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[1] We present revised probability density functions (PDF)
for climate system properties (climate sensitivity, rate of
deep-ocean heat uptake, and the net aerosol forcing
strength) that include the effect on 20th century
temperature changes of natural as well as anthropogenic
forcings. The additional natural forcings, primarily the
cooling by volcanic eruptions, affect the PDF by requiring a
higher climate sensitivity and a lower rate of deep-ocean
heat uptake to reproduce the observed temperature changes.
The estimated 90% range of climate sensitivity is 2.1 to
8.9 K. The net aerosol forcing strength for the 1980s shifted
toward positive values to compensate for the volcanic
forcing with 90% bounds of �0.74 to �0.14 W/m2. The
rate of deep-ocean heat uptake is reduced with the effective
diffusivity, Kv, ranging from 0.05 to 4.1 cm2/s. This upper
bound implies that many AOGCMs mix heat into the
deep ocean (below the mixed layer) too efficiently.
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1. Introduction

[2] Forest et al. [2002] presented an estimate of the joint
probability density function (PDF) for uncertain climate
system properties. Other groups [Andronova and
Schlesinger, 2001; Gregory et al., 2002; Knutti et al.,
2003] have estimated similar PDFs although each uses
different methods and data. However all are based on
estimating the degree to which a climate model can
reproduce the historical climate record. Parameters within
each model are perturbed to alter the response to climate
forcings and a statistical comparison is used to reject
combinations of model parameters.
[3] We use an optimal fingerprint detection technique for

comparing model and observational data. This technique
consists of running a climate model under a set of pre-
scribed forcings and using climate change detection diag-
nostics to determine whether the simulated climate change
is observed in the climate record and is distinguishable from
unforced variability of the climate system (see Mitchell et
al. [2001] or International ad hoc Detection and Attribution
Group [2005] and references therein). It is not possible to
estimate the true climate system variability on century time-
scales from observations and therefore, climate models are
run with fixed boundary conditions for thousands of years
to obtain estimates of the climate variability.

[4] Forest et al. [2001, 2002] developed a method to
analyze uncertainty in climate sensitivity (S), the rate of heat
uptake by the deep ocean (Kv), and the net aerosol forcing
(Faer). These factors (q = S, Kv, Faer) were constrained by
using three different diagnostics to estimate the probability
of rejection for combinations of model parameters that lead
to simulations of the 20th century which are inconsistent
with the observed records of climate change. The PDFs
from each diagnostic can be combined to provide stronger
constraints for the uncertain properties via an application of
Bayes’ Theorem. A simplified model is required because
the most sophisticated models are computationally too
inefficient.
[5] Two significant additions are presented here. First,

our former analysis only considered effects from anthropo-
genic forcings (discussed later) while now we also account
for two natural forcings and one additional anthropogenic
one. In our earlier study, the sulfate aerosol pattern had a
specified dependence on latitude and surface type, but the
amplitude was taken to be one of the uncertain parameters
to be constrained. Although additional uncertainties are
associated with the newly added forcings, they are generally
believed to be smaller than the uncertainties associated with
sulfate aerosols [Hansen et al., 2002]. Thus, in our new
analysis, we retain the amplitude of the sulfate aerosol
forcing as the only uncertain parameter describing the
forcing. However, we do include in this paper some tests
of whether our new results are sensitive to uncertainties in
the new forcings.

2. Methodology

[6] To quantify uncertainty in climate model properties,
the basic method [Forest et al., 2001, 2002] can be
summarized as consisting of two parts: simulations of the
20th century climate record and the comparison of the
simulations with observations using optimal fingerprint
diagnostics. First, we require a large sample of simulated
records of climate change in which climate parameters have
been systematically varied. This requires a computationally
efficient model with variable parameters as provided by the
MIT 2D statistical-dynamical climate model [Sokolov and
Stone, 1998]. A brief description of the MIT 2D climate
model and its recent modifications are given in the auxiliary
material1. Second, we employ a method of comparing
model data to observations that appropriately filters ‘‘noise’’
from the pattern of climate change. The variant of optimal
fingerprinting proposed by Allen and Tett [1999] provides

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2005GL023977.
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this tool and yields detection diagnostics that are objective
estimates of model-data goodness-of-fit. These goodness of
fit statistics are then used to estimate the likely value of
uncertain parameters (via a likelihood function, L(q)) for
each diagnostic of climate change. Individual L(q) are then
combined to estimate the posterior distribution, p(qjDTi,
CN), where DTi represent the three temperature change
patterns and CN is the noise covariance matrix required to
estimate the goodness-of-fit statistics. The three diagnostics
remain unchanged (see the auxiliary material) although the
deep-ocean temperature data from Levitus et al. [2000] have
been replaced with Levitus et al. [2005]. The interdecadal
variability of these data have been questioned [Gregory et
al., 2004], however, we partially avoid this problem by
using the linear trend as our diagnostic and including the
analysis error estimates from Levitus et al. [2005] in the
noise estimate. The observation periods are 1906–1995
(surface), 1961–1995 (upper-air), and 1955–1995 (deep-
ocean).
[7] In this work, the noise covariance matrix has been

estimated from multiple control runs of AOGCMs. The
matrix represents the natural variability in any predicted
pattern which is determined by the variability in the
corresponding pattern amplitude in successive segments of
‘‘pseudo-observations’’ extracted from the control run for
the climate model. The variability of the MIT 2D climate
model is somewhat lower than that of AOGCMs [Sokolov
and Stone, 1998], but the model does exhibit changes in
variability which are dependent on S and Kv and are similar
to results from Wigley and Raper [1990].

3. Experimental Design

[8] The description of the climate model experiments, the
ensemble design, and the algorithm for estimating the joint
PDFs are given by Forest et al. [2001, 2002]. The major
change in the new experiments is the inclusion of three
additional 20th century forcings during the period 1860–
1995. The set of forcings is now greenhouse gas concen-
trations, sulfate aerosol loadings, tropospheric and strato-
spheric ozone concentrations, land-use vegetation changes
[Ramankutty and Foley, 1999], solar irradiance changes
[Lean, 2000], and stratospheric aerosols from volcanic
eruptions [Sato et al., 1993]. We refer to these forcings as
GSOLSV with the first three, GSO, being those used by
Forest et al. [2002]. (Details on all forcings are in the
auxiliary material.)
[9] Additionally, we elected to run each perturbation of

the 4 member ensemble starting with different initial con-
ditions in 1860 rather than perturbing the climate system in
1940 as done previously. This provides data for each
ensemble member for the entire simulation as we use
surface temperatures beginning in 1906. The initial con-
ditions for each ensemble member were taken every ten
years from an equilibrium control simulation. In total,
271,456 simulation years were required.

4. Results

[10] In the simulated climate change, the additional forc-
ings have two major effects that can be illustrated by
examining the simulated response to the GSOLSV and
GSO forcings and comparing with the observed records,

directly (Figure 1). The new results indicate higher S, lower
Kv, and slightly weaker Faer. These shifts in the distributions
are summarized as follows. The inclusion of the volcanic
aerosol forcing provides a net surface cooling during the
latter 20th century (Figure 1). This requires changes in
uncertain model parameters to remain consistent with the
historical climate record (Figures 2 and 3) which can be
achieved by reducing Kv or Faer, increasing S, or combina-
tions of all three. The mode for Faer is partially reduced
from �0.7 to �0.5 W/m2 but there is little change in the
distribution’s width with the 5–95 percentile range being
0.6 W/m2. The reduction in the mode is partially because
Faer no longer includes the volcanic term. However, the net
aerosol forcing remains a cooling effect. The modes for S,
Kv, and Faer are 2.9 K, 0.65 cm2/s, and �0.5 W/m2,
respectively, for the distributions using uniform priors.
[11] The new distributions are compared with those of

Forest et al. [2002] in Figure 2, and two key comparisons
are made. In one, we compare the distributions with
identical treatments of the climate change diagnostics by
keeping the number of retained EOFs (k) in the decompo-
sition of CN

�1(k) fixed. Thus, for the surface temperature
diagnostic, we use ksfc = 14 in both the GSO and GSOLSV
PDFs and the marginal posterior distributions for S, Faer,
and Kv are altered. In the second comparison, we vary ksfc.
For the surface data, Forest et al. [2002] found that we
could reject ksfc > 14 based on the Allen and Tett [1999]
criterion. With the additional forcings, we are no longer able
to reject the higher EOFs and find that the distributions are
insensitive for 15 < ksfc < 19. In a separate work on
Bayesian selection criteria, Curry et al. [2005] using our

Figure 1. Representative MIT 2D model simulations with
the GSOLSV, GSOLS, and GSO forcings for global-mean
annual-mean surface temperature change (a) and 0–3 km
global-mean annual-mean ocean temperature change (b).
We show cases near the distributions’ modes for GSOLSV
(black) and GSOLS (cyan) and for GSO (green). Observa-
tions (red) from P. D. Jones (http://www.cru.uea.ac.uk/cru/
data/temperature/, 2000) (surface) and the estimated trend
and its uncertainty from Levitus et al. [2005] (deep-ocean).
Anomaly reference periods: 1906–1995 (Figure 1a), 1955–
1995 (Figure 1b).
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data find that a break occurs at ksfc = 16 and thus we select
this as an appropriate cutoff. This inclusion of higher order
EOFs is equivalent to stating that smaller spatial and
temporal scale patterns (in five decadal means and four
equal-area zonal averages) present in the GSOLSV response
are consistent with similar patterns in the observations,
unlike the GSO case. As a final issue, this shift from
ksfc = 14 to 15 further limits the higher Kv values. We note
that the range of effective ocean diffusivities for the existing
AOGCMs is 4–25 cm2/s [Sokolov et al., 2003], and these
values appear to be highly unlikely according to our new
results. We note that the deep ocean temperatures used here
have a 20% weaker trend than those used in our previous
analysis, and this is one reason why the acceptable values of
Kv are now lower. However, the upper bound on Kv results
from the combination of the surface and deep-ocean
temperature diagnostics (depending on the region of the
parameter space (see the auxiliary material)).
[12] Several sensitivity tests were performed to assess the

robustness of the estimated distributions. Specifics are given
in the auxiliary material, but we briefly discuss two here. A
first test determines whether the location of the deep-ocean
heat uptake influenced the spatio-temporal patterns of
temperature change. The latitude dependence of Kv, which
was based on observations of tritium mixing [Sokolov and
Stone, 1998], was changed to reflect the pattern identified in
the ocean data [Levitus et al., 2000]. Although local surface
temperatures were changed, the large-scale averages (four
equal-area zonal bands) used in our diagnostics were not

affected. A second test explored the sensitivity of the results
to reducing the strength of the volcanic forcing by 25%.
This requires stronger Faer cooling and lower S values to
bring the temperature response down to match the observa-
tions but the changes are relatively small. These results
suggest that the PDFs are robust to such changes.
[13] Since the estimated distributions depend on the

truncation for the eigendecomposition of CN for the surface
temperature diagnostic, we tested the impact of uncertainty
in CN by using estimates based on the natural variability
from control runs by the HadCM2, HadCM3, GFDL_R30,
and PCM models. The resulting PDFs did not differ
qualitatively (results not shown). Although the results are
not sensitive to the choice of AOGCM, observations do not
exist to test the quality of such estimates.

5. Discussion and Conclusions

[14] We present revised PDFs for climate system proper-
ties that now include the response to both natural and
anthropogenic forcings. With additional new forcings, a
larger climate sensitivity and a reduced rate of ocean heat
uptake below the mixed layer are required to match the
observed climate record in the 20th century. The primary
factor leading to this change is the strong cooling forcing by
volcanic eruptions through the stratospheric aerosols. Simi-
larly, there is a small change in the aerosol forcing which
tends to offset the volcanic cooling. When using uniform
priors on all parameters, these new results are summarized
by the 90% confidence bounds of 2.1 to 8.9 K for
climate sensitivity, 0.05 to 4.1 cm2/s for Kv, and �0.74 to
�0.14W/m2 for the net aerosol forcing strength.We note that
the upper bound for the climate sensitivity is sensitive to our
choice of prior, which was truncated at 10 K. When an expert
prior for S is used [Forest et al., 2002], the 90% confidence

Figure 2. Marginal posterior PDF for the three climate
system properties for four cases. In each panel, the marginal
PDFs are shown for the GSOLSV forcings with ksfc = 16
(black) and 14 (green) and for GSO case (blue) with ksfc =
14 from Forest et al. [2002]. A fourth case (red) includes an
expert prior on S and uniform priors elsewhere with ksfc =
16. The whisker plots indicate boundaries for the percentiles
2.5–97.5 (dots), 5–95 (vertical bar at ends), 25–75 (box
ends), and 50 (vertical bar in box). The mean is indicated
with the diamond and the mode is the peak in the
distribution. The range for S is 0.5–10 K while ranges for
Kv and Faer are given by plot boundaries.

Figure 3. Marginal posterior PDF for GSOLSV results
with uniform priors for the S-Kv parameter space. The
shading denotes rejection regions for the 10%, and 1%
significance levels, light to dark, respectively. The 10%, and
1% boundaries for the posterior with expert prior on S are
shown by thick black contours. The positions of AOGCMs
[from Sokolov et al., 2003] represent the parameter values
required in the MIT 2D model to match the transient
response in surface temperature and thermal expansion
component of sea-level rise. Lower Kv values imply less
deep-ocean heat uptake and hence, a smaller effective heat
capacity of the ocean.
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intervals are 1.9 to 4.7 K, 0.02 to 2.9 cm2/s, and �0.65 to
�0.07W/m2 for S,Kv, and Faer, respectively.We note that our
PDF for S has a similar shape to PDFs in other studies [e.g.,
Knutti et al., 2003], although our results differ significantly in
having a higher lower bound on S.
[15] Our new estimates for Kv imply that most AOGCMs

are mixing heat into the deep ocean too efficiently, as shown
in Figure 3. We stress that Kv represents the rate of deep-
ocean heat uptake and note that the net temperature change
(surface or deep-ocean) will be defined by multiple factors
including S and Faer. A number of studies (see a detailed
discussion and references in the auxiliary material) have
reported the detection of the anthropogenic signal in the
Levitus et al. [2000, 2005] ocean temperature data; however,
one can obtain a correct temperature change with excessive
mixing if S is too low, for example. Hence a single diagnostic
is not sufficient to describe fully the model response.
[16] From the two sensitivity tests regarding the strength

of the volcanic forcing and the location of the ocean heat
uptake, we find that our results appear robust. We note that
uncertainties in the volcanic forcing will alter the posterior
distribution and could increase S if it were larger. We also
explored the sensitivity to the estimated CN

�1(k) and found
that although the specific AOGCM is not very important,
the method for truncating the number of retained eigenvec-
tors (i.e., patterns of unforced variability) is critical. Based
on ksfc = 14, 15, or 20, the robust result is that the lower
bound on S is higher and failure to reject S > 5 K remains.
Additionally, for all three choices, high Kv values are
rejected as producing too much ocean heat uptake and the
net aerosol forcing uncertainty remains stable. The best
choice appears to be ksfc = 16.
[17] Finally, the use of the expert prior on S remains a key

factor in limiting the possibility of high values of S. Despite
their uncertainties, the paleoclimate results provide data not
directly included in the present framework [Hansen et al.,
1993] and this supports using a prior influenced by such
results. The implications of these results are that the climate
system response will be stronger (specifically, a higher
lower bound) for a given forcing scenario than previously
estimated via the uncertainty propagation techniques of
Webster et al. [2003].
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