
Abstract We assess the extent to which observed large-scale changes in near-sur-
face temperatures over the latter half of the twentieth century can be attributed to
anthropogenic climate change as simulated by a range of climate models. The
hypothesis that observed changes are entirely due to internal climate variability is
rejected at a high confidence level independent of the climate model used to sim-
ulate either the anthropogenic signal or the internal variability. Where the relevant
simulations are available, we also consider the alternative hypothesis that observed
changes are due entirely to natural external influences, including solar variability and
explosive volcanic activity. We allow for the possibility that feedback processes,
other than those simulated by the models considered, may be amplifying the
observed response to these natural influences by an unknown amount. Even allowing
for this possibility, the hypothesis of no anthropogenic influence can be rejected at
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the 5% level in almost all cases. The influence of anthropogenic greenhouse gases
emerges as a substantial contributor to recent observed climate change, with the
estimated trend attributable to greenhouse forcing similar in magnitude to the total
observed warming over the 20th century. Much greater uncertainty remains in the
response to other external influences on climate, particularly the response to
anthropogenic sulphate aerosols and to solar and volcanic forcing. Our results
remain dependent on model-simulated signal patterns and internal variability, and
would benefit considerably from a wider range of simulations, particularly of the
responses to natural external forcing.

Keywords Climate change Æ Detection Æ Attribution

1 Background

The Second Assessment Report (SAR) of the Intergovernmental Panel on Climate
Change (IPCC: Houghton et al. 1996) concluded that ‘‘the balance of evidence
suggests a discernible human influence on global climate’’ but cautiously avoided
attempting to quantify the magnitude of this influence. Strictly interpreted, the IPCC
statement in the SAR therefore allowed for the possibility of a statistically significant
anthropogenic climate change which was too small to have any practical importance,
although the SAR authors noted at the time that ‘‘our current inability to estimate
reliably the fraction of the observed temperature changes that are due to human
effects does not mean that this fraction is negligible’’. This proved a remarkably
prescient statement: much of the progress in detection and attribution over sub-
sequent years has been in quantifying this anthropogenic contribution to recent
observed warming and it has indeed been found to be very far from negligible.

The IPCC Third Assessment Report (TAR: Houghton et al. 2001) was in a
position to make a more quantitative assessment of the extent to which recent
observed climate changes are attributable to human influence, particularly the im-
pact of anthropogenic greenhouse gas emissions. This is only partly due to an
apparently strengthening signal in the observational record, even though the 1990s
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were significantly warmer than the century as a whole. We use data to September
1996 in this study, which is only 2–3 years longer than Santer et al. (1996b) and
Heger et al. (1996). Inclusion of late-1990s data generally strengthens our conclu-
sions (Hegerl and Allen 2002), but we have chosen to exclude these years because
the anomalously large El Niño event of 1997–1998, which was associated with re-
cord-breaking global temperatures, could introduce a bias into our results which are
based on climate models with relatively coarse ocean resolution (Meehl et al. 2001).
Since this study was undertaken, progress has been made in the simulation of El
Niño in climate models (AchutaRao and Sperber 2006), so studies updating this
work (Stone et al. 2006; Stott et al. 2006) have extended the period of interest into
the 21st century, which generally strengthens conclusions.

A more important development since the SAR is the availability of a wider range
of simulations with coupled atmosphere-ocean general circulation models (A-OG-
CMs) of the climate response to different external forcing scenarios, including
various combinations of anthropogenic forcing agents and natural external influ-
ences such as variations in solar and volcanic activity. A crucial element of any
quantitative assessment of the extent to which an observed change can be attributed
to a particular external factor is an estimate of the expected change due to that
factor, together with estimates of expected changes due to physically plausible
alternatives. In simple terms, to assess whether a signal is there, we need to know
both what we are looking for and what we need to discriminate against.

The most rigorous approach to comparing multiple explanations of recent climate
change using model-based estimates of the signals under investigation is the ‘‘multi-
fingerprinting’’ algorithm of Hasselmann (1997), as first implemented in Hegerl et al.
(1997). This latter study concluded that both anthropogenic greenhouse-gas and
sulphate influence were required to account for the observed spatial pattern of boreal
summertime warming trends over the past 50 years, while cautiously noting that some
influence of solar variability might be required to account for the warming observed
in the early decades of the twentieth century. In a number of follow-up papers
(Barnett et al. 1999; Hegerl et al. 2000), the authors have examined the sensitivity of
this result to the model used to simulate the characteristics of anthropogenic signals
and internal climate variability, finding that their original conclusions regarding
sulphate influence on climate are particularly sensitive to the model used and
assumptions made in the analysis. North and Stevens (1998), taking a formally distinct
but functionally equivalent (North et al. 1995; Hegerl and North 1997) approach
based on a very different type of climate model, arrived at similar conclusions.

Allen and Tett (1999), proposed an alternative formulation of the Hasselmann
(1997), multi-fingerprinting algorithm to allow a more direct interpretation of results.
Without any change in the underlying formalism, they re-phrased the problem as an
optimal estimation procedure, with the parameters being estimated being the factors
by which it is necessary to scale model-simulated signals to reproduce observed climate
change. Under their interpretation, a scaling factor consistent with zero implies that a
particular model-simulated signal is not detectable in the observed climate record
using the diagnostic under consideration, while a scaling factor consistent with unity
implies the model-simulated amplitude could be correct. In a very similar vein, Leroy
(1998), reformulated the North and Stevens (1998), approach in terms of Bayesian
estimation theory: the algorithms of Allen and Tett (1999), and Leroy (1998), are
formally identical in the absence of any prior expectation about (or equivalently, given
infinite prior variance in) scaling factors to be applied to individual signals.
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Tett et al. (1999), applied this approach to observed spatio-temporal patterns of
surface temperature change (Hegerl et al. 1996, and subsequent papers focussed on
spatial patterns of linear temperature trends) and concluded, like Hegerl et al.
(1997), that both greenhouse and sulphate influence are required to account for
observed near-surface temperature changes in the latter half of the 20th century,
with a possible role for solar variability in the warming that occurred over the period
1910–1940. With ensemble simulations of the response to natural external forcing
agents at their disposal, they were able to draw stronger conclusions than previous
authors regarding the difficulty of accounting for observed changes in exclusively
natural terms. Tett et al. (2002), using a more up-to-date model and a wider range of
diagnostics, reached similar conclusions while finding an even clearer role for solar
forcing in the early century warming.

Stott et al. (2001), show that the inclusion of seasonal information strengthens the
evidence for solar influence on the early part of the century. In contrast, Delworth
and Knutson (2000), using a different model to estimate internal variability which
displays greater variance on 50–80-year timescales, conclude that the warming that
occurred early in the century can be accounted for through a combination of
anthropogenic influence and internal variability. There is no inherent inconsistency
between these two results: Stott et al. (2001), were using a more powerful analysis, in
that they included both seasonal information and a model-based estimate of the
spatio-temporal pattern of response to solar forcing that they were looking for (not
available to Delworth and Knutson (2000), since the climate model that they used
had not yet been run with estimates of changing solar forcing). It is not surprising
that a more powerful analysis detects a weak signal when a less powerful one fails,
but this sensitivity to the diagnostic and/or model used indicates that the evidence
for a solar role in early century warming remains weaker than the evidence for
anthropogenic influence in more recent decades.

The earliest fingerprinting studies, such as Santer et al. (1995, 1996b), Hegerl
et al. (1996) and (1997), used signals based either on the equilibrium response of a
climate model to a particular forcing or on the transient response over some period
in the future. In both cases, the forcing would be sufficiently strong that sampling
uncertainty in the model-simulated response would be negligible: if the experiment
were repeated, essentially the same model-simulated signal would be obtained. In
contrast, more recent studies, beginning with Tett et al. (1996), have used signals
based on model-simulated responses to forcing changes over the same period as the
observations used in the comparison. This approach simplifies interpretation of re-
sults, but introduces the complication that climate forcing is not as strong over the
20th century, so model-simulated signals are contaminated by internal variability.
This contamination can be reduced through the use of ensemble simulations, as in
Tett et al. (1999), or through the use of noise-free climate models, as in North and
Stevens (1998). The ensemble approach is expensive, so ensembles are not available
for all models, while any climate model that is free of internal variability is also likely
to be lacking key non-linear feedback processes that may affect the model-simulated
signal.

Allen and Stott (2003), and Stott et al. (2003), describe and test a modification to
the standard optimal estimation procedure that accounts explicitly for the presence
of sampling noise in model-simulated signals based on single-member or small-size
ensembles. They follow the standard ‘‘Total Least Squares’’ approach originally
proposed by Adcock (1878), and documented in detail by, for example, Ripley and
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Thompson (1987), and van Huffel and Vanderwaal (1994). Stott et al. (2003),
demonstrate that this revised algorithm is particularly important if small (one- or
two-member) ensembles are used in climate model simulations, although it can still
make an appreciable difference even if larger ensembles are available, particularly
on upper bounds of uncertainty ranges and when considering relatively weak model-
simulated signals (such as the response to natural external influences). A range of
ensemble-sizes are available to this study, so we use this explicit Total Least Squares
approach.

2 Diagnostics, observations and models

In this study, we focus on observed changes in near-surface air temperature and sea-
surface temperature as compiled in the Parker et al. (1994), dataset, updated. The
data are originally available on a 5� · 5� degree monthly spatio-temporal grid and
are expressed as non-overlapping decadal mean temperature anomalies about the
1961–1990 climatology, with decades running from September 1906 to August 1996
inclusive. Surface air temperatures from a range of models driven with a variety of
scenarios for external forcing together with a number of ‘‘control’’ (constant forcing)
integrations were likewise expressed as anomalies about corresponding decades and
bilinearly interpolated to the observational grid. On the very long (10–90 year)
timescales we are interested in, fluctuations in surface air temperature are closely
correlated with fluctuations in underlying sea-surface temperatures such that any
error resulting from merging the two is likely to be small relative to residual sys-
tematic errors in the observations themselves. The impact of random errors and
errors due to sampling in the observational data was explored by Jones and Hegerl
(1998) and found to be small on the timescales of interest here. Systematic errors in
the observations would have a much more substantial impact on results. Quantita-
tive estimates of the impact of known sources of potential systematic error, such as
the so-called ‘‘urban heat island’’ effect, indicate they are likely to have only a minor
effect on results Parker (2004). The possibility of a completely unknown source of
bias contaminating the early century instrumental temperature record will always
remain a caveat, but more recent studies using multiple strands of climate proxy
data, not all of which need to be calibrated against the instrumental record, provide
some independent support (e.g., Hegerl et al. 2003, 2006).

We will study these changes using essentially the diagnostic proposed in Stott and
Tett (1998), projecting the data onto spherical harmonics to focus exclusively on
large spatial scales. Noting the controversy over the origin of early century tem-
perature changes (Tett et al. 1999; Delworth and Knuston, 2000), we focus on the
period September 1946 to August 1996, but we also express data as anomalies about
the mean of the 90-year period 1906–1996. In locations where no data is available
prior to 1946, this naturally makes no difference. In locations with data early in the
century, it allows us to exploit the information that the most recent 50 years have
been generally warmer than the century as a whole without attempting to fit the
details of decadal changes earlier in the century. Our main reason for using this
longer climatology base period was to avoid focussing exclusively on trends over the
1946–1996 period (as, for example, in the analysis of Hegerl et al. 1997) which, it has
been argued, may happen to be a particularly effective period for the detection of
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climate change not simply because the signal is strongest over this period, but
because the noise in the observed record may, by chance, happen to have inflated the
apparent strength of the anthropogenic signal.

Six Atmosphere-Ocean General Circulation Models (A-OGCMs) were originally
included in this study. These were the HadCM2 model from the Met. Office (Johns
et al. 1997); the ECHAM3 and ECHAM4 models from the Max Planck Institute for
Meteorology in Hamburg (Cubasch et al. 1994; Roeckner et al. 1999); the R-30
resolution version of the GFDL climate model (Knutson et al. 1999) and two ver-
sions of the Canadian Centre for Climate Modelling and Analysis model (Boer et al.
2000). In this paper, we will refer to these as HCM2, ECH3, ECH4, GFDL, CCC1
and CCC2, respectively. A range of external climate forcings were considered,
including anthropogenic greenhouse gases (G); the direct radiative forcing due to
sulphate aerosols (S); the combination of indirect sulphate forcing with tropospheric
ozone changes (I); variations in total incoming solar irradiance from the Hoyt and
Schatten (1993), reconstruction (H), extended with satellite data (W. Ingram, pers.
comm.); solar variations from the Lean et al. (1995) reconstruction (L); and volcanic
aerosol forcing from the Sato et al. (1993), reconstruction (V).

In several cases, not all these forcings were imposed in combination, and not all
models were run with all forcing agents. Moreover, sulphate aerosol forcing in
particular varies significantly between models. Only the direct effect of sulphate
aerosols on albedo was included in the HCM2, ECH3, GFDL, CCC1 and CCC2
models, but there are still significant differences between these runs in the spatial
pattern and particularly the time-history of the sulphate forcing. The indirect effect
of sulphate aerosols on cloud optical properties was represented in the HCM3 and
ECH4 models, introducing further differences. In this study, we do not distinguish
between differences in forcing and differences in response: each model run, with its
associated forcing datasets, is considered a self-contained representation of reality.
Identifying the origins of model-data discrepancies requires us to isolate whence
those discrepancies arise. Since this study was undertaken, many more integrations
have been performed to ‘‘fill in the gaps’’ in Table 1, which is a very welcome

Table 1 Summary of simulations used in this study

Model Full name Resolution Size of ensembles Length control

G GS GSI H L V

HCM2 HadCM2 3.75� · 2.5� L19 4 4 4 4 4 1,700 year
ECH3 ECHAM3/LSG T21L19 4 2 2 2 1,900 year
ECH4 ECHAM4/OPYC3 T42L19 1 1 1 1,000 year*
GFDL GFDL/R30 R30L14 5 1,000 year
CCC1 CGCM1 T32L10 3 850 year
CCC2 CGCM2 T32L10 3 850 year

All models consist of a dynamical atmosphere coupled to a dynamical (but non-eddy-resolving)
ocean. Lxx refers to the number of vertical levels in the model atmospheres, while Txx and Rxx
refers to the triangular or rhombic spherical harmonic truncation used in spectral models, with
higher numbers corresponding to higher horizontal resolution: for comparison, the grid-point model
HadCM2 has a similar effective horizontal resolution as a T42 spectral model

*In the case of the ECHAM4 atmospheric model, we were obliged to rely on the 1,000-year EC-
HAM4/HOPE control integration, since the 200-year control integration of the ECHAM4/OPYC3
model was too short for either the definition of the detection space or for uncertainty analysis
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development. Overall conclusions for the detectability of human influence on cli-
mate are essentially unchanged: see, for example, Stott et al. (2006); Stone et al.
(2006) for updated conclusions with more recent runs.

A summary of integrations considered in this study (including the available
control integrations) is given in the Table 1: further details of the models and forcing
timeseries used are available in the literature.

Results from three additional models, HadCM3, CSM and PCM, became avail-
able in the course of this study. These are documented in detail elsewhere (in Stott
et al. 2000; Tett et al. 2002; Blackmon et al. 2001; Washington et al. 2000) and so are
not included in the majority of figures and discussion herein, but have been included
(referred to as HCM3, CSM and PCM, respectively) in the summary figures for the
sake of completeness.

The gridded observational data were expressed as decadal anomalies about the
1906–1996 time-mean of the relevant grid-box by averaging annual means in each
decade, with grid-boxes set to missing if 5 years or more had less than 8 months
available data or if fewer than two decades were available for the calculation of the
time-mean (other thresholds were explored and found to have little impact on re-
sults: the crucial point is that observations and models must be masked similarly
before computing time-means and anomalies). Corresponding segments of model
output were likewise expressed as decadal averages, bilinearly interpolated onto the
observational grid, masked with the pattern of missing data in the observations and
expressed as anomalies about their respective 1906–1996 time-mean fields. These
were used to define the signals under investigation. As is standard practice in
detection and attribution studies, sequences of nine-decade segments of ‘‘pseudo-
observations’’ were extracted from the available unforced control integrations,
overlapping each other by 8 decades to maximise the number of segments extracted,
and interpolated and masked in the same manner. These were used to define the
‘‘detection space’’ (coordinate system) used for model-data comparison and for
uncertainty analysis.

Treating the observations, scenario runs and each nine-decade segment of control
model output identically, the five decades corresponding to the 1946–1996 period
were extracted and projected onto spherical harmonics, truncating at T4 to retain
only scales greater than 5,000 km (Stott and Tett 1998). The resulting observation
vector, y, thus contains 125 elements, being the 25 spherical harmonic coefficients in
a T4 truncation corresponding to each of the 5 decades in the 50-year period. In
projecting incomplete fields onto spherical harmonics, missing data were set to zero
before the projection and the resulting harmonic coefficients uniformly scaled such
that the lowest-order coefficient corresponded to an unbiased estimate of the global
mean temperature (other methods of estimating spherical harmonics from incom-
plete data are discussed in Stott and Tett 1998). The impact of this is to give each
decade equal weight in the observation vector even though they may contain dif-
ferent amounts of missing data. Since the fractional coverage of decadal-mean
temperature anomalies changes relatively little over the latter half of the twentieth
century, this weighting is found to have little impact on results (Stott et al. 2001).
Extending the analysis to include earlier decades would make results more sensitive
to the relatively arbitrary decisions that need to be made concerning the treatment
of missing data.

In addition to the issue of changing coverage, we also choose to focus on the latter
half of the 20th century because the origin of the observed trend early in the century
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remains controversial (Tett et al. 1999; Delworth and Knutson 2000; Stott et al.
2001). Solar variability may have played a role in that early century warming, and
simulations of the response to solar variability are not yet available for all the models
considered. In a follow-up studies (Stott et al. 2006) this analysis is extended to the
century as a whole, but our priority here is to focus on anthropogenic signals,
applying the analysis to as wide a range of models as possible.

3 Qualitative model-data comparison

Before discussing the methodology and results of the quantitative model-data
comparison we outline the qualitative response of the different models to the dif-
ferent forcings. This provides a background to help interpret the quantitative results,
and also demonstrates some of the effects of the data masking procedure.

Figure 1 shows the global mean decadal mean evolution of near-surface tem-
peratures in observations and various model simulations. The global mean
anomalies are taken from the spherical harmonics used in the detection study and
so have been masked using the observational data mask. The data points are
marked with symbols, the lines are cubic splines between the data points. The
splines are not intended to imply there is more information there than the five data
points for each integration, rather they have been included to make the figures
easier to visualise. Each model is represented by the linestyle given in the legend
on panel (a).

The observations show the marked increase in global mean surface temperatures
after the 1970’s, with the 1990s being about 0.25 K warmer than the period 1906–
1996 as a whole. The observed temperature anomalies from the 1950s to the 1970s
are about 0.05 K colder than the mean of the 1906–1996 period.

All model integrations that include greenhouse gas forcing show increases in
temperatures through the 1980s and 1990s that are comparable to the observations.
Inclusion of G alone yields more warming than observed in all cases. For ECH4 and
HCM2 the inclusion of the effects of sulphate aerosol brings the modeled global
mean temperature changes into closer agreement with observations (especially so
for the GSI integration of ECH4). For ECH3 the inclusion of the effects of sulphate
aerosol appears to cool the model too much during the 1970s and 1980s. In particular
there is very little warming in the period 1966–1986; the warming appears to be
delayed by the sulphate aerosol. This anomalous (and, by comparison with the
observations, unrealistic) time-evolution of the ECH3 model under GS forcing will
prove important in the quantitative analysis based on spatio-temporal response-
patterns. Previous work focussing on ECH3 (Hegerl et al. 1997, 2000) used spatial
patterns of 50-year linear trends extracted from simulations of the 21st century,
suppressing information on the evolution of the signal within any currently
observable 50-year period.

The modelled responses to natural forcings do not capture the observed tem-
perature changes during the last two decades of the century. Although the response
of HCM2 and ECH3 to solar forcing suggests temperatures in the 1990s that are
warmer than the period 1906–1996 as a whole, the warming is not as large as that
observed. In particular, solar forcing, even if amplified by some unknown feedback
mechanism, seems unlikely to account for the observed acceleration in warming
after the 1970s.
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Fig. 1 Globally and decadally averaged temperature anomalies over 1946–1996 relative to
the 1906–1996 climatology. Points show decadal averages centred on the mean of the
corresponding decade, and lines show cubic spline fits between them. Results shown are for
observed (heavy lines on all plots) and in response to (a) greenhouse gas forcing alone; (b)
including direct sulphate aerosol forcing; (c) including both direct and indirect sulphate aerosol
forcing, (d) the Hoyt and Schatten (1993), reconstruction of solar forcing alone. (e) the Lean
et al. (1995), reconstruction of solar forcing. (f) the Sato et al. (1993), reconstruction of
volcanic forcing
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For both ECH3 and HCM2 the response to L is smaller than the response to H,
reflecting the smaller magnitude of estimated interdecadal solar irradiance changes
in the Lean et al. (1995), reconstruction. The response of HCM2 to volcanic forcing
is in the opposite sense to the observed temperature change, with a general cooling
through the 1946–1996 period. This volcanic signal reflects the relatively low vol-
canic activity during the 1920–1960 period, followed by a period of relatively high
volcanic activity during the last four decades of the century (Sato et al. 1993).

The dashed line in Fig. 2 shows the observed trend in global mean temperature
over the 1906–1996 period obtained by a simple least-squares fit between decadal
mean temperatures 1946–1996, expressed as anomalies about the 1906–1996 clima-
tology, and a straight line anchored to zero in the 1946–1956 decade. This provides
an unbiased estimate of the century time-scale trend from temperature anomalies
computed in this way, taking into account the fact that the trend may have been
accelerating (so simply computing a trend over the most recent 50 years would give a
misleadingly high estimate of the century-time-scale rate of warming). The diamonds
and vertical bars show mean and estimated 5–95% ranges of the corresponding
diagnostic computed from 90-year segments drawn from the model control inte-
grations that are used subsequently for uncertainty analysis. In all cases, we see that
the overall drift in the models is small relative to their internal variability. In con-
trast, the observed rate of warming is well in excess of the highest trends found in
unforced model integrations, suggesting that internal variability alone as simulated
by these models is very unlikely to account for the observed temperature changes.
There are marked differences between the levels of variability observed in the dif-
ferent models, which will prove important for the quantitative analysis.

An indication of the spatial patterns of the responses to the various forcings is
given by maps of surface temperature anomaly for the decade 1986–1996 (Figs. 3, 4,
and 5). The observed temperature changes (Fig. 3a) show a greater than 0.6 K

Observed and control warming rates (K/century)

HCM2 ECH3 ECH4 GFDL CCC1 CCC2
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Fig. 2 Dashed line: trend in global mean temperature over the 20th century computed by a least-
squares fit over the 1946–1996 period to globally and decadally averaged temperature anomalies
about the 1906–1996 climatology. Diamonds and vertical bars: mean and 5–95% range of uncertainty
in trends computed similarly from the available 9-decade segments of model control integrations
(overlapping successive segments by 8 decades to maximise the sample size)
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warming over the northern continental land masses, most notably over Asia, as well
as warming over much of the rest of the globe with the exception of the North
Atlantic. Data is missing in this decade over Antarctica, the Arctic, much of central
Africa and the Amazon basin. Before discussing the temperature changes in the
model integrations it is worth discussing the effect of this data mask on the tem-
perature anomalies. Figure 4g shows the corresponding temperature anomaly map
for the GS integration of HCM2 interpolated to the observational grid but retaining
all data, while Fig. 4h shows the same temperature anomaly field, but taking into
account the observational data mask. It is worth underlining at this point that the
quantitative analysis described in the following sections uses the model data with the
observational data mask: hence care is taken to compare like with like, sampling
both externally forced model integrations and segments of model controls used for
uncertainty analysis in the same way as the observations have been sampled. Not
suprisingly, the introduction of the mask does not have a great deal of impact in
regions where data is consistently available throughout the century. There is some
impact on the anomaly field in the Pacific ocean where data coverage changes
substantially over time.

Overall, the main effect of the data masking is to decrease the modelled tem-
perature response in the grid boxes where the data record does not cover the entire
1906–1996 period. This is a consequence of the fact that the climatological mean
temperature for these grid boxes is biased towards the temperatures in the later part

Fig. 3 Modelled pattern of surface temperature response to greenhouse gas forcing, expressed as
the 1986–1996 decadal mean anomaly from the 1906–1996 climatology, compared with observed
temperatures, processed similarly. (a) Observations, (b) ECH3, (c) ECH4, (d) HCM2. Units are K
on all panels. Note that the observations and the ECH4 simulation both comprise single realisations
and so should be expected to contain more noise than the other two simulations, with the
observations also being subject to sampling errors and data gaps in addition to observational error
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of the century and so the temperature anomalies in these grid boxes are biased
downward. Obviously, the data mask has most impact where there is no data,
notably in polar regions. From the perspective of detection and attribution, this may
help to give consistent results by masking out regions where the models’ behaviour

Fig. 4 Same as Fig. 3, but for greenhouse gas and sulphate aerosol forcing. (a) Observations, (b)
ECH4 (from the GSI integration: ECH4 GS integration appears very similar to the ECH4 G
integration, since direct sulphate forcing in this model was relatively low) (c) CCC1, (d) CCC2, (e)
ECH3, (f) GFDL, (g) HCM2, (h) HCM2, but with the observational data mask applied
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are least likely to match observed changes, either due to model deficiencies or
because of high internal variability. For example, maps of the ensemble mean and
standard deviation of the control integrations (not shown) indicate that the drift in
the models and the internal variability of the models are largest at the ice edge: the
use of the data mask means these regions are not included in our analysis. On the
other hand, Duffy et al. (2000) show that the exclusion of polar regions significantly
reduces the expected global mean anthropogenic warming trend, so the overall
impact of excluding polar regions on signal-to-noise is unclear.

The patterns of response of the models to G and GS are shown in Figs. 3 and 4.
All of these integrations show the general picture of the largest warming occuring
over the northern continental land masses although there is less contrast between the
warming over the land and ocean than in the observations. CCC2 GS shows a
cooling over the North Atlantic, but this is more spatially confined compared to the
observed temperature changes. For the G integrations it has already been noted that

Fig. 5 Same as Fig. 3, but for natural forcings. (a) Observations, (b) HCM2, volcanic forcing, (b)
ECH3, Hoyt and Schatten (1993), solar forcing, (d) ECH3, Lean et al. (1995), solar forcing, (c)
HCM2, Hoyt and Shattern solar forcing, (e) HCM2, Lean solar forcing
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the modelled warming is larger than the observed. This appears to be due to more
uniform warming over the oceans and land rather than an intensification of the
warming over land. ECH4 is a possible exception to this where the modelled
warming over Asia is larger than that observed: it must be stressed, however, that
this is a single integration, not an ensemble mean, so results need to be interpreted
with caution. Note that the large temperature changes seen in models at the edge of
the ice sheet do not affect our analysis because these regions are excluded by the
data mask.

The patterns of response of the models to natural forcings are shown in Fig. 5.
These are relatively spatially uniform compared both to the observed changes and
the responses to anthropogenic forcing. The HCM2 spatial pattern of response to
solar forcing appears to be relatively insensitive to the solar reconstruction, with
most warming over the tropics and high northern continental land masses, and
cooling over the Baltic. ECH3 does not respond with as much warming over the
tropics, but more warming over Eurasia. The response of HCM2 to volcanic forcing
indicates cooling almost everywhere, maximum cooling over the land masses and
only a small region of warming close to the Baltic states. Not suprisingly, having
already discussed the global mean temperature response, the modelled responses to
natural forcing in the decade 1986–1996 are smaller than that observed, and in the
case of volcanic forcing of the wrong sign.

4 Spectra of modelled and observed variability

Since we are relying on model-simulated internal variability for uncertainty analysis
in this study, the question naturally arises as to how realistic these model-based
variability estimates are. Validation of model-simulated variability on the 30–100-
year timescales used for detection is complicated by the likelihood that the obser-
vations contain an externally forced component of variability on these timescales
(Santer et al. 1996b; Stott et al. 2000). We use a standard check on residuals in the
optimal estimation procedure, as proposed by Allen and Tett (1999), to ensure that
the statistical model used is formally adequate: that is, that remaining model-data
discrepancies can be accounted for by internal variability as simulated by the model
in question. An additional check is provided by the power spectra of models and
data, shown in Fig. 6. The heavy black line shows the power spectrum of observed
global mean temperatures over the period 1861–1999 after removing a linear trend.
The various thin lines show the spectra of variability in global mean temperatures in
the model control integrations, again after removal of a linear trend from each
integration. In each case, a Tukey–Hanning window with a width equal to one-fifth
the length of the series was used, giving all spectral estimates approximately equal
variance (5–95% range on this log scale shown by the vertical error bar).

There are several ways of estimating power spectra: we adopted the approach
used in Fig. 6 for consistency with figure 8.2 of Santer et al. (1996a). There are
various remaining sources of bias between the modelled and observed spectra which
complicate the comparison. Most straightforwardly, the observations are subject to
sources of uncertainty (such as measurement errors and sampling variations from
year to year) which mean that the observed spectra are slightly higher than they
would be if we had the same error-free observations of the real world as we have of
these climate models. Since our principal concern is the possibility of the models
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underestimating variance, this is not a particularly important problem. More seri-
ously, as an estimate of real-world internally generated variability, the observed
spectrum is, on average, likely to be biased downwards at low frequencies by the
detrending procedure (since the trend is estimated from the data, some genuine low-
frequency variability is likely to have been thrown out along with it). At the same
time, the observed spectrum will be biased upwards at all frequencies by the fact that
actual externally forced variability is will not be completely removed by a simple
linear trend.

Both these sources of bias can to some extent be accounted for by removing an
independent estimate of the externally forced response, provided by the HCM3
model driven with the combination of anthropogenic, solar and volcanic forcing
(Stott et al. 2000). The resulting spectrum, OBS2, is shown by the heavy dotted line
in Fig. 6. Santer et al. (1996a), noted that removing a model-based estimate of
externally driven variability did not necessarily guarantee an accurate spectral

Spectra of global mean temperatures in model controls
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Fig. 6 Thin lines: Power spectra of global mean temperatures in the unforced control integrations
that are used to provide estimates of internal climate variability in this paper. All series were linearly
detrended prior to analysis, and spectra computed using a standard Tukey window with the window
width (maximum lag used in the estimate) set to one-fifth of the series length, giving each spectral
estimate the same uncertainty range, shown (see, e.g., Priestley 1981). The first 300 years were
omitted from ECH3, CCC1 and CCC2 models as potentially drift-contaminated. Thick solid line:
spectrum of observed global mean temperatures (Jones 1994) over the period 1861–1998 after
removing a best-fit linear trend. This estimate is unreliable on interdecadal timescales because of the
difficulty of unambiguously partitioning observed variability into externally forced and internally
generated components. Thick dashed line: spectrum of observed global mean temperatures after
removing an independent estimate of the externally forced response to both anthropogenic and
natural forcing as provided by the ensemble mean of a coupled model simulation (Stott et al. 2000).
This estimate will be contaminated by uncertainty in the model-simulated forced response, together
with observation noise and sampling error. However, unlike the detrending procedure, all of these
sources of contamination introduce a positive (upward) bias in the resulting estimate of the observed
spectrum. The thick dashed line is therefore, if anything, likely to overestimate the level of internal
variability in the real world. Power spectral density is defined such that unit-variance uncorrelated
noise would have an expected PSD of unity
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estimate, but crucially, all principal remaining sources of bias, including sampling
error due to the small size of the ensemble and systematic errors in the model’s
sensitivity or prescribed forcings, would tend to inflate the OBS2 spectral estimate
above the spectrum of internal variability in the real world.

We could, in principle, correct for some of these biases: for example, given that the
HCM3 model is itself subject to an apparently realistic level of internal variability, this
spectrum is likely to over-estimate the true variability by at least 25% since it is based
on the difference between the observations and the mean of a four-member ensemble
(notice that the heavy dashed line is above the heavy solid line at the highest fre-
quencies at which the impact of external forcing in likely to be least). Measurement
and sampling errors in the observations would increase this over-estimate, although
probably not by a significant margin. We choose to leave in these sources of bias, and
simply show the spectrum of the difference between the observations and the HCM3
‘‘all forcings’’ ensemble mean, because in this way we know that, if anything, the result
is likely to overestimate internal variability in the real world.

Comparing these spectra provides a test of model-simulated variability, which we
can formalise by applying an F-test to the ratio observed: modelled power spectral
density integrated over the spectral interval 10–60 years. Under the null-hypothesis
that the model-simulated variability is an accurate representation of observed var-
iability and that both model and observations behave like linear stochastic processes,
this ratio is, to a good approximation, distributed like F(mobs,mmodel) where m = ni

(np–2) / (ns–1) (we are grateful to Francis Zwiers for discussions on this point). In
this expression, ni refers to the number of spectral estimates in the 10–60-year
interval, np the total number of points in the series and ns the total number of
spectral estimates. The correction factors of –2 and –1 arise from the removal of the
mean and trend from the original data and our ignoring the constant term in the
power spectrum, respectively. If either estimate of the observed spectrum (heavy
solid or dotted line) is inconsistent with the estimated spectrum of any of these
models, that model is flagged with an asterisk in the legend of Fig. 6.

Under this test, the observed spectrum appears consistent with three of the models
used in this study: ECH4, HCM2 and GFDL. This suggests that simulated variability
from these models can be used consistently for uncertainty analyses but does not, of
course, guarantee their validity. In particular, variance may be accurately simulated
in the global mean, but not on smaller (even continental or hemispheric) scales. The
spectra of the ECH3, CCC1 and CCC2 models are demonstrably inconsistent with the
observed spectrum. While this may be due to the remaining biases in the estimate of
the observed spectrum noted above, it is more likely to indicate a deficiency in these
models’ simulated variability. For completeness, we continue to show results based
on these models, but it should be borne in mind that these uncertainty estimates are
likely to be underestimated. Hence detection results based on these models are more
likely to give a false-positive result (or ‘‘type-1 error’’).

5 Quantitative model-data comparison

5.1 Optimal fingerprinting

The overall approach we adopt to model-data comparison is based on the optimal
fingerprinting algorithm of Hasselmann (1979, 1993, 1997), interpreted as an optimal
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estimation problem following Northk et al. (1995); Leroy (1998); Allen and Tett
(1999); Allen and Stott (2003); Stott et al. (2003). In physical terms, we assume the
observations consist of a linear superposition of m model-simulated responses to
various external forcings, with the unknown quantities in the estimation problem
being the factors ( btrue

i ) by which we have to scale the ith model-simulated response
to reproduce observed changes. That is, we assume the ‘‘detection model’’:

ytrue ¼
Xm

i¼1

xtrue
i btrue

i ; ð1Þ

where ytrue and xi
true are the real-world and model-simulated responses (if any) to

external forcing free of sampling noise due to internal climate variability. These are
not directly observable: we never observe climate change in the real world in the
absence of internal variability, and although xtrue

i could be approximated by taking
the mean of a very large ensemble simulation, at the time this study was undertaken,
ensemble sizes typically available to climate change detection studies are of order 1–
4. Since then, somewhat larger ensembles have been performed, but sampling noise
in model simulations remains an issue, particularly on smaller spatial scales where
the signal-to-noise ratio is weaker.

Written in terms of actual observations, y, and model-simulated responses based
on averaging finite ensembles, xi, the detection model becomes

y� t0 ¼
Xm

i¼1

ðxi � tiÞbtrue
i : ð2Þ

Because of the presence of sampling noise, t0 and ti, the coefficients btrue
i must be

estimated, and the estimator we use, bi, will always have some level of uncertainty
associated with it.

It is important to stress that this detection model neglects so-called ‘‘structural
uncertainty’’: that is, the possibility that the model may systematically simulate the
wrong shape of response, as well as the wrong amplitude, to a given external forcing.
Since this study was undertaken, initial efforts have been made to account for
structural uncertainty using the ‘‘errors in variables’’ approach, a straightforward
generalisation of the detection model used here incorporating some estimate of
‘‘model error’’ in the error covariance matrix (Huntingford et al. 2006). Estimating
model error remains a highly contentious issue, however, so this is a topic of ongoing
research.

If bi is consistent with zero at a given confidence level, then we can conclude that
the ith model-simulated signal is not required to account for observed changes under
this detection model or, more specifically, that the null-hypothesis of zero amplitude
of this signal cannot be rejected. If bi is consistent with unity, then we can conclude
(at the same level of confidence) that the amplitude of this model-simulated signal
could be correct. More generally, if b is consistent with 0, then no climate change of
any form can be detected in these observations under this detection model, whereas
if all elements of b are consistent with unity and the regression residuals are
consistent with internal variability then this particular detection model (combination
of model-simulated signals) represents an adequate account of observed climate
change. A detection model that is impossible to reject when considered in isolation
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may, however, still be rejected when more information is brought to bear on the
problem, either in the form of additional observational data or additional model-
simulated signals.

In contrast to Hasselmann (1997), this interpretation makes clear that ‘‘detec-
tion’’ (rejectingHðb ¼ 0Þ) and ‘‘attribution’’ (rejectingHðb ¼ 0Þ and failing to reject
Hðb ¼ 1Þ) are essentially two aspects of the same procedure: the only distinction is
that they address different null-hypotheses. One of the criticisms levelled at Santer
et al. (1996a) in the SAR was that ‘‘detection’’, considered in isolation, is not par-
ticularly informative (it implies only that some climate change has occurred, of
unknown origin) while the ‘‘attribution’’ problem, considered in isolation, is statis-
tically ill-posed (successful attribution appears to involve failing to reject a null-
hypothesis, which is an ambiguous result: either the null-hypothesis is true, or the
test simply was not powerful enough to reject it): see Berliner et al. (2000) for a
discussion of this point. With a greater range of model simulations than were
available at the time of the SAR, it is possible to express both detection and attri-
bution in terms of a single estimation procedure, making the overall problem much
simpler: the conclusion that b, or some element thereof, is consistent with unity is
only of interest if the corresponding range of uncertainty is relatively small.

The question of whether a particular element, bi, includes zero (e.g., ‘‘is green-
house influence detectable?’’), while attracting considerable political attention, may
be relatively uninteresting from a physical point of view. We already know, on
physical grounds, that increasing greenhouse gas levels, for example, must have
some influence on climate. Rejection of the null-hypothesis of no influence provides
some reassurance that the spatial pattern of change as simulated by our models bears
some relationship to what is going on in the real world, but even this may represent a
limited advance in understanding: on basic physical grounds we should expect, for
example, any externally driven warming to occur faster over land than over the
oceans. What is of interest is the range of values of bi consistent with recent climate
observations, since this indicates the extent to which the climate model may be over-
estimating (bi < 1) or under-estimating (bi > 1) the response to a particular forcing
agent. This, in turn, gives some indication of what may occur in the future as these
forcings continue (Allen et al. 2000).

Rephrasing detection and attribution as a single estimation procedure does not
avoid all these ‘‘philosophical’’ problems. Most importantly, Hasselmann (1997)
noted that, for any formal detection and attribution procedure to get started, it is
necessary to confine attention a priori to a relatively small number of competing
explanations for observed climate change. If the number of allowed model-simulated
signals, m, is too large, then it becomes increasingly likely that at least one signal will
closely resemble a linear combination of the others, leading to a so-called ‘‘degen-
erate’’ estimation problem in which the data are insufficient to constrain the bi. We
will consider cases up to m = 4 in this paper, which allows us to cover the main
known drivers of recent near-surface temperature change: greenhouse gases,
anthropogenic aerosols, solar variability and volcanic activity. We will find that, even
with m = 3 or m = 4, many results become ill-constrained by the kind of large-scale
data considered in this paper. Extending this approach to much larger values of m,
for example to distinguish between different models’ simulations of the response to
anthropogenic forcing in the hope of identifying the ‘‘best’’ model, would require
much more detailed input data.
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The assumption that responses to forcings of this magnitude may be superim-
posed linearly on each other is central to this procedure. The evidence available
suggests that linear superposition does hold (e.g., Haywood et al. 1997; Penner et al.
1997; Santer et al. 2003; Gillett et al. 20004b; Meehl et al. 2004) for the main
anthropogenic drivers of climate change, although Meehl et al. (2003) report evi-
dence for non-linearity in the response to natural (solar) forcing. The possibility of
non-linear interactions between the responses to different forcings and between
forced and internal variability remains an important caveat, particularly as these
approaches are extended to smaller scales and other variables than temperature.

The procedure by which we estimate the bi and assign confidence intervals is
essentially based on a least-squares fit, weighted by the inverse square root of the
expected noise variance in each ‘‘statistically independent data point’’ (Hasselmann
1993; North et al. 1995). Complications arise because the model-simulated responses
are not known exactly, but only estimated from a small ensemble simulation (in
some cases with only a single member). Unbiased estimates of bi and confidence
intervals can be derived using the ‘‘Total Least Squares’’ approach detailed in van
Huffel and Vanderwaal (1994); Allen and Stott (2003), and the appendix.

5.2 Choice of detection model

The discussion in the previous subsection took the detection model, Eq. (1), as given.
In practice, specification of this model requires a strong element of expert judge-
ment. Climate models cannot be expected to simulate observed climate change in
every detail, even accounting for uncertainty due to climate noise. Certain variables,
such as ice or soil moisture, may be simulated poorly, and small scale changes near or
below the model resolution are not represented at all. Hence ytrue cannot contain
every aspect of observed climate change, but only those aspects that a reasonably
accurate model can be expected to reproduce: in the case considered here, conti-
nental scale decadal changes in near-surface temperatures. A more practical, and
often more restrictive, constraint on the range of scales and variables that can be
considered is the availability of sufficiently long control integrations to estimate their
covariance structure.

Since this study was undertaken, a number of studies have reported detection and
attribution of human influence on climate on smaller spatial scales, including Karoly
et al. (2003), Stott (2003), Zwiers and Zhang (2003), Braganza et al. (2004), Gillett
et al. (2004a), Stott et al. (2004), Karoly and Bragnza (2005), Zhang et al. (2006).
The most robust results remain, however, at the continental scale.

In our approach, the rank of ytrue is determined by projecting both observations
and model-simulated signals onto a small number (10–15) of ‘‘extended-EOFs’’
(E-EOFs, or eigenmodes of the spatio-temporal lag-covariance matrix—see Weare
and Nastrom (1982) of a climate model control integration. The number of E-EOFs
is based on a compromise: it should be small enough to exclude lower-variance
spatio-temporal modes of variability that are likely to be under-represented in the
model, but large enough to contain sufficient information to distinguish between the
signals included in the detection model. Various studies (e.g., Allen and Tett 1999;
Stott et al. 2001; Tett et al. 2002) have considered this ‘‘truncation’’ issue in some
detail: we do not explore it in detail here, but key results (particularly detection of a
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substantial greenhouse influence on recent near-surface temperatures) are insensi-
tive to varying the truncation level between 10 and 15.

The advantage of projection on to E-EOFs is that they are a relatively objective
function of the control integrations available, although there is still an element of
subjectivity in the choice of norm defining the E-EOFs. The disadvantage is that the
regional origins of detection and attribution results may be obscured by projection
onto global spatio-temporal patterns. A valuable alternative approach is to focus on
large-scale indices of change, as used by Braganza et al. (2004).

A more obvious issue is the number and choice of signals to include in the
detection model: that is, m and the xtrue

i in Eq. (1). The important point to note
here is that comparing the relative merits of two different detection models (or
candidate explanations of recent climate change—for example, a detection model
that includes the signal of anthropogenic influence with a model that does not) is a
much better posed problem than evaluating the credibility of a detection model in
isolation (Smith et al. 2003). The reason is, as noted above, there will always be
aspects of observed climate change that models fail to simulate, so failing a simple
‘‘goodness-of-fit’’ statistic like an F-test on regression residuals (see Allen and Tett
1999) is ambiguous: it could imply an important signal is missing from the
detection model, or it could simply mean that the underlying climate model is
incapable of simulating this particular set of observations. Failing some test of
goodness-of-fit with a particular detection model (signal combination) is only of
interest if this test is passed in some other, physically reasonable, detection model,
since this implies that the underlying climate model is capable of simulating those
observations, and the problem with the first detection model can be attributed to
one or more missing signals.

Given that we are primarily interested in relative statements, of the form
‘‘detection model A provides a more accurate account of these observations than
detection model B, by a significantly greater margin than we would expect if
detection model B is actually valid’’, it is clear that there can be no universally
correct detection model: different models allow us to compare different candidate
explanations of recent climate change. In the ‘‘single-signal’’ detection models
considered first, for which m = 1, forcings are combined to give only a single sim-
ulation of the climate response to, for example, greenhouse + sulphate (GS) influ-
ence on climate. The only alternative to this GS signal allowed by a single-signal
detection model is internal climate variability. This, we shall see, can be rejected at a
very high confidence level. This provides us with information about the strength of
the anthropogenic signal relative to unforced variability, but it does not provide a
complete estimate of uncertainty in the size of the anthropogenic signal because
other factors are also believed to have played a role in recent climate change. These
are considered in the multi-signal detection models, which involve estimating a
larger number of free parameters from the same limited set of observations and so
tend to yield much greater uncertainties. Nevertheless, as we shall see, a substantial
contribution from anthropogenic greenhouse gases consistently emerges as a
necessary ingredient in any adequate account of recent climate change.

The more separate signals are included in the analysis (the larger we make m), the
more likely it is that one of them will closely resemble another (or a linear combi-
nation of others). This so-called ‘‘degeneracy’’ inevitably leads to problems, since
increasing the amplitude of the first signal while reducing the amplitude of the
second will make no difference to the overall goodness-of-fit. If, however, other
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information can be brought to bear limiting the range of amplitudes on one member
of a degenerate signal pair then useful information can still be obtained on the other:
for example, we might argue on physical grounds that anthropogenic aerosols must
cause a net cooling, and hence not allow a change of sign of the aerosol signal. Even
in the absence of prior information, we can make assumptions and explore their
implications. For example, without positive evidence to the contrary, it is reasonable
to assume (while acknowledging that this assumption may turn out to be incorrect)
that the net impact of natural forcings on surface temperatures over the past
50 years is negligible, and hence that their amplitude can be set to zero (this is, in
effect, what is done in the single-signal GS results quoted below).

It is, however, only legitimate to leave a signal out of the analysis if including it
does not significantly improve the overall goodness-of-fit (i.e., if its presence is not
detectable). Results are likely to be misleading if based on a detection model which
is demonstrably false, either on the basis of residual consistency checks or because
an additional, detectable, signal has been omitted. For example, some informal
studies have estimated the magnitude of solar influence on climate assuming solar
forcing is the only driver of recent near-surface temperature change, even though the
influence of greenhouse gases can also be detected on the datasets used (e.g., Friis-
Christensen and Lassen 1991). Omitting an undetectable signal is legitimate parsi-
mony, provided the omission is acknowledged, but arbitrarily setting the amplitude
of a detectable signal to zero is simply misleading. We have included some results
from such ‘‘rejectable’’ detection models for the sake of completeness, but we should
therefore avoid interpreting these results physically: this primarily applies to the ‘‘all
natural’’ and ‘‘greenhouse-gas-only’’ models considered below.

6 Results

6.1 Single-pattern analyses

We first consider a number of cases in which it is assumed that the observed climate
change consists of a single model-simulated response-pattern (m = 1). Given the
number of scenarios and models listed in Table 1, the range of permutations of
scenarios and control simulations is potentially large. To keep the analysis man-
ageable, we will treat each A-OGCM as self-contained, using only those scenarios
available with that A-OGCM, using the first half of the available control integration
to define the pre-whitening operator P (see appendix) and the second half for
uncertainty analysis. In all cases, nine-decade segments of control variability were
overlapped by 8 decades to maximise the sample size, with an allowance made for
this overlap in the computation of degrees of freedom (see appendix). The rank of P,
or the number of E-EOFs of the control used in the definition of the detection space,
is set to 10, as in Tett et al. (1999), in all one- and two-pattern analyses which
included models with relatively short control integrations. The truncation was in-
creased to 15 for the three- and four-pattern analyses which involved models with
longer control runs (the longer the control, the more E-EOFs we can expect to
estimate accurately). Key results (particularly detection of greenhouse influence)
hold at both truncations considered.

Results will be sensitive to the truncation level, with uncertainty ranges tending to
fall as j is increased and more information is included in the analysis. The problem is

123

Surv Geophys (2006) 27:491–544 511



that some of this information may be misleading if it depends on small-scale spatio-
temporal patterns of variability in which variance is likely to be underestimated.
Checks for residual consistency can alleviate this problem (Allen and Tett 1999), but
if we allow j to vary we introduce an additional degree of freedom into the analysis
raising the question of which detection results to present (and the danger of
focussing misleadingly on the positive ones). Results from each model are consid-
ered separately, although multi-model approaches, such as Gillett et al. (2002a),
might increase signal-to-noise.

We will also consider cases in which the model-simulated response consists of the
sum of a number of A-OGCM simulations where different forcings have been
prescribed separately. The difference between this and the multi-pattern analyses is
that, in generating a single response-pattern by adding up a number of simulations or
prescribing a number of forcings in a single simulation, we are assuming the relative
amplitude of the response to these different forcings is accurately simulated by the
model, and only the total amplitude of the response is unknown. In the multi-pattern
analyses, we estimate the response to individual forcings separately. When a number
of ensemble simulations are added together to generate a response-pattern, the noise
variance in that pattern is simply the sum of the noise variance in the constituent
ensembles.

6.1.1 Greenhouse gases alone

Simulations of the 20th century forced with greenhouse gases alone (G) were
available to this study for three A-OGCMs: HCM2, ECH3 and ECH4 (many more
are now available: see Stott et al. (2006); Stone et al. (2006) for an update). Best-fit
scaling parameters are shown in Fig. 7, with estimated 5–95% uncertainty ranges.

Scaling required on pure greenhouse response

HCM2 ECH3 ECH4
-0.5

0.0

0.5

1.0

1.5

G

G

G

Fig. 7 Best-fit scaling factors and 5–95% uncertainty ranges assuming the observed record consists
only of a response to greenhouse gas increases as simulated by three A-OGCMs
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In the HCM2 and ECH4 cases, the range of acceptable values for b is greater
than zero but less than unity. This implies that, if we assume that greenhouse gases
are the only external forcing to have affected climate over this century, the
greenhouse signal is easily detectable but the models appear to be over-estimating
the amplitude of the response: that is, they need to be scaled down by roughly a
factor of 1.5–2 to reproduce the observed record, consistent with the qualitative
discussion above.

The asterisk on the horizontal axis in the ECH3 case indicates that the weighted
regression residuals (distance of the points from the best-fit line in a scatter plot of
model vs. observed climate change in the various components of y) are sufficiently
large that we can reject the hypothesis that they are attributable only to internal
climate variability as simulated by the ECH3 model at the 10% level. The choice of
10% is arbitrary, but we believe it is appropriate to use a higher P-value for the
residual check than the level used for confidence intervals because this is not a very
powerful test. Any evidence of deficiency in model-simulated variability gives cause
for concern, even if only at a relatively low confidence level.

The asterisks could imply either that some other agent is affecting climate that
cannot be represented as a simple scaling on the greenhouse response, or that
variability in the ECH3 control simulation is unrealistically low. Alternatively, since
we are using a relatively high threshold (10%) for this test, they could simply be the
result of chance: we would expect in approximately one in ten cases for the test to
fail without anything being wrong with either the forcings considered or the
model-simulated variability. This ambiguity in interpretation of results from tests of
residual consistency makes them difficult to use as a central component of the
analysis: unlike Tett et al. (1999), and Stott et al. (2001), we prefer to focus here on
which signals are detectable, using the checks for residual consistency simply to flag
those cases in which uncertainty estimates are likely to be misleadingly low.

Figure 8 shows the 20th-century warming trend ‘‘attributable’’ to greenhouse gas
influence under this detection model: see Appendix for the details of how this is
computed. Even after these model-simulated responses to greenhouse gas forcing
have been scaled down to be consistent with observed climate change, the warming
trend attributable to greenhouse gas influence over the 20th century remains sub-
stantial: that is, comparable in magnitude to the total observed warming. This is
important because the size of sulphate aerosol influence on climate remains uncer-
tain (Ramaswamy et al. 2001). If, despite current evidence to the contrary, sulphate
cooling eventually proves to have a negligible impact on climate, then we might have
to conclude that current models overestimate the response to greenhouse gas forc-
ing. Even in this hypothetical situation, however, the magnitude of the estimated
response to greenhouse gases remains large enough to imply a significant warming in
the future (Allen et al. 2000).

Attributable warming trends in Fig. 8 should not be over-interpreted, since in the
case of the HCM2 model at least, the hypothesis that recent near-surface temper-
ature changes can be accounted for purely as a scaled model-simulated response to
greenhouse gas forcing can be rejected. Even though the residuals of regression are
consistent with internal variability as simulated by the HCM2 model (indicated by
the absence of an asterisk), other signals omitted from this analysis (specifically
sulphate influence) do have a detectable influence. The conditional statement,
‘‘if greenhouse gases had been the only contributor to late twentieth century
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temperature trends, then they would have accounted for a trend of 0.3–0.5 K/cen-
tury’’ is only of limited interest if we have evidence that the condition is not satisfied.

6.1.2 Greenhouse gases and anthropogenic sulphate aerosols

Simulations of the response to the combined influence of greenhouse gases and the
direct albedo influence of anthropogenic sulphate aerosols were available for all six
A-OGCMs. In one case, ECH4, an additional simulation was available including
indirect sulphate forcing and changes in tropospheric ozone. Figure 9 shows that the
inclusion of sulphate forcing largely eliminates the need to scale down the model-
simulated responses to reproduce observed climate change, with all b ranges with the
exception of CCC1 now consistent with unity.

Given that the climate sensitivities of these models vary by almost a factor of two,
it may seem surprising that almost all give simulated climate change under GS
forcing that are consistent with the observed changes. Sensitivity differences do not
translate directly into differences in transient response: more sensitive models take,
on average, longer to re-equilibrate after a change in forcing. Hence differences in
transient response tend to be smaller than differences in sensitivity for well-under-
stood thermodynamic reasons (Hansen et al. 1985). The transient response is also
affected by the details of oceanic heat uptake and there has been some speculation
that changes in ocean circulation may act to further surpress differences between
transient responses beyond the simple thermodynamic effect: these issues are
reviewed by Cubasch et al. (2001).

Pure-greenhouse contrib. to 20C warming (K/century)
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Fig. 8 Implied contribution to warming trends over the 20th century, in degrees per century,
assuming anthropogenic greenhouse gases are the sole external contributor to climate change.
Confidence intervals are not shown where the regression residuals implied an unreliable noise
model—indicated by the asterisks. Dashed line indicates total observed rate of warming in this
diagnostic
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Expressed in terms of contributions to 20th century warming (Fig. 10), we find
very similar ranges to those in the previous subsection. To some extent this can be
attributed to the fact we are using single-signal detection models in this section.
The observed record contains a substantial warming trend so, given only a single
signal to explain it, the trend attributable to that signal is very similar to the total
observed trend in all cases in which the signals contain a pronounced trend. We
are fitting all model-simulated signals to the same data so it is not surprising that,
after the fitting is done, the scaled model-simulated responses are brought into
agreement with each other. We shall see, however, in section 6.6 below that this
similarity of results across single-signal detection models is not simply an artifact of
the analysis: even if information as to the size of the global mean warming trend in
the observations is intentionally suppressed, consistent results are still obtained
across models.

Anticipating results from the multi-pattern analyses, we shall find that in all cases
except ECH3 no further signals are detectable beyond the GS signal in this partic-
ular diagnostic. This means, in the jargon of detection and attribution, that recent
climate change is attributable to GS influence, in that there is no need either to
modify the amplitude of the GS response nor to invoke responses to other forcing
agents to account for recent observed changes. This does not, of course, mean that
other external factors have not affected climate over this period, simply that their
influence is not strong enough to be detectable in this particular (large-spatial-scale,
decadal-time-scale) diagnostic.

Not only are the model-simulated response amplitudes consistent with recent
observed changes in Fig. 9, but the range of uncertainty in the scaling factors b is
quite small: in most cases the distance between the lower end of the uncertainty
range and the zero line is greater than the 5–95% range. We should be cautious

Scaling required on combined greenhouse+sulphate response
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Fig. 9 Signal amplitudes estimated as above, but based on model simulations forced with the
combined influence of greenhouse gases and sulphate aerosols, including in one case (GSI) the effect
of indirect aerosol and tropospheric ozone
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about interpreting this as a ‘‘4-r result’’, because the distribution of estimators under
Total Least Squares is non-Gaussian and with the relatively small lengths of control
available, we cannot make quantitative statements about very low-probability events
(Gillett et al. 2000). Nevertheless, the distance of these uncertainty ranges from zero
indicates we are obtaining much higher signal-to-noise levels in this analysis than
previous studies such as Hegerl et al. (1997), Tett et al. (1999), and Hegerl et al.
(2000). Since this study was undertaken, further progress in signal-to-noise has been
made through the use of larger ensembles (Stott et al. 2006) and averaging signals
across models (Gillett et al. 2002a; Huntingford et al. 2006).

Our sensitivity studies suggest that the reason for this higher signal-to-noise is
primarily our use of a diagnostic which is based on surface temperatures expressed as
anomalies about the 1906–1996 climatology, rather than anomalies about the past
50 years as in these previous studies. The fact that temperatures have not only been
rising over the past 50 years but have also been generally warm relative to the
century as a whole is clearly very powerful information in discriminating against
climate noise as simulated by these A-OGCMs. A diagnostic based solely on 50-year
trends or anomalies about the climatology of the 50-year period used in the analysis
would make no distinction between a 50-year 0.4 K warming that started from
anomalously cold conditions during the control integration and one that started from
the long-term control climatology. Since the control climate is stationary (and can be
relatively accurately modelled as an AR(1) process—Tett et al. 1997), the former
event is much more likely to occur by chance than the latter. This enhanced signal-
to-noise comes, of course, at a price: our results are more sensitive than those based
purely on the past 50 years of data to possible systematic errors in early 20th century
temperature observations, which are difficult to quantify. This highlights the

Combined anthropogenic contrib. to 20C warming (K/century)
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Fig. 10 Contributions to 20th century warming based on model simulations forced with the
combined influence of greenhouse gases and sulphate aerosols. Confidence intervals are not shown
where the regression residuals implied an unreliable noise model as in Fig. 8
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importance of using multiple lines of evidence to support conclusions from the
instrumental record (Hegerl et al. 2006).

Unlike the pure-greenhouse case, we generally do not have positive grounds to
reject the hypothesis that recent climate change is entirely due to the combination of
greenhouse and sulphate forcing and internal variability as simulated by these
models (with the exception of ECH3, highlighted, and noting the inclusion of tro-
pospheric ozone in the forcing of ECH4-GSI). The following sections will conclude
that the influence of natural forcings on these timescales is small and generally
indistinguishable from zero. Thus the statement that the combination of these
anthropogenic forcings have been responsible for 0.3–0.5 K/century warming over
the 1906–1996 period represents a reasonable summary of our results, and has been
supported by subsequent work (e.g., Stott et al. 2006). It is, of course, subject to
caveats regarding the simulation of internal variability and the requirement that the
net response to natural forcings proves negligible on these timescales, consistent
with current evidence.

6.1.3 Solar and volcanic forcing

In the case of two models, HCM2 and ECH3, simulations were also available of the
response to the main known natural external influences on climate, solar variability
and explosive volcanism. Considered alone, the influence of volcanic activity as
represented in the Sato et al. (1993), reconstruction is not a promising candidate to
explain all recent observed climate changes, since it is of the wrong sign (corre-
sponding b values are negative). The increase in solar irradiance observed in the
reconstructions of Hoyt and Schatten (1993), and Lean et al. (1995), produce a
change in the correct sense, but some (in most cases a significant) amplification is
required for consistency with the observed record. This in itself would not be suf-
ficient to rule out a solar explanation of recent observed climate change, since
mechanisms amplifying solar influence on climate have been proposed in the liter-
ature (Haigh 1996; Svensmark and Friis Christensen 1997) that are not represented
in these simulations: in both models, only total incoming solar irradiance was altered
and there was no explicit representation of any response of either stratospheric
ozone or cloud-cover (Figure 11).

In all cases except the HCM2-V simulation (in which the volcanic signal was
estimated with an unphysical sign) the regression residuals were found to be incon-
sistent with the hypothesis that the observed change was attributable to these natural
forcings plus internal variability as simulated by these A-OGCMs. This figure should
not be interpreted as indicating there is anything necessarily wrong with these
models’ simulation of the response to natural forcing (although see Robock 2000 for a
discussion of the response to volcanic forcing), but that some other signal that is (by
chance) anticorrelated with volcanic influence is likely to be confusing the picture.

Single-signal results do provide some indication that purely-natural explanations
of recent observed climate change are less credible than explanations involving
anthropogenic forcing, but the ambiguity of these residual checks has been noted
above (failing a check on residuals could indicate either a missing signal or a defi-
ciency in model-simulated variability). More conclusive evidence against a purely-
natural account of recent temperature changes is provided by the multi-pattern
detection results. We do not present an ‘‘attributed trend’’ figure for these natural
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forcings: since these can be rejected as adequate accounts of late-20th century
temperature change, the size of trend nominally attributable to them is misleading.

6.1.4 Combinations of natural and anthropogenic forcing

On physical grounds, we expect both natural and anthropogenic influences to have
played a role in recent observed climate changes. The simplest test of a model’s
performance in simulating the response is therefore to add up the simulated re-
sponses to these various forcings to produce a single ‘‘total climate change’’ signal to
compare with the observed record. Alternatively, all forcings could be prescribed
jointly in a single ensemble simulation (Stott et al. 2000). This would have the
advantage of lower noise in the model-simulated signal (adding up signals from
different simulations increases the noise in the total) but provided the linearity
assumptions inherent in the detection model (6) are valid, would otherwise be
exactly equivalent.

Figure 12 shows results from various combinations of natural and anthropogenic
forcing. Model-simulated signals based on the combination of anthropogenic and
solar forcing need to be scaled down to give the most accurate reproduction of the
observed record, in some cases by a significant margin (the uncertainty range
excludes unity). This should be expected, since both of these forcings act in the same
sense and the response to anthropogenic forcing alone was found to be consistent
with the observed record. The exception here is the ECH3-GSL simulation, which
gives a scaling factor consistent with unity but fails the residual check, suggesting

Scaling required on pure and combined natural responses
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Fig. 11 As previous figure but based on model simulations forced with the Hoyt and Schatten
(1993), (H) and Lean et al. (1995), (L) reconstructions of past solar irradiance changes and the Sato
et al. (1993), (V) reconstruction of aerosol forcing due to explosive volcanism. Double letters
indicate the simulated responses were added up to give a single composite response-pattern in cases
where forcings were prescribed separately
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something is still unaccounted for or that ECH3 internal variability is incorrect (as
was suggested by the spectral analysis). The combination of anthropogenic and
volcanic forcing needs to be scaled up, although the discrepancy is not significant:
again, this is consistent with the fact that volcanic forcing has opposed anthropogenic
over recent decades.

Finally, the combination of anthropogenic, solar and volcanic forcing appears to
give a response of approximately the correct magnitude, although only one of the
two available solar forcing indices (L) gives a composite response entirely consistent
with the observed record. The residual consistency check suggests something is still
unaccounted for in the GSHV composite although, as noted above, results from this
test should be treated as indicative since it is not particularly powerful and we are
using a relatively high confidence threshold. This could be either a gross error in the
observations or model response, or it could indicate something amiss in this par-
ticular set of forcings: perhaps the Lean et al. (1995) solar reconstruction really is
more realistic than the Hoyt and Schatten (1993) reconstruction, or perhaps the
difference is simply compensating for another error. The ‘‘attributable trend’’ figure
corresponding to Fig. 12 appears similar to Fig. 10, unsurprisingly since the
anthropogenic signal is the dominant factor over this period.

Figure 12 provides an overall indication of model performance if we assume both
that natural and anthropogenic forcings have contributed to recent observed climate
change and that the relative amplitude of the responses to these different forcings
are correctly simulated by the climate models. It does not tell us which of these
various forcings are necessary to account for recent changes or, more quantitatively,
what fraction of recent observed climate change is attributable to the different
forcings. This can only be achieved by a multi-pattern analysis, to which we now
proceed.

Scaling required on combined anthropogenic & natural response
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Fig. 12 As previous figure but based on single ‘‘total climate change’’ signals obtained by adding up
the responses to anthropogenic and natural forcing where the appropriate simulations are available
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6.2 Multi-pattern analyses

6.2.1 Greenhouse and sulphate forcing

On the assumption that anthropogenic greenhouse gases and sulphate aerosols, as
the largest single factors expressed in terms of total radiative forcing, have domi-
nated climate change over the past few decades, the simplest multi-pattern analysis
is to consider these two signals together. In all cases, both forcings were prescribed
together in a GS ensemble and greenhouse gas influence was prescribed alone in a
separate G ensemble. If we use these greenhouse and greenhouse + sulphate
response-patterns as the signals in our detection model, the interpretation of the
results is as follows. The amplitude of the greenhouse signal, bG0 , represents
the amount of additional greenhouse influence we need to add to the green-
house + sulphate response in order to reproduce the observations (the prime
indicating that it is a correction). Thus the total scaling required on the amplitude of
the greenhouse response is given by the sum, bG ¼ bGS þ bG0 , while the scaling
required on the sulphate response is given simply by bS ¼ bGS. These issues are
discussed in detail in Allen and Tett (1999), and Stott et al. (2001) (Fig. 13).

Allowing for uncertainty in model-simulated signals has a much more sub-
stantial impact on results in multi-pattern analyses, particularly in the case of the
ECH4 model where only single-member ensembles are available. For reasons
discussed in Allen and Stott (2003), this uncertainty primarily affects estimated
upper bounds on confidence regions, which in some cases recede to infinity.
Averaging patterns across models is likely to be helpful here (Gillett et al. 2002a;
Huntingford et al. 2006).

Scaling required on G & S responses, individually estimated
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Fig. 13 Amplitude of greenhouse (G) and sulphate (S) signals estimated separately from the
observed record for HCM2, ECH3 and ECH4 models (left three boxes). Right box shows
corresponding result for the ECH4 sulphate signal including indirect sulphate forcing and
tropospheric ozone
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In all but one case (ECH4 G & S analysis) we find that greenhouse gas influence is
both detectable and consistent in amplitude between model and observations ( bG

consistent with unity and inconsistent with zero). We stress that, in this analysis, the
sulphate signal is allowed to take whatever amplitude provides the best fit to the
observations, so this detection of greenhouse influence is not contingent on the
simulated sulphate response being of the correct amplitude. Uncertainties in the
sulphate signal amplitude are somewhat larger, but it is detectable (bS significantly
greater than zero) in the HCM2 case. Uncertainties are significantly larger in the
case of the ECH4 model. This is likely to be because only single-member ensembles
are available, so the noise in the model-simulated response-patterns is as large as the
noise in the observations, and possible degeneracy between the G and S signals
simulated by this model. As a result, in the case when only direct sulphate influence
was included in the ECH4 simulation, signals were sufficiently weak and degenerate
that no useful bounds could be placed on the individual G and S amplitudes. We
believe this is simply a consequence of poor signal-to-noise in this single-member
ensemble, and hence does not appear to be a problem for other models in which
ensembles are larger or the responses to forcing is stronger.

Figure 14 shows the contributions to 20th century warming from both greenhouse
and sulphate influence, estimated from the observed climate record in this way.
While the GS combination, considered as a single signal, was found to contribute
0.3–0.5 K/century to the warming observed over the century, when the individual
contributions from greenhouse gases and sulphate aerosols are estimated individu-
ally, the greenhouse induced warming is estimated to lie in the range 0.3–1.2 K/
century, partially compensated for by a sulphate cooling of up to –0.7 K/century.
This separation of attributable warming into different components is highly sensitive
to the details of the model simulations, with the ECH3 model indicating much lower

Greenhouse and sulphate contribs. to 20C warming (K/century)
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Fig. 14 Estimated contributions to global mean temperature change over the 1906–1996 period due
to greenhouse gases (G) and sulphate aerosols (S)—including indirect sulphate and tropospheric
ozone (SI) in the case of model ECH4
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levels of both greenhouse- and sulphate-induced temperature changes. Again, in the
ECH4 case with only direct aerosol forcing, attributable trends are highly uncertain
because of the degeneracy between the signals.

6.2.2 Implications of greenhouse and sulphate signals

On the assumption that the net effect of natural forcing on the diagnostic considered
here is relatively small, we can examine the implications of the joint distribution of
the estimated magnitude of the greenhouse and sulphate signals. These joint dis-
tributions are shown in Figs. 15 and 16 for the HCM2, ECH3 and ECH4 models, also
including results from the HCM3 model for completeness. The crosses show the
best-guess scaling factors on the model-simulated greenhouse and sulphate
responses, while the curves enclose the estimated 90% confidence region on the
estimate. These regions are strongly tilted, indicating that the uncertainties in these
two signals are correlated: that is, if we are underestimating the amplitude of the
greenhouse signal, we must also be underestimating the amplitude of the sulphate
signal and vice versa (Mitchell et al. 2001; Hegerl and Allen 2002). This to be
expected, since greenhouse warming is opposed by sulphate cooling. In the case of
the HCM2 and HCM3 models, the greenhouse and sulphate signals are sufficiently
distinct from each other for both to be detectable: the confidence region does not
intersect either axis. In the case of ECH3 and ECH4, only the greenhouse signal is
detectable.

Figure 15 shows the implications of these estimated scaling factors for the net
anthropogenic warming by the decade 2036–2046 under the IS92a forcing scenario,
following the procedure of Allen et al. (2000). This is based on the assumption that
the same scaling factors can be applied to the model-simulated future warming as
over the past few decades. This assumption is supported by simple model simu-
lations of the sensitivity of global mean temperature to key parameters, but would
clearly be invalidated by a sudden non-linear climate change over the forecast
period.

Forecast 50-year warming appears to be relatively well constrained by the
observed signal, since the isolines of future warming (shown by the dotted con-
tours) are aligned with the orientation of the confidence regions. Under this
forcing scenario, net anthropogenic warming relative to pre-industrial by the
decade 2036–2046 is estimated to be 1.0–2.1 (HCM2), 1.0–2.3 (HCM3), 1.4–2.3
(ECH3) and 0.6–2.0 K (ECH4-GSI). We should not expect these ranges to be
identical, since they are the product of a statistical esimation procedure, but they
serve to re-illustrate the point made in Allen et al. (2000): reconciling A-OGCM
simulations with the observed record not only serves to provide an uncertainty
estimate on individual forecasts, but it also, in principle, draws different model
simulations together. The raw ECH3 simulation, for example, predicts a rather
lower warming by the mid-21st century than the other three, but this is
‘‘corrected’’ by the model-data fitting exercise, largely as a result of down-
weighting the amplitude of sulphate cooling.

Less well constrained by the observed signal is the estimated magnitude of
sulphate forcing itself, shown in Fig. 16. Recall that the estimated scaling factor, bi,
represents the amount we have to scale the ith model-simulated response to a given
forcing to reproduce the observed signal. If both forcing and response are uncertain,
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then bi may be written as the product of a scaling on the prescribed forcing, bi
F, and a

scaling on the response per unit forcing, bR
i . If we assume that errors in the sulphate

response per unit forcing scale with errors in the corresponding greenhouse response
(also not strictly justified, since the mechanisms, time-history and spatial patterns of
the two forcings differ), then bR

G ¼ bR
S . Note that the bR

i correspond to scaling factors
applied to model-simulated responses normalised by the forcing, not the normalised
response itself in terms of K/(W/m2), so we are only requiring that errors in the
two normalised responses are correlated with each other, not that the responses
themselves are the same. Hence,
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ECH3 range: 1.4 to 2.3  K
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ECH4 range: 0.6 to 2.0 K 
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Estimated anthropogenic warming by 2036-46 under IS92a

Fig. 15 Joint uncertainty intervals on scaling required on model-simulated greenhouse and sulphate
signals to reproduce the observations over the 1946–1996 period: crosses indicate the best fit, curves
enclose the 90% confidence region. Dotted contours show the model-simulated total anthropogenic
warming by the decade 2036–2046 as a function of the scaling factors applied to the greenhouse and
sulphate signals: to the extent that the confidence regions are aligned with these isolines of future
warming, the forecast is well constrained by the observed signal. Numbers in titles on individual
panels show 5th and 95th percentiles of the estimated distribution of warming by 2036–2046
consistent with the observed signal
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bG

bF
G

¼ bR
G ¼ bR

S ¼
bS

bF
S

: ð3Þ

If we further assume that greenhouse forcing is correctly specified in these models
(not entirely consistent, since 1990 values for greenhouse forcing range from 1.7 to
2.2 W/m2 in the simulations considered), then bF

G ¼ 1, giving

bF
S ¼

bS

bG

: ð4Þ

For example, if an allowed scaling on the greenhouse signal is 0.8 and the
greenhouse forcing is assumed correct, this implies that the model is over-estimating
the greenhouse response by 25% (that is, bG ¼ bR

G ¼ bR
S ¼ 0:8). If, consistent with

this scaling on the greenhouse signal, an allowed scaling on the sulphate signal, bS, is
0.4, then allowing for the same 25% over-estimate in the normalised response, this
implies the imposed sulphate forcing is overestimated by 50% (0.4/0.8 = 0.5).

The dotted contours in Fig. 16 show isolines of sulphate:greenhouse scaling
factor ratios corresponding to different values of the sulphate forcing in 1990, as
estimated from the relevant simulations. The implied range in sulphate forcing
amplitude is relatively well constrained only in the case of HCM3 (–0.5 to –1.5 W/
m2 in 1990), and in the case of ECH4-GSI it is impossible to place a lower (most
negative) bound on sulphate forcing amplitude, again reflecting the large uncer-
tainties resulting from single-member ensembles. With ECH4-GS, no bounds can
be placed on the sulphate response because the signal is too ill-defined. Where
multi-member ensembles are available, the only conclusion that may perhaps be
drawn from this figure is that very high values of net sulphate forcing are excluded
as inconsistent with the observed signal. This is physically reasonable, since we are
assuming in this analysis that the net effect of natural forcing on this diagnostic is
small: hence if errors in the response are the same for both, the magnitude of the
sulphate forcing must be less than that of the greenhouse forcing to account for the
observed warming.

In summary, uncertainty in the sulphate forcing and response does not eliminate
the need for a substantial response to greenhouse gases to account for the recent
observed warming. Even if the net sulphate signal turns out to be very small, and
models are therefore overestimating the rate of greenhouse warming, a substantial
greenhouse signal remains after this overestimate is corrected. If the sulphate signal
turns out to be very large, then the greenhouse warming will need to be larger still
(and underestimated by current models) to account for the observed change.

6.2.3 Greenhouse, sulphate and solar forcing

If we include the model-simulated responses to natural as well as anthropogenic
forcing into a multi-pattern analysis, a bewildering array of signal combinations
present themselves, and it would be impossible to attempt an exhaustive analysis
here. The specific combination of signals appropriate to a particular study will
depend on the physical questions under investigation. It is misleading and ultimately
fruitless to suggest there can be some kind of ‘‘global’’ detection and attribution
analysis capable of summarising the climate-related information-content of a dataset
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in a single estimation procedure. For this reason, we are distributing the software
used in this study and selected input datasets to allow investigators to apply these
techniques themselves to the specific questions that interest them. Nevertheless, to
conclude this study, we present results from multi-pattern analyses from the two
models for which response-patterns corresponding to natural forcing agents were
available. We begin by focussing on the combination of anthropogenic and solar
forcing, since two models are available with relevant runs (ECH3 and HCM2). In
both cases, the Hoyt and Schatten (1993), and Lean et al. (1995), reconstructions of
solar forcing are considered separately.

Including the impact of solar forcing while neglecting the impact of volcanic
forcing is a somewhat artificial exercise, since even on interdecadal timescales,
volcanic forcing is thought to be as large or larger than, and of the opposite sign to,
solar forcing over the latter half of the 20th century on which we focus. Nevertheless,
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Fig. 16 As previous figure by plotted against isolines of sulphate forcing amplitude in 1990, shown
as a function of sulphate:greenhouse scaling factor ratios on the assumption that the greenhouse
forcing is correct in each of the model simulations
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it is instructive to present these results as a sensitivity study. We use a truncation of
15 for these multi-pattern results: relatively long control runs are available for both
of these models mean higher truncations are possible. We note in the text if results
are altered by reducing to truncation 10.

Results are shown in Fig. 17. In the ECH3 case, greenhouse influence remains
detectable at the 5% level regardless of which reconstruction is used to provide the
solar signal, although it is only detectable at the 10% level if the Lean et al. (1995),
reconstruction is used and the truncation is reduced to 10. On the other hand, the
uncertainty ranges on bG are less than unity and with the Lean et al. (1995), forcing
bL appears to be larger than bG. In physical terms, this implies that the model is
over-estimating the response to greenhouse forcing slightly while getting the
amplitude of the response to solar forcing either approximately correct or moder-
ately underestimated. The discrepancy, however, is not very significant, as indicated
by the overlap between the two ranges, and sensitive both to the solar reconstruction
used and to the truncation, so it would be incorrect to conclude on the basis of this
evidence alone that any process was amplifying the response to solar forcing that is
not represented in this model.

It is noteworthy, however, that greenhouse influence remains detectable at at
least the 10% level even at the lower truncation and allowing both sulphate and solar
signals to fit the data as well as possible. Despite the fact that we are estimating three
independent quantities from essentially only 10–15 pieces of information (the
number of E-EOFs of the control used in the definition of the detection space), the
greenhouse signal in the observed climate record is sufficiently strong for it still to be
detectable.

Scaling required on G, S & solar responses, individually estimated
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Fig. 17 Left two boxes: Three-way estimation results based on greenhouse, sulphate and solar
forcing using the ECH3 model, considering the Hoyt and Schatten (1993), (H) and Lean et al.
(1995), (L) solar reconstructions separately. Right two boxes: Three-way estimation results based on
greenhouse, sulphate and solar signals simulated by the HCM2 model
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With the HCM2 model (right two boxes), both greenhouse and sulphate signals
are detectable with both solar reconstructions and both truncations, while the solar
signal based on the Lean et al. (1995), forcing timeseries is detectable at truncation
15 but not at truncation 10. We are inclined to view this result with caution because it
does not emerge in the lowest-ranked, best-sampled, E-EOFs. Moreover, it is sen-
sitive to the solar reconstuction used: in contrast to the Lean et al. (1995), result, the
response to the Hoyt and Schatten (1993), forcing timeseries emerges with the wrong
sign: the range of uncertainty on H in the third box is entirely negative. If we
consider other periods in the 20th century (Tett et al. 1999) or other diagnostics
(Gillett et al. 2000; Stott et al. 2001), the influence of solar forcing on the observed
climate record emerges more clearly.

Figure 18 shows trends attributable to anthropogenic and solar signals in these
three-way analyses. In the case of HCM2, trends attributable to greenhouse gases
and sulphate aerosols are similar to the all-anthropogenic case considered in Fig. 14.
Because the scaling factor on H is entirely negative, this three-way analysis suggests
a global mean cooling due to the Hoyt and Schatten (1993) reconstruction of solar
irradiance, which is unphysical: the most likely explanation is that some other signal
or combination thereof is confounding results.

6.2.4 Greenhouse, sulphate, solar and volcanic forcing

Finally, for the HCM2 model, we show results from analyses including the effect
of volcanic forcing, this being the only model available to this study for which the
relevant ensemble simulations have been performed: more are now available, and
see Stott et al. (2006); Stone et al. (2006) for an update. The left two boxes in
Fig. 19 show scaling factors assuming solar and volcanic influence were the only

G, S & solar contributions to 20C warming (K/century)
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Fig. 18 Global mean temperature trends attributable to greenhouse, sulphate and solar signals
presented in the previous figure
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contributors to late 20th century temperature change. In both cases, as observed
by Tett et al. (1999), and Stott et al. (2001), the only account consistent with the
observations requires the volcanic signal to have an unphysical sign (i.e., enhanced
volcanic aerosol loadings causing warming), and so can be rejected. Combinations
of anthropogenic and volcanic forcing, or anthropogenic, volcanic and solar
forcing, with the natural signals either combined or treated separately, indicate
both anthropogenic signals are detectable in this diagnostic. The estimated
amplitude of the anthropogenic signals is consistently close to unity, indicating
the model-simulated amplitude of the anthropogenic response is approximately
correct.

In a multi-pattern detection problem, we are asking the data to pick up on what
may be relatively subtle features of the various signals that distinguish them from
each other. As we increase the number of candidate signals using the same input
dataset, the probability increases that the signals will begin to resemble scaled
versions of each other, making estimated amplitudes very unstable: this is the
degeneracy problem discussed by Tett et al. (1999). For this reason, results are
generally much more sensitive to the precise specification of the problem than is
the case in a single-pattern analysis. To illustrate this point, Fig. 19 shows results
from the 4-way analysis including the solar signal based on the Hoyt and Schatten
(1993), reconstruction: if the Lean et al. (1995), reconstruction is used instead, the
level of degeneracy between the signals is such that none of the four signals can be
distinguished from either zero or unit amplitude. Given that the main feature
distinguishing solar from greenhouse forcing on surface temperatures is the 11-year

Scaling on G, S & natural responses, individually estimated
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Fig. 19 Left two boxes: Two-way estimation results based on solar and volcanic signals using the
HCM2 model: note that the volcanic signal is required to have an unphysical sign. Next three boxes:
Three-way estimation results based on greenhouse, sulphate and either volcanic or combined
solar + volcanic signals. Right box: Four-way estimation results based on greenhouse, sulphate, solar
and volcanic forcing using the HCM2 model, estimating both solar and volcanic signal amplitudes
separately
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cycle in the former, the response to which is intentionally suppressed in this
diagnostic, it is likely that other diagnostics will need to be used to resolve this
degeneracy: see, for example, North and Stevens (1998), and North and Wu (2001).
Our purpose in this paper is to explore the full implications of a single observa-
tion-vector.

Trends attributable to the various signals shown in Fig. 19 are displayed in
Fig. 20. In all cases, trends attributable to natural agents are relatively small, while
between 0.5 and 1.2–1.7 K/century (depending on the analysis) is attributed to
greenhouse influence, and up to – 0.7 K/century cooling due to sulphate aerosols.
The larger warming rates attributable to greenhouse influence in the final box should
be treated with caution, since the best-guess scaling on the solar signal in this
diagnostic is unphysically negative. The ‘‘prior ignorance’’ assumption may be par-
ticularly inappropriate here, in that despite considerable uncertainty regarding re-
cent solar influence on climate, there seems to be a general consensus that solar
irradiance has increased over the past century and that this would have a positive
impact on surface temperatures. Nevertheless, the figure serves to illustrate how the
uncertainty in the trends attributable to anthopogenic factors increase when natural
agents are included in the estimation procedure.

6.3 Summary of results and sensitivity to details of the analysis

Figure 21 shows a (necessarily incomplete) summary of results discussed in this
study expressed in terms of scaling factors by which various model-simulated signals
need to be multiplied to reproduce the observations. For completeness, the HCM3
model has been included although details of this model are discussed elsewhere
(Stott et al. 2000; Tett et al. 2002). To re-iterate, models forced with greenhouse
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Fig. 20 Global mean temperature trends attributable to the various signals presented in the
previous figure
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gases alone appear to overestimate the observed response, and hence their response
needs to be scaled down. Models forced with the combinations of greenhouse gases
and sulphate aerosols appear to simulate the amplitude of the observed response
approximately correct, at least at this level of confidence, although the GFDL, CCC1
and CCC2 appear to be overestimating the response (estimated scaling factors less
than unity, in the case of CCC1 significantly so).

Selected multi-signal results are shown in the right three panels: in the case of
HCM3, these comprise greenhouse; the combination of direct and indirect sulphate,
tropospheric and stratospheric ozone forcing; and the combination of solar and
volcanic forcing. In the case of ECH3, these comprise greenhouse; direct sulphate;
and solar forcing, shown here using the Hoyt and Schatten (1993) reconstruction. In
the case of HCM2, these comprise greenhouse; direct sulphate; solar (again using
Hoyt and Schatten 1993); and volcanic forcing. These estimation results suggest that
the ECH3 model may be overestimating the greenhouse response (although the
signal remains detectable), in that the uncertainty range for bG is entirely less than
unity. The lack of a simulation of the volcanic response with this model complicates
the interpretation of this result: volcanic cooling has probably masked some
greenhouse warming in the observed record (e.g., Christy and McNider 1994), and
without a volcanic signal in the analysis, the estimation procedure attributes this to
the model overestimating the magnitude of the greenhouse response.

The lower panel shows the trends attributable to different signals under these
various accounts of 20th century temperature change, with a grey band indicating the
estimated total warming and the corresponding uncertainty range from the most
variable model control segment used for uncertainty analysis.
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Fig. 21 Summary of results presented in this paper—see text for details
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6.4 Results based on ordinary least squares regression

Throughout this paper, we have used a variant on the standard weighted-least-
squares approach to detection and attribution (Hasselmann 1997) that takes into
account the presence of sampling uncertainty in model-simulated signals based on
small ensembles. This algorithm has been shown (Stott et al. 2003) to correct for a
low bias in estimated signal amplitudes based on the standard approach: hence we
believe the estimated signal amplitudes and attributed trends in Fig. 21 to be as close
to unbiased as we can achieve. Nevertheless, as a sensitivity study, Fig. 22 shows the
corresponding results based on the standard (ordinary least squares, or OLS)
approach, as used by Hegerl et al. (1997), Tett et al. (1999) and Stott et al. (2001).
Overall, the message of the figure is little changed except that models now appear to
be consistently overestimating the response in the single-pattern results: as stated
above, this is an artefact of the bias in the OLS algorithm. Detection of non-
greenhouse anthropogenic influence as simulated by the HCM3 model is now
marginal, and the solar signal is scaled down in ECH3, being replaced by the
greenhouse signal. This latter case illustrates how the biases in OLS are particularly
acute for low signal-to-noise responses to natural forcing. Results for HCM2 appear
relatively unchanged.

6.5 Sensitivity to control segments used for optimisation and testing

An important issue in detection and attribution studies, discussed at length in
Allen an Tett (1999), is the choice of the ‘‘detection space’’ used for model-data

Scaling required on model-simulated signals

HCM2 HCM2 HCM3 ECM3 ECM4 ECM4 GFDL CCC1 CCC2 HCM3 ECM3 HCM2

-1

0

1

2

G
GS GSIO GS GS GSI GS GS GS G G

G
SIO

S

S

N

So

So

V

HCM2 HCM2 HCM3 ECM3 ECM4 ECM4 GFDL CCC1 CCC2 HCM3 ECM3 HCM2
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Estimated contributions to 20C warming (K/century)

HCM2 HCM2 HCM3 ECM3 ECM4 ECM4 GFDL CCC1 CCC2 HCM3 ECM3 HCM2
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

G GS GSIO
GS

GS GSI GS GS GS
G

G

G

SIO
S

S
N So So V

Fig. 22 As previous figure, but based on a weighted ordinary least squares regression rather than the
total least squares approach used throughout this paper
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comparison. This is conventionally determined by an E-EOF analysis of a segment
of a control integration, truncating at a small number of E-EOFs. Since the SVD
algorithm used to compute E-EOFs is non-linear, there is scope for unpredictable
changes to results emerging from a different choice of control to compute the E-
EOF basis. As a simple check on the magnitude of this effect, we exchange the
control segments used for determining the detection space and hypothesis testing
respectively. Results of this are shown in Fig. 23: the general picture as regards
detection is largely unchanged. Among the single-pattern results, ECH3-GS now
appears to underestimate the response by a significant margin, but is still flagged as
suspect by the residual check. Among the multi-pattern results, the upper bounds on
HCM3 signal amplitudes are now virtually undefined while the HCM2 signals are
reasonably unaffected—with a longer control available for HCM2, less sensitivity to
this change is to be expected. With ECH3 all three signals, greenhouse, sulphate and
solar, are now detected and consistent with unity.

The ECH3 result illustrates a problem arising from the large number of relatively
arbitrary choices that need to be made in a detection and attribution study to define
the diagnostic considered and fix the details of the analysis. If one set of choices
makes the model look more consistent with reality than another, what are we to
conclude? On the one hand, if a signal is detectable under one approach and not
under another, this could simply indicate the second approach was looking in the
wrong direction. On the other hand, it is essential that the details of the analysis
procedure are not ‘‘tuned’’ to produce a ‘‘desired’’ result, whatever that may be,
since the overall algorithm is sufficiently flexible for the outcome of such tuning to be
highly misleading. To avoid this problem, we defined our approach at the outset

Scaling required on model-simulated signals
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Fig. 23 As summary figure, but exchanging the segments of control used to define the detection
space and for optimisation and for hypothesis testing respectively
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based simply on the methodology of Allen et al. (2000), and present the results as
they first appeared, even in those cases (as here) where a subsequent modification of
the algorithm presented a model in a better light. In principle, the impact of these
arbitrary choices could be incorporated into the overall procedure, by repeating the
analysis many times exploring the full range of options and reporting some kind of
weighted sythesis of the results. The problem then becomes quantifying the error
rate for such a ‘‘composite’’ procedure, although the literature on bootstrapping
might help (see, for example, Wilks 1997). For the sake of simplicity, we have simply
noted sensitivities where they arise.

6.6 Sensitivity to global mean trend

One reason results based on single signals should be expected to give consistent
estimated contributions to 20th century warming trends is that the warming
trend is included in the data used for the analysis: if all the information in these
diagnostics were contained in the global mean temperature trend, then these
‘‘attributable trends’’ would be equal by construction: all we would be doing
was fitting the various models to the same data and arriving at the same result.
To ascertain whether this is the case, Fig. 24 shows the summary figure based on
data from which the global mean temperature trend has been removed from both
models and data prior to the detection and attribution analysis. Clearly, important
information has been lost, in that without the global mean trend information we
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Fig. 24 As summary figure, but preprocessing both observations and model simulations to remove
the linear trend in global mean temperatures before estimating scaling factors. Estimated
contributions to 20th century warming in such pre-processed data are, of course, identically zero,
so the trends removed are added back in after the analysis to generate the lower panel
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can no longer detect greenhouse or sulphate signals independently of each other in
the HCM3 and ECH3 3-way analyses. Both signals remain detectable in the
HCM2 4-way case, but the uncertainty range on bG no longer includes unity.
Nevertheless, the overall estimated magnitude of the signals remains consistent
with the base case, indicating this is not simply dictated by the global mean trend.
Moreover, the attributable trends shown in the bottom panel, which are now
completely independent of the data used in the estimation, are also broadly
consistent with the base case.

6.7 Sensitivity to diagnostic used for analysis

Finally, Fig. 25 presents results from a completely different diagnostic: the spatial
pattern of 50-year linear trends used by Hegerl et al. (1996), and Hegerl et al.
(1997). A more detailed comparison of these two approaches is presented by Gillett
et al. (2002b): the only points to note here are that uncertainties are clearly much
larger without the information about the time-history of the signals included. In the
four-way HCM2 regression, in particular, the confidence intervals are now
unbounded: there simply is not enough information in the spatial trend-pattern alone
to distinguish between these signals. In the single-pattern cases, the GS signal
amplitudes remain generally detectable and consistent with unity and both green-
house and sulphate influence are detectable in the three-way HCM3 and ECH3
results.
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Fig. 25 As summary figure but based on the spatial pattern of 50-year temperature trends rather
than the spatio-temporal pattern of temperature change used in previous figures. Lower panel now
refers to trends over the 1946–1996 period, which are generally larger than those over the century as
a whole
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Consistent with the findings of Gillett et al. (2002b), the greenhouse and sulphate
signals predicted by the ECH3 model are detected at a much higher signal-to-noise
level with this diagnostic than with the spatio-temporal patterns used earlier: indeed,
if this were the only information at our disposal, we might conclude that the ECH3
model was significantly underestimating the response to these two forcing agents.
This illustrates the sensitivity of quantitative conclusions to the specification of the
signal under investigation, particularly when multiple signals are included in the
estimation problem. The reason for this is simple: model errors are not global, and a
model may overestimate one feature of the observed response while underesti-
mating another. Hence if practical conclusions are to be drawn from detection
results, it is essential the the detection diagnostic used is tailored to be as closely
linked as possible to the question of interest. Successful detection and attribution of
hemispheric-scale temperature changes does not necessarily imply any greater
confidence in model-based predictions of regional precipitation changes.

7 Remaining uncertainties and methodological issues

With all these figures, the question naturally arises as to which is the ‘‘best’’ estimate
of anthropogenic and natural influence on climate over the 20th century. Two
conflicting demands mean that there can be no definitive answer to this question. On
the one hand, we wish to estimate as much as possible from the observed climate
record and to rely on model-simulated signal amplitudes as little as possible. On the
other hand, we have only a finite amount of data available and model-based
estimates of internal climate variability are only reliable, if at all, on the largest
spatio-temporal scales. The more quantities we attempt to estimate, the larger the
model-data discrepancy that is required for a parameter-set to be rejected and the
larger the confidence intervals become. Greater uncertainty is not inherently
undesirable, of course, although it makes it more difficult to draw useful conclusions
from the results. A more dangerous problem is that, as we increase the number of
signals with the same input data, it becomes more likely that a chance feature of a
particular signal combination will account for a significant fraction of the variance in
the observed data, giving an apparently good fit for entirely spurious reasons.

The HCM2 three-way and four-way detection results with the solar signal based
on the Lean et al. (1995), reconstruction provide an excellent illustration of this
point. The observed record cannot be accounted for by the Lean et al. (1995), signal
alone (Fig. 11), nor in combination only with volcanic forcing. If this solar signal is
combined with the simulated volcanic signal, results from a three-way regression
with anthropogenic forcings remain physically reasonable, with bG and bS both
greater than zero and consistent with unity and bLV relatively small. In the four-way
case (Fig. 19) the estimated amplitude of the solar signal is of an unphysical sign: the
problem breaks down because we are trying to estimate 4 pieces of information from
only 10–15 independent pieces of data (the coefficients on the E-EOFs).

There are two solutions to this problem, either introducing prior constraints based
on physically reasonable ranges for these estimated quantities or introducing more
information in the data used to constrain them. It is inevitable that, for a given
amount of data, the estimation problem will eventually break down as we try to
estimate the amplitudes of more and more candidate signals. Hasselmann (1997),
remarked on this point, but concluded it would not be too serious a problem since
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the number of candidate explanations for recent climate change is relatively small.
Unfortunately, the imagination of the scientific community is such that the number
of candidate explanations for recent climate change may be unbounded, so we
cannot simply estimate all candidate signal amplitudes mechanically from the
available data. As in every other problem, progress can only be made by combining
prior knowledge with the additional information provided by a particular dataset.

Given that the combined forcing due to solar and volcanic activity over the latter
part of the 20th century is relatively small compared to anthropogenic forcing, and
the response appears, on the basis of Figs. 17–20, to be indistingishable from zero in
this diagnostic, it is not necessarily true that inclusion of these natural signals in the
estimation procedure will ‘‘improve’’ (move towards the truth) the estimated
amplitude of the anthropogenic signals. In any case, in almost all cases considered, it
makes relatively little difference, with greenhouse warming in the range 0.3 to
around 1.2 K/century, with the upper bound particularly uncertain, and sulphate
cooling up to –0.7 K/century.

8 Conclusions

We have considered a range of possible scenarios to account for recent large-scale
near-surface temperature changes, using a combination of model-simulated re-
sponses to external forcing and model-simulated internal variability. In addition to
the fundamental constraints on any detection and attribution study mentioned at
the end of the previous section, we are also subject to a practical constraint, which
is to extend the analysis to as wide a range of models as possible when only a very
small number of models have been run with the full range of external forcing
scenarios.

Our results indicate that the combination of greenhouse and sulphate forcing,
as simulated by these climate models, is generally adequate to account for large-
scale decadal temperature changes over the period 1946–1996, expressed as
anomalies about the 1906–1996 climatology: that is, with one exception, remaining
model-data discrepancies can be explained as internal variability as simulated by
these models. Under this account, anthropogenic influence is responsible for a
0.3–0.5 K/century warming (5–95% range) over the 1906–1996 period. This is
consistent with the range of warming rates simulated by these climate models but,
crucially, was estimated from the observed climate record without making
any assumption about the correctness or otherwise of the amplitude of the
model-simulated responses.

The detection and attribution procedure involves scaling the amplitude of model-
simulated signals up or down to fit the observed data: hence, if only a single signal is
considered for each model, we should expect, by construction, for the trend attrib-
utable to this signal to be similar to the total observed trend and to those estimated
from other models. A more direct indication of model performance is given by the
scaling factors, bi, required to bring the model-simulated signals into line with the
observations. For the combination of greenhouse and sulphate forcing, these are all
found to be close to unity, implying all the models are giving approximately the
correct magnitude of response. This may seem a rather surprising result given the
factor of two range of climate sensitivities (equilibrium warming on doubling of
carbon dioxide) in the models considered in this paper. Part of the explanation is
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likely to be that ocean heat uptake is compensating for the stronger atmospheric
feedbacks in the more sensitive models, delaying the response. Hence the intermodel
range of transient climate responses is much less than the range in equilibrium
sensitivities (Hansen et al. 1985; Cubasch et al. 2001).

A more worrying possibility is that the forcing, particularly the very uncertain
sulphate component, has been ‘‘tuned’’ (perhaps unconsciously) to the sensitivity of
each model to reproduce the overall observed trend. Our results in which we
intentionally suppress information on the global mean trend (Fig. 24) provide some
reassurance on this point. Without a systematic and formal optimisation procedure,
which has certainly not been used by any of the modelling groups concerned, it
would be effectively impossible to tune the forcings to anything other than global
mean changes. We find that the removal of global mean information, although it
naturally increases the uncertainties, does not alter the overall picture of broad
model-data consistency.

When greenhouse and sulphate signals are considered separately, in those cases
where the necessary runs were available, we find the greenhouse contribution to this
warming to lie in the range 0.3–1.2 K/century, with the upper bound particularly
sensitive to the details of the analysis, and the magnitude of sulphate-induced
cooling being up to –0.7 K/century. Thus the maximum warming rate attributable to
greenhouse gas influence over the past century considerably exceeds the net
observed warming, and this result is found to be relatively insensitive to the inclusion
of model-simulated responses to natural external forcing in the analysis.

Attempts to account for recent near-surface temperature changes in exclusively
natural terms were consistently unsuccessful, but a significant caveat in this and all
other results is our reliance on only three models (ECH3, HCM2 and HCM3) for our
results for anything other than purely anthropogenic response-patterns. One of these
(ECH3) has not been run with volcanic forcing and may display an unrealistically
low level of internal variability. It is clearly important for more models to be run
with a wider range of external forcing scenarios to establish the robustness of the
results reported here. To this end, we are providing the software used in this study
(written in the IDL data-processing language) and key input datasets to any groups
wishing to examine the sensitivity of our results and to apply this basic algorithm to
other model simulations.

When both natural and anthropogenic signals are considered, anthropogenic
changes appear to account for most of the warming over the past 50 years with
only a small (in many cases undetectable) contribution from the natural sources
considered (solar variability and volcanic activity). This should not be interpreted
as indicating that natural factors have had no influence on climate over this period:
simply that they have had no detectable influence on the specific diagnostic used in
this study. This, being based on decadal mean data, would tend to suppress any
response to the 11-year solar cycle and short-term response to volcanic eruptions.
Uncertainty in the magnitude of the response of the system to natural, particularly
solar, forcing remains one of the most important outstanding issues for detection
and attribution. As the title implies, our focus in this study was on quantifying the
anthropogenic contribution to recent near-surface temperature change. In so doing,
we considered the response to natural forcing, but only as a potential confounding
signal, not as an end in itself. It is to be hoped that more targeted studies will
provide tighter constrains on natural contributions to recent climate change
(Santer et al. 2001).
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Appendix total least squares estimation

The estimation procedure used in this study is based on the assumption that the
observed climate record, as characterised by the n-element vector y (n = 125 in our
example), can be represented as a linear superposition of m model-simulated
response-patterns, xi, denoted as the columns of the m · n matrix X. Ideally, large
ensemble simulations should be used to minimise the influence of sampling noise on
the model-simulated signals (i.e., to pin down exactly what we are looking for in the
observations). In practice, to compare results from models given a wide range of
available ensemble-sizes, we need to take sampling variability explicitly into
account, giving the detection model:

y� t0 ¼
Xm

i¼1

ðxi � tiÞbtrue
i ð5Þ

¼ ðX� !XÞb; ð6Þ

in which t0 is the sampling noise in the observations and ti (or the ith column of !X)
is the noise in the ith model-simulated responses to external forcing.

We assume a linear relationship between the underlying deterministic (noise-
free) observed and modelled responses, y� t0 and xi � ti, given by the unknown
scaling factors, btrue

i . The physical interpretation of these scaling factors is as follows:
btrue

i represents the amount by which we have to scale the ith model-simulated
response to reproduce the observations, assuming the shape of the response is
accurately simulated (apart from sampling error due to the finite size of the
ensemble used to generate it) and only the amplitude is unknown.

Assuming both t0 and the ti are independent and Gaussian distributed, the
probability of observing this particular combination of climate observations y and
model simulations X for a given set of scaling factors b—known as the ‘‘likelihood’’
of (y, X) given b and the detection model (6)—is given by:

Pðy;XjbÞ ¼ constant � e�r2

; ð7Þ

where r2 is the sum of the noise in both y and X implied by that value of b, weighted
by their respective inverse covariance matrices, assuming these are known. That is,

123

538 Surv Geophys (2006) 27:491–544



r2 ¼ tT
0 C�1

0 t0 þ
Xm

i¼1

tT
i C�1

i ti; ð8Þ

where C0 and Ci are the expected n · n covariance matrix of the noise in the climate
observations y and the ith model-simulated response-pattern, xi, respectively.

What we ultimately want is the distribution of b given this set of climate
observations and model simulations, or Pðbjy;XÞ. This also depends on our prior
knowledge, requiring an application of Bayes theorem:

Pðbjy;XÞ ¼ Pðy;XjbÞPðbÞ
Pðy;XÞ : ð9Þ

In this equation, PðbÞ represents our prior knowledge or assumptions about the
range of possible values for the btrue

i : that is, how probable we consider each value of
btrue

i before these observations are taken into account. P(y, X) is the probability of
obtaining this particular set of observations and model simulations, given those
constraints, irrespective of the true value of b: it acts as a normalisation, ensuring
that all probability density functions integrate to unity. In the cases considered here,
we will assume both PðbÞ and P(y, X) are uniform distributions, giving the ‘‘stan-
dard’’ or ‘‘classical’’ detection model used, for example, by Hegerl et al. (1997), and
Tett et al. (1999). It is, however, important to recognise that there is no fundamental
distinction between the ‘‘classical’’ and ‘‘Bayesian’’ approaches. Classical optimal
fingerprinting is simply a special case of a Bayesian analysis in which uniform priors
are assumed: that is, in which we assume no prior knowledge whatsoever of the
parameters we are trying to estimate and the observations we are likely to obtain.

If we assume that the noise in both y and X is Gaussian and dominated by internal
climate variability as simulated by the A-OGCM, then we can make Ci ¼ C0 ¼ CN,
the covariance between elements of y-like vectors drawn from an unforced control
simulation, simply by scaling the ith response-pattern by

ffiffiffiffi
‘i

p
, the number of simu-

lations in the ith ensemble. We also introduce a so-called ‘‘pre-whitening operator’’,
P, defined such that

PCNPT ¼ IðjÞ; ð10Þ

where IðjÞ is a unit matrix of rank j. The pre-whitening operator, P, will be model-
dependent: there is no universal operator to remove correlations in variability
simulated by any model. The so-called ‘‘rank of the detection space’’, j, need not be
the same as the number of observations n—if it is less than n, P not only acts to make
the noise equal-variance and uncorrelated in all the elements of the pre-whitened
observations and model-simulated response-patterns, but it can also be used to filter
out any component of the signal that correlates with modes of variability that are
poorly simulated by the A-OGCM. This dual role of the pre-whitening step in
climate change detection is discussed at length in Allen and Tett (1999).

The simplest, although by no means unique, way of defining P is to decompose a
sequence of ‘‘climate noise’’ realisations from a control integration of the A-OGCM
into a set of spatio-temporal patterns, or extended-EOFs (Weare and Nastrom 1982)
and associated principal components, using a singlar value decomposition. The j
rows of P are then defined as the j highest-ranked E-EOFs weighted by their
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respective inverse singular values. With this choice of weighting, if we were to take
another realisation of climate noise, from a different control integration for example,
and pre-multiply it by P, we would expect approximately the same noise variance in
each of the j rows of the resulting pre-whitened noise vector, and for the noise to be
uncorrelated between rows.

Representing the pre-whitened model-simulated response-patterns, P X as the
first m columns of the j · (m + 1) matrix Z, and the pre-whitened observations, P y,
as the m + 1 column, the detection model (6) can be re-written (Allen and Stott
2003)

ðZ� !ZÞv ¼ 0; ð11Þ

where b has been encoded into the vector v (see below). Equation (11) states that a
linear relationship exists between the noise-free observations and the noise-free
model-simulated response-patterns or, equivalently, that a vector exists which is
orthogonal to every row of Z� !Z. The pre-whitened noise contamination, !Z is
unknown, but an unbiased estimate of the orientation of the vector v can be obtained
from the eigenvector of ZT Z with the smallest eigenvalue, as was first observed by
Adcock (1878). This estimate,

~
v, also maximises the likelihood function in Eq. (7) by

minimising the total (perpendicular) squared distance of the observation-model
points (defined by the j rows of Z) from the m-dimensional plane, orthogonal to

~
v,

which represents the best-fit solution: hence the name Total Least Squares solution
(van Huffel and Vanderwaal 1994).

Best-fit scaling factors on the individual model-simulated response-patterns, as
required to reproduce the observations in model (6) may be obtained from the
ratios,

bi ¼ �
ffiffiffiffi
‘i

p ~vi

~vmþ1
; ð12Þ

recalling that the ith column of Z has been scaled by
ffiffiffiffi
‘i

p
to equalise the noise

variance in all observables. Best-fit reconstructions of the noise-reduced observa-
tions and model-simulated response-patterns are obtained by extracting the com-
ponent of Z orthogonal to

~
v, thus:

~
Z ¼ Z� Z~v~vT: ð13Þ

Confidence intervals on the elements of ~v are obtained using the formulae for
uncertainties in an eigen-decomposition given in North et al. (1982), and Allen and
Smith (1996), using an independent estimate of CN to re-estimate the eigenvalues of
ZT Z to avoid the problem of ‘‘artificial skill’’ noted by Bell (1986)—see Allen and
Stott (2003), for details.

Twentieth-century warming trends ‘‘attributable’’ to specific external influences
under the detection model (6) are obtained as follows: the columns of

~
Z in Eq. (13)

represent our best estimate of the noise-free (and hence unobservable) modelled
and observed climate change respectively. A range of other reconstructions are also
consistent with these observations and this model simulation at a given confidence
level, found in a similar manner to the uncertainty range in

~
v. We compute linear

trends in global mean temperature in these ‘‘possible’’ reconstructions by extracting
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the first spherical harmonic for each of the five decades in the observation vector and
regressing them onto a vector which is zero in the 1946–1956 decade, increasing
linearly thereafter: this provides the best estimate of the linear trend over the 1906–
1996 period in data that has been expressed as anomalies about the 1906–1996
climatology. For the sake of brevity, we refer to this as the ‘‘attributable trend over
the 20th century’’.
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