). This is because the effective subsampling
depth never exceeds 1500 m and therefore fails to capture
the slight cooling below 2000 m (Figure 9b).
[55] While DTSub

0 (t) and SS results were very similar for
the 0–300 m layer, the variability in DTSub

0 (t) for the 0–

Figure 10. Spatial distribution of volume–mean temperature anomalies in the CSIRO_Mk2 control
run. Results are for (left) DTNet

0 (t) and (right) DTSub
0 (t) and are given for two different times and depth

ranges (0–300 m and 0–3000 m). Coverage masks used to create the subsampled data for years 20 and 30
of the CSIRO data correspond to calendar years 1974 and 1984 in Figure 1.
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3000 m layer is not as clearly related to either SS or DS
results. This suggests that for this deeper layer, which has a
more complex vertical structure of temperature anomalies
(Figure 9b), the variability in DTSub

0 (t) must arise from the
combined effects of changes in sampling depth and areal
coverage rather than from changes in the latter only.
[56] Figure 10 illustrates the effect of subsampling for the

0–300 m layer (top four panels) and the 0–3000 m layer

(bottom four panels). This example uses anomaly data for
years 20 and 30 of the CSIRO control run (or pentads
centered on these years). These selected times coincide with
the observed coverage maps for 1974 and 1984 (Figure 1).
[57] Consider first the 0–300 m results. A comparison of

DTNet
0 (t) and DTSub

0 (t) over areas of observational coverage
shows that subsampling successfully reproduces the gross
structure and size of the DTNet

0 (t) anomalies. This is largely

Figure 12. Temporal standard deviations of the volume–mean control run temperature anomalies in
(solid triangles) DTNet

0 (t) and (open triangles) DTSub
0 (t). Results are shown for 12 different ocean basins

and for the 0–3000 and 0–300 m ranges (a and b). Standard deviations of DTSub
0 (t) from the (solid

triangles) control run anomalies and (open triangles) 1% CO2 run anomalies for the 0–300 m range are
compared in (c). Standard deviations of To(t) from the WOA-2004 data are denoted by solid circles.
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due to the vertical coherence of temperature anomalies in
the 0–300 m layer in the CSIRO control run. The sparse
observational coverage fails to capture large, coherent
anomalies that lie outside the coverage mask. This is why
the SS approach yielded results that were closest to DTSub

0 (t)
(Figure 8b).
[58] For the 0–3000 m layer, it is evident that subsam-

pling can distort the size (and sometimes even the sign) of
the temperature anomalies on the spatially complete field.
(Figure 10; bottom four panels). DTNet

0 (t) is cooler than
DTSub

0 (t) in many locations, particularly where the effective
sampling depth is less than 1000 m (see Figure 1). In these
areas, the relatively shallow observational measurements do
not reliably portray the vertically complex structure of the
temperature changes in the full 0–3000 m water column.
The closest agreement between DTNet

0 (t) and DTSub
0 (t) is in

regions such as the North Atlantic, where the effective
sampling depth often exceeds 2000 m.
4.5.2. Results for Individual Ocean Basins
[59] In attempting to elucidate the effects of observational

coverage changes on the simulated variability of ocean
temperatures, our initial focus has been on the global ocean.
However, as shown in Figure 2, coverage changes have
different characteristics in different ocean basins. In
section 4.6, we use the CSIRO control run to study the
effects of subsampling on the variability of 0–3000 m
temperatures in individual basins.
[60] Comparison of DTNet

0 (t) and DTSub
0 (t) indicates that

the variability of 0–3000 m temperature on the original
model grid is amplified by subsampling with observed
coverage changes (Figure 11). This amplification occurs
in each ocean basin and confirms that the previously
described global ocean result was in no way anomalous.
[61] Figure 11 also includes observed pentadal mean 0–

3000 m temperature anomalies from WOA-2004 (defined
with the ‘‘dd’’ mask). As noted previously, there is no direct
time correspondence between temperature anomalies in
WOA-2004 and in the CSIRO control run. We include the
WOA-2004 results to provide a simple comparison of the
amplitude of internally generated variability in the model
and variability in observations (in observed portions of the
ocean).
[62] This comparison shows that in most ocean basins,

subsampling does not fully reconcile the variability of 0–
3000 m temperatures in WOA-2004 and in the CSIRO
control run. The observed variability is consistently larger
than the variability in DTSub

0 (t). This discrepancy is partly
attributable to the fact that the control run does not include
external forcings that have contributed to the trend and low-
frequency variability in observed ocean temperatures [e.g.,
Hansen et al., 2002; Barnett et al., 2005; Pierce et al., 2006].
[63] One curious aspect of Figure 11 relates to the WOA-

2004 and DTSub
0 (t) time series in the North Atlantic, where

the CSIRO control run has a residual warming trend.
Sampling this spatially coherent warming with the observed
coverage mask yields low-frequency temperature changes
that are highly correlated with observed results. This corre-
spondence is either purely fortuitous, or is some way related
to the effects of coverage changes on a coherent warming
signal in the observations and coherent drift in the control
run.

4.6. Effect of Subsampling: CMIP2+ Control and
1% CO2 Runs

[64] In section 4.5, we demonstrated that the variability of
0–300 and 0–3000 m temperatures in the CSIRO model
was invariably enhanced by subsampling spatially complete
model output with actual observational coverage. This was
evident in all ocean basins examined. To determine whether
this is a general result or unique to the CSIRO_Mk2 model,
we repeated the subsampling of 0–300 and 0–3000 m
anomaly fields with control run output from the seven other
CMIP2+ models.
[65] Figure 12 shows the temporal standard deviation

of DTNet
0 (t) and DTSub

0 (t) for both ocean layers and for
12 different ocean basins. Results were calculated from
the first 49 years (40 overlapping pentads) of the 0–
300 m (0–3000 m) control run anomaly fields (Figures 12a
and 12b). In both layers, and for virtually every ocean
basin and model control run, the standard deviation
of DTSub

0 (t) exceeds that of DTNet
0 (t), that is, subsam-

pling consistently amplifies the variability of ocean
temperatures.
[66] Standard deviations of the dd-masked WOA-2004

results are also plotted in Figure 12. For the 0–3000 m
layer, the observed variability of DTSub

0 (t) lies within
the range of model values. This is a noteworthy result,
since it is the variability of unsubsampled DTNet

0 (t) data
that differs markedly in models and observations
[Barnett et al., 2001; Sun and Hansen, 2003; Gregory
et al., 2004]. Note that observed variability for the 0–
3000 m layer is generally in better agreement with
model results in the NH than in the more poorly
observed SH (Figure 12a).
[67] For temperatures in the 0–300 m layer, the observed

variability exceeds that of most CMIP2+ control runs
(Figure 12b). The exception is the BCM, in which the
variability is inflated by the large drift in the control run
(Figure 7b). The fact that model-versus-observed variability
differences are larger for the 0–300 m layer than for 0–
3000 m is probably due to the absence of anthropogenic
forcing in the model control runs. As shown by Barnett et
al. [2005] and Pierce et al. [2006], the gradual warming
induced by historical changes in greenhouse gas forcing is
most prominent in the upper 700 m of the global ocean.
This warming trend enhances the variability of observed
temperatures for the 0–300 m layer.
[68] To assess the contribution of external forcing to

model data variability differences, we use the observational
dd mask to sample the CMIP2+ climate change signals. The
latter are defined by subtracting the contemporaneous state
of the control from the climate change experiment. The
observed mask (which is only 49 years in length), is applied
to the first 49 years of the climate change signal. For both
depth integrals considered here (0–300 and 0–3000 m), the
trend in volume-averaged temperature in TSub

0 (t) is invari-
ably larger than in TNet

0 (t) (Table 3). This is probably due
to preferential sampling of the larger warming of upper
layers of the ocean. Note also that the simulated ocean
temperature trends in the CMIP2+ perturbed runs are
almost always larger than the corresponding trends in the
WOA-2004.
[69] Figure 12c compares standard deviations of DTSub

0 (t)
calculated from both the control and 1% CO2 run data. The
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control run variability is generally lower than in observa-
tions, while the variability in the 1% CO2 run is almost
always higher than observed results. Since linear forcing
leads to a nearly linear temperature response, the warming
trend in the 1% CO2 run inflates the standard deviation
relative to that in the control run. This inflation is approx-
imately described by

ŝ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ DTð Þ2

� �
=12

h ir
ð3Þ

where DT is the total trend and s is the standard deviation of
the control run data. This overestimate in variability arises
because the linear forcing change due to a 1% per year CO2

increase is likely to be substantially larger than the
total forcing that has actually occurred over 1955–2003
(although the latter is uncertain, primarily because of
uncertainties in aerosol forcing [Ramaswamy et al.,
2001]). It is therefore preferable to perform model-observed
variability comparisons with climate change experiments
that use more realistic historical forcing [see, e.g., Barnett et
al., 2005; Pierce et al., 2006].

4.7. The Vertical Profile of Variability

[70] In section 4.6, we showed that the variability of 0–
300 m temperatures in the 1% CO2 runs is substantially
higher than in the control runs. This is a necessary conse-
quence of the addition of a near-linear warming signal. Over
time, this signal penetrates into the deeper ocean with
magnitude that decreases with depth [see Gleckler et al.,
2006]. This leads to an enhancement of variability that also
decreases with depth. Such behavior is illustrated in
Figure 13, which shows the vertical profile (down to
700 m) of the temporal standard deviation of DTSub

0 (t)
from the control and 1% CO2 runs. The inclusion of a
CO2-induced warming signal markedly increases the vari-
ability in the upper layers of the global ocean. As noted in
section 4.6, the higher than observed variability in the 1%
CO2 runs (Figure 13b) is partly related to the fact that these

experiments involve changes in radiative forcing that are
larger than observed.

5. Conclusions

[71] The aim of this study has been to investigate differ-
ences in the variability of ocean temperatures in observa-
tional estimates (such as WOA-2004) and in coupled
atmosphere-ocean climate models. We find that
[72] 1. Sparse data coverage has led to inflated estimates

of observed temperature variability in virtually all ocean
basins.
[73] 2. To study observed ocean heat content changes,

spatially complete temperature fields are required. These are
generated by infilling temperatures in data-sparse regions.
The infilling method used in WOA-2004 may bias the
statistical properties of the temperature data.
[74] 3. To circumvent problems associated with statistical

infilling procedures, it is preferable to compare modeled and
observed changes in volume–average temperature only at
locations and depths where observations exist (rather than to
compare changes in total ocean heat content). The dd (data
distribution) fields in the WOA-2004 provide information
that facilitates the subsampling of spatially complete model
data.
[75] We used a suite of model control and 1% CO2 runs

from the CMIP2+ experiment to investigate the impact of
observational data coverage changes on the simulated
variability of ocean temperatures. Temperatures were aver-
aged over the top 300 and 3000 m of the ocean. This
subsampling study yielded the following key findings:
[76] 1. Subsampling spatially complete model control run

data with the data ‘‘mask’’ of actual observational coverage
amplifies the temporal variability of the model ocean
temperature data. This increase in variability is a robust
result. It occurs in all CMIP2+ models, in both the 0–300
and the 0–3000 m layers, and in virtually all ocean basins.
Subsampling brings model-based variability estimates into
better accord with observations.

Table 3. Effect of Subsampling on Linear Trends in Volume-Mean Temperature Change (�10�3�C per year) for WOA-2004 and for the

CMIP2+ 1% CO2 Runs
a

Depth Range Model

Global Ocean N. Hemisphere S. Hemisphere

TNet
0 (t) TSub

0 (t) TNet
0 (t) TSub

0 (t) TNet
0 (t) TSub

0 (t)

0–300 m Obs. 0.304 0.349 0.338 0.360 0.279 0.399
BCM 0.557 0.714 0.594 0.762 0.532 0.616
CCCma_CGCM2 1.337 1.444 1.284 1.426 1.373 1.528
CSIRO_Mk2 1.177 1.519 1.367 1.626 1.044 1.272
GFDL_R30 0.977 1.158 1.038 1.160 0.935 1.152
HadCM3 1.189 1.503 1.220 1.553 1.168 1.352
ECHO_G 0.830 1.134 1.059 1.270 0.670 0.888
MRI CGCM2.3 1.107 1.468 1.305 1.624 0.967 1.185
PCM 0.470 0.587 0.445 0.583 0.488 0.493

0–3000 m Obs. 0.095 0.169 0.126 0.146 0.073 0.202
BCM 0.141 0.309 0.208 0.355 0.094 0.260
CCCma_CGCM2 0.330 0.708 0.340 0.678 0.323 0.733
CSIRO_Mk2 0.240 0.574 0.285 0.620 0.209 0.525
GFDL_R30 0.210 0.441 0.212 0.407 0.208 0.479
HadCM3 0.217 0.551 0.221 0.444 0.215 0.668
ECHO_G 0.184 0.336 0.252 0.437 0.136 0.220
MRI CGCM2.3 0.228 0.590 0.269 0.656 0.199 0.514
PCM 0.126 0.220 0.138 0.245 0.118 0.198

aValues shown for observations are the TNet(t) and To(t) trends from Table 1.
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[77] 2. The causes of the enhanced temporal variability
introduced by subsampling model temperature anomalies
differ for the 0–300 and 0–3000 m layers. For the former,
the variability increase is mainly due to changes in the areal
coverage of observations. For the 0–3000 m layer, the
larger variability is due to changes in both spatial extent
and the depth of observational coverage.
[78] 3. The CMIP2+ runs with (compounded) annual CO2

increase of 1% per year provide estimates of the ocean
warming signal arising from increases in greenhouse gases.
This warming signal is largely confined to the uppermost
1000 m of the oceans. It introduces a trend that enhances the
simulated variability in the temperature of the 0–3000 m
and 0–300 m layers.
[79] Our investigation has shown that using volume-

averaged temperature at the actual location of observations
partially explains the apparent mismatch between modeled
and observed variability of ocean temperatures. However,
the idealized climate change experiments analyzed here do
not allow us to determine whether the remaining discrep-
ancy in variability is primarily due to model error. The
idealized greenhouse gas forcing in the CMIP2+ 1% CO2

runs leads to consistently larger than observed ocean warm-

ing trends, which amplifies the simulated variability. In the
real world, atmospheric CO2 has not increased at a rate of
1% per year, and other forcings (such as the cooling effects
of anthropogenic sulfate aerosol particles and volcanic
eruptions) have offset some of the greenhouse gas induced
warming of the world’s oceans. The experiments recently
performed in support of the IPCC’s Fourth Assessment
Report, which include more realistic historical changes in
natural and anthropogenic forcings, are more appropriate for
direct comparison with observations.
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