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ABSTRACT

Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought
Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the
land surface, the model captures the observed relationship between the El Niño–Southern Oscillation and
regions of relative wetness and dryness represented by high and low values of the PDSI respectively. At
decadal time scales, on a global basis, the model reproduces the observed drying trend (decreasing PDSI)
since 1952. An optimal detection analysis shows that there is a significant influence of anthropogenic
emissions of greenhouse gasses and sulphate aerosols in the production of this drying trend. On a regional
basis, the specific regions of wetting and drying are not always accurately simulated. In this paper, present-
day drought events are defined as continuous time periods where the PDSI is less than the 20th percentile
of the PDSI distribution between 1952 and 1998 (i.e., on average 20% of the land surface is in drought at
any one time). Overall, the model predicts slightly less frequent but longer events than are observed. Future
projections of drought in the twenty-first century made using the Special Report on Emissions Scenarios
(SRES) A2 emission scenario show regions of strong wetting and drying with a net overall global drying
trend. For example, the proportion of the land surface in extreme drought is predicted to increase from 1%
for the present day to 30% by the end of the twenty-first century.

1. Introduction

Drought is amongst one of the world’s costliest di-
sasters and affects a very large number of people every
year (Wilhite 2000). A drought is considered to be a
period of abnormally dry weather that causes serious
hydrological imbalance in a specific region. However,
the definitions of “serious” and “abnormally dry” de-
pend on the extent and nature of the impact of the
drought on the local society. It is important to monitor
drought events and their variability, explore their pre-
dictability, and determine how they might change un-
der future climate scenarios.

Global circulation models (GCMs) have been used
previously to investigate water availability. For ex-
ample, Gregory et al. (1997) used detailed knowledge
of the GCM-simulated hydrology to study summer
drought in continental midlatitudes and suggested that,
in the future, there is a greater likelihood of long dry
spells caused by a tendency toward fewer precipitation

events rather than less precipitation. Wetherald and
Manabe (2002) and Manabe et al. (2004) showed a
global increase in runoff rate under future climate sce-
narios. They also found reduced soil moisture in semi-
arid regions, and, in Northern Hemisphere middle and
high latitudes, increased soil moisture in the winter and
decreased soil moisture in the summer.

There are many quantitative definitions of drought
based upon knowledge of precipitation, soil moisture,
potential evapotranspiration, or some combination
thereof (Heim 2002; Wilhite and Glantz 1985; World
Meteorological Organization 1975; Svoboda et al.
2002). These drought indices all have their own advan-
tages and disadvantages (Keyantash and Dracup 2002).
The Palmer Drought Severity Index (PDSI; Palmer
1965) is a commonly used and widely accepted meteo-
rological drought index (e.g., Cook et al. 1999; Dai et al.
2004; Lloyd-Hughes and Saunders 2002; Ntale and Gan
2003; Shabbar and Skinner 2004; http://nadss.unl.edu).
It is obtained from a simplistic model of the cumulative
anomaly of moisture supply and demand at the land
surface, which requires knowledge of both precipitation
and potential evapotranspiration.

Rind et al. (1990) and Jones et al. (1996) compared
the PDSI, calculated using data from a GCM, with ob-
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servations over North America and Europe. They pro-
jected that, by the middle of the twenty-first century,
severe drought will occur a large proportion of the time.
However, their calculation of the PDSI uses a param-
eterization of potential evaporation based only on tem-
perature and latitude (Thornthwaite 1948). This param-
eterization overestimates the increase in potential
evapotranspiration in the future and hence the drying
(Lockwood 1999).

Recently, global estimates of the PDSI have been
prepared (Dai et al. 2004) using observed temperature
and precipitation data. This paper uses these data as a
basis for evaluating the ability of the Third Hadley Cen-
ter Climate Model (HadCM3) to predict present-day
drought events on a global basis. First, it compares
global variations in the modes of variability of the es-
timated and modeled PDSI. Then it assesses how well
the model predicts the frequency, duration, and spatial
extent of global drought events (defined by a low PDSI
value). The suitability of an alternative parameterization
of the potential evaporation, the Penman–Montheith
equation (Shuttleworth 1993), for calculating the PDSI
under future climates was demonstrated. Finally, future
projections of the PDSI and associated global drought
events were assessed using time-dependent climate
change experiments based on the Intergovernmental
Panel on Climate Change (IPCC) Special Report on
Emissions Scenarios (SRES) A2 (Nakicenovic et al.
2000).

2. Models and data

a. PDSI

The PDSI was created by Palmer (1965) to provide
the “cumulative departure of moisture supply.” Full de-
tails of the calculation of the PDSI can be found at the
National Agricultural Decision Support System (http://
nadss.unl.edu). The PDSI is a hydrologic accounting
scheme that uses a simple two-layer, bucket-type land
surface scheme to partition the incoming precipitation
into the components of the water balance. It was de-
veloped using limited data from the central United
States. To compare it across space and time, the com-
ponents of the water balance were calibrated by clima-
tologically appropriate values for the specific time of
year and location. When using the PDSI to explore the
changes in wetness and dryness as a result of future
climate scenarios, these calibration factors were held at
the present-day values (Rind et al. 1990).

Critics of the PDSI (e.g., Alley 1984) suggest that it is
of insufficient complexity to account accurately for the
wide range of environmental conditions that may in
reality occur such as frozen soil, snow, and the presence

of roots or vegetation. Therefore the calculated soil
moisture is inferior and should not be used as a mea-
sure of hydrological drought. However, since the PDSI
was developed to provide a measure of meteorological
drought these issues are less significant. Despite trying
to normalize for location and season, the PDSI is not
spatially comparable across the contiguous United
States (Guttman et al. 1992). Therefore quantitative
interpretations of dryness or wetness for a given PDSI
value depend on local mean climate conditions. This
was taken into consideration in the global assessment of
the PDSI and the definition and evaluation of drought
events.

An estimate of the potential evapotranspiration (Ep)
is key in calculating the PDSI. The Thornthwaite (1948)
method, based on knowledge of the temperature and
latitude, is traditionally used to calculate Ep in the
PDSI. This calculation implicitly assumes some form of
correlation between potential evapotranspiration, tem-
perature, and the shortwave radiation at each latitude.
Under future climate scenarios the temperature is pre-
dicted to increase while shortwave radiation is rela-
tively independent of climatic effects. Therefore, the
present-day link between temperature and latitude and
shortwave radiation will be altered (Lockwood 1999). If
the temperature at a specific latitude increases in the
future, the Thornthwaite (1948) algorithm will overes-
timate the potential evaporation because it overesti-
mates the solar radiation (Lockwood 1999). This results
in an unrealistic increase in drought frequency. There-
fore the Penman–Montheith equation (Shuttleworth
1993) is a more appropriate method of calculating Ep.
In this paper the Penman–Montheith potential evapo-
transpiration (in mm day�1) Ep is given by

Ep �
�

� � �
Rn �

�

� � �

6.43�1 � 0.536U�D

�
, �1�

where Rn is the net radiation in mm day�1, U is the
wind speed in m s�1 measured at 2-m height, � is the
latent heat of vaporization of water in MJ kg�1, D is the
vapor pressure deficit in kPa, � is the slope of the re-
lationship between saturated vapor pressure and tem-
perature in kPa K�1, and � is the psychrometric con-
stant in kPa K�1. Limited global observational data
restricts the use of the Penman–Montheith equation to
GCM output. Therefore, in this paper, two versions of
the PDSI were calculated, the first using the Thorn-
thwaite equation (PDSI-T) and the second using the
Penman–Montheith equation (PDSI-PM). The equiva-
lence of these two calculations is demonstrated for
present-day climates. PDSI-T was used for comparing
with observations and PDSI-PM for assessing future
climate change.
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The global PDSI calculated by Dai et al. (2004) is
available from 1870 to 2002 (http://www.cgd.ucar.edu/
cas/catalog/climind/pdsi.html). Dai et al. (2004) used
observations of monthly surface air temperature and
precipitation to calculate the PDSI at a resolution of
2.5° by 2.5°. The PDSI data calculated from observa-
tions for the period between 1952 and 1998 were used
in this study (OBS hereafter). For comparison purposes
they were regridded to the resolution of the model at-
mosphere (3.75° by 2.5°). The restricted time period
was selected to ensure a temporally consistent missing
data mask—any grid cell with any missing data during
that time period was excluded—and to ensure a consis-
tent overlap with the relevant model integrations.

b. Hadley Centre climate model

This paper is mainly based on results from integra-
tions of HadCM3, the third version of the Hadley Cen-
tre coupled ocean–atmosphere GCM (Gordon et al.
2000). The model has a resolution of 3.75° by 2.5° (19
levels) for the atmosphere. It requires no adjustment of
the heat fluxes at the ocean–atmosphere interface. A
full range of physical parameterizations are included
consistent with a state-of-the-art coupled general circu-
lation model.

The first simulation analyzed is a 2000-yr control in-
tegration (CTL) of the coupled model, HadCM3, with
fixed external forcing, representing preindustrial levels
of greenhouse gases. The climate is realistic and stable
(Johns et al. 2003). This long-time-scale integration is
used to determine the modeled internal climatic vari-
ability.

To perform a direct comparison with available ob-
servations, coupled HadCM3 simulations with realistic
twentieth-century external forcing were analyzed
(ALL-C). Four ensemble members were available and
are identical except for their initial conditions (Tett et
al. 2002). The initial conditions were taken from states
of the HadCM3 control run (CTL) separated by 100 yr.
These simulations evolved their own sea surface tem-
perature fields. Three of these were extended to 2100
using the IPCC SRES A2 emission scenario (Nakicen-
ovic et al. 2000) in order to produce projections of cli-
mate over the twenty-first century (A2; Johns et al.
2003).

A second six-member ensemble was created from
1946 to 2002 with just the atmospheric component of
the coupled model (HadAM3; Pope et al. 2000) forced
with all known external forcings (ALL-A) as part of
the Climate Variability and Predictability Study
(CLIVAR) International Climate of the Twentieth
Century Project (Folland et al. 2002). These simulations

were driven by the observed sea surface temperature
fields (HadISST) of Rayner et al. (2003).

To compare the model and observations, PDSI-T
was calculated using the monthly precipitation and air
temperature fields from the CTL and present-day
(ALL-A and ALL-C) integrations. Soil water holding
capacities were taken from the Webb et al. (1993, 2000)
dataset used by Dai et al. (1998, 2004). The preset-day
integrations were calibrated in the same way as the
observations with climatologically appropriate values
of the components of the water balance (calibration
factors) calculated for each ensemble member using
data between 1950 and 1979. Calibration factors for
CTL were calculated using the entire 2000-yr integra-
tion. Penman–Montheith potential evapotranspiration
was calculated using monthly modeled net radiation, air
temperature, wind speed, relative humidity, and pres-
sure and used to calculate PDSI-PM for the CTL and
ALL-A simulations and for the assessment of future
climate scenarios.

3. Present-day variability of PDSI-T

Monthly PDSI-T calculations were used to compare
the model integrations with observations. Interannual
variability (covering time scales between 18 months and
8 yr) in PDSI-T was explored independently to lower-
frequency variability (time scales greater than 8 yr) to
separate the changes associated with phenomena such
as the El Niño–Southern Oscillation (ENSO) from any
longer-term changes. These two time scales were ex-
tracted using the digital filter of Walraven (1984).
Modes of global interannual variability were calculated
using standard empirical orthogonal function (EOF)
covariance analysis. All resultant EOF spatial fields or
eigenvectors were scaled so that their amplitude is
equal to the square root of their eigenvalue. In addi-
tion, the time series or principal components (PCs) cor-
responding to each EOF were scaled to have unit vari-
ance. The eigenvectors and PCs obtained after a Vari-
max rotation of the reconstructed field (including 70%
of the variance) were found to be essentially the same
as for the unrotated case. Therefore, results shown here
represent an unrotated EOF analysis. Low-frequency
variability was explored using a trend analysis of the
filtered PDSI.

a. Interannual variability of PDSI-T

At interannual time scales the first EOF of PDSI-T
accounts for approximately 10% of the variability in
both model and observations. In general, there is good
agreement between the three sets of model integrations
(ALL-A, ALL-C, and CTL) and the OBS, with the
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area-weighted spatial correlations ranging from 0.51 to
0.64 (Fig. 1). The model integrations show a negative
signal over Australia, southern Africa, India, and Ama-
zonia together with positive signals over the United
States and much of Europe and central Asia. These
features represent the features seen in the OBS, al-
though the positive signal in the United States is more
widespread in the model integrations and misses the
relative drying on the east coast. The positive signal
over Eurasia extends farther north in the OBS than in
the model integrations. Spatial correlation coefficients
between ALL-A and OBS are 0.27, 0.31, 0.45, 0.70, and
0.31 for Australia, southern Africa, Amazonia, United
States, and Europe, respectively. There are some no-
ticeable differences between the models and OBS over
the Sahel and central Africa.

Figure 2 shows the first principal component (PC1)
of PDSI-T for the observations and the model integra-
tions: ALL-A, ALL-C, and CTL (in the case of the
CTL only a representative period is shown). Also
shown are the corresponding Niño-34 indices shifted
forward in time by six months and filtered to retain the
same time scales as the PDSI. The observed Niño-34
indices were obtained from the National Weather Ser-
vice Climate Prediction Center (http://www.cpc.ncep.
noaa.gov/data/indices/). The Niño-34 indices for the
coupled model are the standardized anomaly of the
area-average temperature for the region 5°N–5°S and

170°–120°W. The correlation between ALL-A PDSI-T
PC1 and the observed Niño-34 indices produced coef-
ficients ranging between 0.75 and 0.86 (Fig. 2a), which
compares favorably with the OBS correlation of 0.85.
The ALL-C correlation coefficients are 0.85, 0.77, 0.54,
and 0.75 using the modeled Niño-34 index and 0.76 for
150 yr of the CTL integration (Figs. 2b–f). Therefore,
on a global basis, the model reproduces the joint ENSO
and PDSI variability observed by Dai et al. (1998,
2004).

b. Low-frequency variability of the PDSI

The presence of any long-term changes in the ob-
served PDSI was assessed using a trend analysis.
PDSI-T was filtered so as to retain information for time
scales greater than 8 yr. Figure 3 shows the spatial pat-
terns generated following a point-by-point trend analy-
sis of PDSI-T for the present day. There are areas of
both drying and wetting but with an overall global dry-
ing. The greatest drying in the OBS is in the Sahel,
southern Africa, and eastern Asia with regions of wet-
ting in the United States, central Africa, western Aus-
tralia, and central Asia (Dai et al. 2004). ALL-A cap-
tures many of these features (Fig. 3b) but with some
areas of disagreement, including South America (too
dry), Europe (too wet), and central-eastern Australia
(too dry). Consequently the area-weighted spatial cor-
relation with OBS is 0.35. On a regional basis the

FIG. 1. The spatial patterns of the leading EOFs of the filtered PDSI with all time scales between 18 months and 8 yr included for
(a) OBS; (b) ALL-A; (c) ALL-C; and (d) CTL.
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FIG. 2. The time series associated with the first EOF (PC1) of the filtered PDSI (with all time scales
between 18 months and 8 yr included) and the PC1 of the filtered Niño-34 index (with all time scales
between 18 months and 8 yr included) shifted to the right by 6 months. These time series are associated
with (a) OBS and the six-member ensemble of ALL-A; (b)–(e) the four member ensemble of ALL-C;
and (f) CTL.
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changes observed in the United States, the Sahel,
southern Africa, eastern Australia, and northern and
western Eurasia are well represented by ALL-A with
spatial correlation coefficients of 0.75, 0.56, 0.41, 0.37,
and 0.44, respectively.

ALL-C (Fig. 3c) captures less of the observed pattern
than ALL-A. Unlike ALL-A, the ALL-C ensemble
members evolve independent sea surface temperatures
so will contain uncorrelated contributions of natural
variability; thus discrepancies between OBS and
ALL-C and between the ALL-C ensemble members
are likely to be much greater. The changes in the OBS
that are captured by ALL-A but not by ALL-C are
therefore likely to be due to natural or internal vari-
ability of the climate system, whereas those that are
common between OBS, ALL-A, and ALL-C are more
likely to be due to common external forcings.

Despite differences between the OBS and the model
on a regional basis, Fig. 4 shows that ALL-A, ALL-C,
and the OBS all produce a global drying trend between
1952 and 1998. Least squares linear regression shows
the globally averaged OBS PDSI reducing by 0.25 de-
cade�1 (Fig. 4a). ALL-A captures this change with
trends ranging between �0.2 and �0.3 decade�1. In the
case of the ALL-C ensemble (Figs. 4b–e) the PDSI-T
also decreases but by a smaller amount (�0.16, �0.12,
�0.13, �0.06 decade�1) than those in Fig. 4a. This re-
production of the observed trend is encouraging and
provides some justification for using HadCM3 to assess

future drought risk on a global scale. Figure 4 also in-
dicates that there is multidecadal variability in the ob-
served PDSI that is not captured in ALL-A, but is
present in two of the ALL-C members (Figs. 4c and
4d). This suggests there may be coupled modes of in-
ternal variability on multidecadal time scales.

The significance of the drying trends is addressed
using the 2000-yr control run, which has a stable climate
(Johns et al. 2003) and gives information on the natural
variability within the model. Running blocks of 47 yr
were extracted from the 2000-yr CTL simulation and
the magnitude of the trend in PDSI-T (filtered to re-
move time scales less than 8 yr) calculated for each of
the blocks. Figure 5 shows the cumulative distribution
function of these trends. Also shown are the trends in
the observations, ALL-A, and ALL-C from Fig. 4. The
trend in both the OBS and ALL-A is greater than the
maximum trend found within the CTL. This suggests
that these trends cannot be explained by the natural
variability produced by the coupled model. In addition,
for three of the four members of the ALL-C ensemble,
there is a less than 1% chance that the trends found in
ALL-C occurred as a result of natural variability alone.
For the other member there is a 10% chance that the
trend is as a result of natural variability. Therefore in
the case of both ALL-A and ALL-C the trends are
likely to be a result of external forcings on the climate
system not present in the CTL simulation. This was
explored further using an optimal detection analysis.

FIG. 3. The spatial patterns of the point-by-point trend per de-
cade of the low-pass PDSI filtered to include all time scales greater
than 8 yr: (a) OBS; (b) ALL-A; and (c) ALL-C.
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OPTIMAL DETECTION ANALYSIS OF PDSI TRENDS

The trend patterns found for the OBS and the
ALL-C ensemble were compared in an optimal detec-
tion analysis, a formal statistical methodology that is
widely used in the detection of a climate change signal

and its attribution to external forcings [International ad
hoc Detection and Attribution Group (IDAG) 2005].
The scaling factors required to match the model pattern
(ensemble mean of ALL-C) with the observations
(OBS) were estimated using a generalized multivariate
regression, taking into account an estimate of the mod-

FIG. 4. The globally averaged PDSI filtered to include all time scales greater than 8 yr. The time series are associated with (a) OBS
and the six members of ALL-A in gray and (b)–(e) OBS and the four members of ALL-C.
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eled internal climate variability (CTL). The uncertainty
in the scaling factors and the covariance matrix of the
internal climate variability were computed using 58 seg-
ments (30 nonoverlapping) from 1800 yr of the CTL
simulation. Scaling factors consistent with unity that
have a small uncertainty range imply a good match be-
tween model and observations with a detectable signal
whereas those consistent with zero imply no detection.
The analysis was performed in the space defined by the
20 leading eigenvectors of the noise covariance, and is
generally stable for truncations in the same vicinity or
higher. Full details of the statistical model used are
given by Allen and Stott (2003).

The best estimate of the scaling factor is 2.66. This is
higher than unity, implying that the model patterns
need to be scaled up to agree with the OBS. This sug-
gests that the ALL-C ensemble underestimates the
trends found in the OBS. The 5% to 95% uncertainty
range on this scaling factor is between 1.55 and 5.06.
Since the zero value falls outside this range, it can be
concluded that significant changes in the observed
PDSI as a result of external forcings are detectable.

c. Drought events

Droughts were identified using critical values of the
PDSI defined (independently for each grid cell) as the
20th percentile of the PDSI distribution for that grid

cell. On average, the limiting value for the 20th percen-
tile of the PDSI is �2.0. The PDSI distribution was
obtained from the time series of monthly PDSI be-
tween 1952 and 1998 smoothed using an 18-month run-
ning mean. On average, at any one time 20% of the
land surface will be in drought. This method of defining
drought events helps eliminate biases between model,
observations, and locations. Figures 6a and 6b show the
proportion of the land surface in drought for OBS,
ALL-A, and ALL-C. Over the time period shown OBS
shows an increase in the percentage of the land surface
in drought by 3.4% decade�1 and ALL-A by between
2.9% and 4.6% decade�1. Over the longer time period
between 1905 and 1998 ALL-C shows an increase of
between 0.5% and 0.9% decade�1. In all cases the ma-
jority of this change occurs in the 1980s and 1990s.

Drought events are defined as the continuous periods
of time (greater than or equal to 1 month) where the
PDSI is less than the critical value for the grid cell.
Figure 7 shows the mean number of events over the
land surface and their mean duration. In the case of
OBS, ALL-A, and ALL-C they were calculated for the
period 1952–98 and each ensemble member is shown
separately. To represent the natural variability within
the model, the CTL integration was divided into blocks
of consecutive 47-yr periods and the calculations made
for each block. Figure 7 shows that all the forced model

FIG. 5. The trend of the globally averaged PDSI calculated over 47-yr blocks using data that
have been filtered to include all time scales greater than 8 yr. The cumulative distribution of
the CTL simulation was calculated using running blocks. Also shown are the OBS, ALL-A,
and ALL-C.
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simulations fall within the natural variability of the
CTL simulation. ALL-C falls within one standard de-
viation of the mean of the CTL distribution and ALL-A
falls within two standard deviations. However, OBS
falls outside the variability of the model—OBS has ap-

proximately 2 more events per 100 yr than the model
predicts. In addition, the model predicts longer events
of between 21- and 26-months duration compared with
the OBS, which predicts average event durations of 19
months.

FIG. 7. (a) The mean number of events per 100 yr and (b) the mean event duration over the
land surface.

FIG. 6. The proportion of the land surface in drought at each time step for (a) ALL-A and OBS and
(b) ALL-C and OBS. Drought is defined as the 20th percentile of the entire PDSI time series.

OCTOBER 2006 B U R K E E T A L . 1121



4. Future projections of drought

More realistic future projections of drought are ob-
tained using the PDSI-PM [calculated using the Pen-
man–Montheith potential evapotranspiration—Eq. (1)]
instead of the PDSI-T. The impact of this change on the
resultant PDSI values calculated using preindustrial
data (CTL) was minimal. For both of the time scales
under discussion area-weighted spatial correlation co-
efficients between the first EOF spatial patterns of
PDSI-T and PDSI-PM for the CTL are greater than
95% and correlations between the first principal com-
ponents are greater than 96%.

The spatial distribution of changes in the PDSI over
the twenty-first century was explored by calculating the
trend in the PDSI-PM per decade at each point using
the A2 ensemble (Fig. 8). The variability between the
three A2 ensemble members is small with consistent
projections between the members. The model predicts
drying over Amazonia, the United States, northern Af-
rica, southern Europe, and western Eurasia, and wet-
ting over central Africa, eastern Asia, and high north-
ern latitudes. [Note: Fig. 3 shows some regional discrep-
ancies between model and observations; therefore
regional changes must be assessed with care.] There is
an overall drying trend with a decrease in the global
average PDSI of 0.30 decade�1 projected for the first
half of the twenty-first century. This is of similar mag-
nitude to the decrease in the present-day PDSI-PM,
represented by the ALL-A model integrations (0.39 de-
cade�1). The rate of drying over the second half of the

twenty-first century increases, with the PDSI-PM de-
creasing by 0.56 decade�1.

Figure 9 shows the projected increase in the propor-
tion of the land area under drought over the twenty-
first century. As before, the 20th percentile of the
present-day (1952–98) PDSI-PM distribution defines
moderate drought. In addition, the 1st and 5th percen-
tiles of the present-day PDSI-PM distribution define
two more levels of drought (extreme and severe
drought respectively). On average the limiting PDSI
values for extreme, severe, and moderate drought are
�4.3, �3.3, and �2.0, respectively. Figure 6 shows that
the percentage of the land surface in drought had in-
creased by the beginning of the twenty-first century
from 1% to 3% for the extreme droughts, from 5% to
10% for the severe droughts, and from 20% to 28% for
the moderate droughts. This increase continues
throughout the twenty-first century (Fig. 9) and by the
2090s the percentage of the land area in drought in-
creases to 30%, 40%, and 50% for extreme, severe, and
moderate drought, respectively. [Note: if PDSI-T were
used the proportion of the land in drought at the end of
the twenty-first century is predicted to be 65%, 75%,
and 85%, respectively.]

Table 1 shows the number of drought events (defined
as before) per 100 yr and their mean duration for the
three categories of droughts. In all cases, as the severity
of drought increases, the number of drought events and
the duration of each decreases. In the future, for ex-
treme and severe drought the number of drought
events is projected to double, while for moderate

FIG. 8. The trend in the PDSI-PM per decade for (a) ALL-A;
(b) the ensemble mean of the first half of the twenty-first century
projected by SRES A2; and (c) the ensemble mean of the second
half of the twenty-first century projected by SRES A2.
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drought the number of events remains stable. There is
a significant increase in the mean event duration for all
forms of drought.

5. Conclusions

This paper assesses the ability of the Hadley Centre’s
climate model to reproduce observed changes in
drought since 1952 as measured by the Palmer Drought
Severity Index (PDSI), the cause of recent global mean
decreases in PDSI and to investigate future drought
conditions under a realistic emissions scenario.

On a global basis, at time scales between 18 months
and 8 yr, the dominant modes of observed and modeled
variability are highly correlated with each other both
spatially and temporally. In addition, the observed cor-
relation between the 6-month time-lagged Niño-34 in-
dex time series and the first principal component of the
PDSI is well captured by the model. This observed tele-
connection between drought and ENSO events has
been well documented (e.g., Ropelewski and Halpert
1987; Shabbar and Skinner 2004; Dai et al. 2004; Barlow
et al. 2001).

At time scales greater than 8 yr, there has been a
decrease in the global average PDSI of 0.29 decade�1.

The climate models used here, driven by all known
twentieth-century external forcings, reproduce this
trend, which falls outside the natural variability of the
2000-yr control simulation for nearly all model simula-
tions. An optimal detection analysis demonstrates that
there is a detectible contribution from anthropogenic
emissions of greenhouse gasses and sulphate aerosols in
the production of this drying trend. There are differ-
ences between the observed and modeled spatial pat-
terns of wetting and drying. Some of these regional
differences are suggested to be a result of natural vari-
ability. The rest may be some combination of errors in
the large-scale flow of the global model and a poor
representation of regional processes and feedbacks in
the climate model. Errors introduced by the low reso-
lution of the model will be assessed in the future by the
use of regional climate models over relevant areas.

Projections of the global average PDSI under future
climate scenarios show a decrease of approximately
0.30 decade�1 over the first half of the twenty-first cen-
tury increasing in magnitude to approximately 0.56 de-
cade�1 over the second half of the twenty-first century.
In addition, the model predicts a very large increase in
the proportion of the land surface under drought by
2090. On a global basis, drought events are slightly

TABLE 1. The mean number of events per 100 yr and the mean event duration over land for extreme, severe, and
moderate drought.

Drought
type

Number of events per hundred years
Mean (standard deviation)

Event duration (month)
Mean (standard deviation)

ALL-A 2005–50 2050–2100 ALL-A 2005–50 2050–2100

Extreme 5.1 (0.1) 7.5 (0.2) 9.4 (0.2) 12.3 (0.2) 25.5 (1.2) 77.6 (5.5)
Severe 5.8 (0.2) 8.9 (0.2) 9.6 (0.2) 16.4 (0.5) 33.3 (0.1) 97.6 (6.6)
Moderate 9.8 (0.1) 10.5 (0.1) 9.5 (0.4) 27.3 (0.3) 56.1 (1.2) 135.3 (10.8)

FIG. 9. The proportion of the land surface in drought each month. Drought is defined as
extreme, severe, or moderate, which represents 1%, 5%, and 20%, respectively, of the land
surface in drought under present-day conditions. In each case results from the three simula-
tions made using the A2 emissions scenario are shown.
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more frequent and of much longer duration by the sec-
ond half of the twenty-first century relative to the
present day. Such dramatic increases in drought condi-
tions would lead to substantial impacts and present sig-
nificant adaptation challenges. Therefore, there is a
need for these results to be corroborated by other cli-
mate models.
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