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ABSTRACT

A method for estimating uncertainty in future climate change is discussed in detail and applied to
predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates
of uncertainty in model simulations of twentieth-century warming. These estimates are then projected
forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-
century warming. This relationship is established from a large ensemble of energy balance models.

By varying the energy balance model parameters an estimate is made of the error associated with using
the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has
very little impact on the forecasts. There is a 50% chance that the global mean temperature change between
1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI
scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively
robust to model developments for a given radiative forcing history.

1. Introduction

Forecasts of future climate change provide an essen-
tial source of information for policy makers. Their util-
ity is increased considerably when the forecasts are ac-
companied by estimates of uncertainty. This has been
recognized by the Intergovernmental Panel on Climate
Change (IPCC; Houghton et al. 2001) and others
(Reilly et al. 2001; Schneider 2001; Webster et al. 2003)
and has motivated several estimates of uncertainty in
forecasts of climate change (Allen et al. 2000; Wigley
and Raper 2001; Forest et al. 2002; Knutti et al. 2002;
Stott and Kettleborough 2002). These estimates pro-

vide information on the likely ranges of climate change:
in particular they rule out certain futures as unlikely.
This paper describes in detail a method for making es-
timates of the uncertainty in global mean temperature
change introduced by Allen et al. (2000) and used by
Stott and Kettleborough (2002), hereafter referred to
as ASK.

Most estimates of uncertainty in climate change are
based on weighted ensembles of climate models. Each
member of the ensemble has different values for the
key, uncertain, model inputs. The models are used to
simulate a historical period, and usually a future period
using one or more future radiative forcing time series.
Individual model runs are then compared with obser-
vations to produce the relative weight for that ensemble
member (Andronova and Schlesinger 2001; Forest et al.
2002; Harvey and Kaufmann 2002; Knutti et al. 2002).
These weights are then used to build distributions of
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forecast quantities. In some cases the effective weight
assigned to models is not determined by comparison
with observations, but by expert judgment (Wigley and
Raper 2001).

The results of all these model studies are, however,
dependent on the way that the model inputs have been
sampled. Sampling the parameters in a different way or
introducing new models will change the forecast distri-
bution (Frame et al. 2005; Stainforth et al. 2005). Allen
et al. (2006) introduced the idea of Stable Inferences
from Data (STAID). These are estimates that depend
largely on observations, and are relatively robust to
model changes such as the way that the model param-
eters are sampled or the introduction of new models
into an ensemble. At the center of the STAID forecast
is a transfer function that links a forecast quantity to an
observable. In the case of ASK the transfer function is
a relationship linking twentieth-century warming to fu-
ture warming. The uncertainty in twentieth-century
warming is assessed by comparing an atmosphere–
ocean general circulation model (AOGCM) with ob-
servations. The transfer function is then used to project
the uncertainty in twentieth-century warming into the
future. This method is very similar in spirit to the Greg-
ory et al. (2002) estimates of climate sensitivity. Greg-
ory et al. (2002) identify a relationship between observ-
able quantities and the forecast quantity, which in this
case is climate sensitivity. They then use this relation-
ship as a transfer function to project the uncertainty in
the observations onto the uncertainty in climate sensi-
tivity. In the case of Gregory et al. (2002) the transfer
function is based on energy conservation and a simple
representation of the climate feedbacks. For ASK the
transfer function emerges from an ensemble of Energy
Balance Model (EBM) integrations. The transfer func-
tion should be robust to known errors or uncertainty in
models and is a key component of a STAID forecast.

The general method used by ASK is described in
detail in section 2 of this paper. Section 3 discusses the
particular application of the method to global mean
temperature. An ensemble of EBM integrations is used
to test the limitations of using the linear transfer func-
tion between twentieth-century and twenty-first-
century warming (section 4). The impacts on forecasts
of temperature change of errors associated with using
an exact linear transfer function are determined in sec-
tion 5. This section also presents new results concerning
the probability of exceeding a temperature threshold.

2. General method

A summary of the general method used in ASK is
given in Fig. 1. Two models are used: an EBM and an

AOGCM. The EBM is used to establish the existence
of a linear transfer function for the anthropogenic com-
ponent of the response, and to estimate the error asso-
ciated with using a linear transfer function. This is dis-
cussed in detail in section 4. Here we begin with the use
of the AOGCM in assessing the uncertainty in past
climate change and, given the existence of a linear
transfer function, discuss how a single AOGCM can be
used to predict the uncertainty in future climate
change.

a. Estimates of uncertainty in past climate change

An estimate of the uncertainty in past climate change
is found by comparing model simulations with observa-
tions. The comparison is performed using optimal fin-
gerprinting as used in the detection and attribution of
climate change (Hasselmann 1997; Allen and Tett
1999). In essence the fingerprinting algorithm is a linear
regression and can be thought of as scaling a linear
combination of AOGCM response patterns to fit the
observations:

FIG. 1. Schematic of the method used to estimate uncertainty in
future climate change.
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y � �
i�1

m

�xi � �i��i � �0, �1�

where y is the observations, xi are the modeled re-
sponse patterns, �i are any errors or uncertainties in a
response patterns, �0 is any error or uncertainty that
causes the observations to be different from the linear
fit, and �i are the scaling factors for the model response
patterns. The observations and response patterns are
written as vectors as they can be space–time patterns.
The response patterns are calculated from integrations,
or initial condition ensembles, forced with different ra-
diative forcings. If any of the �i are less than one, this
implies that the model overestimates the response to a
particular forcing and so the model’s pattern of re-
sponse has to be scaled down. If any of the �i are
greater than one, the model underestimates the ob-
served response and so its pattern of response has to be
scaled up.

The method used to determine the �i and their un-
certainty estimates depends on the sources of noise
terms, �i and �0. Ordinary least squares (OLS) accounts
for internal variability in the observations (�0; Allen
and Tett 1999). The observed forced response may dif-
fer from the scaled response patterns because of inter-
nal variability in the observations. Total least squares
(TLS) allows both internal variability in the observa-
tions and the influence of internal variability on the
sampling of the response patterns (�i; Allen and Stott
2001). When the response patterns are inferred from a
small number of initial condition ensemble runs then
the response patterns are contaminated by internal
variability. In this study we use TLS rather than OLS to
estimate the �i and their uncertainty ranges. OLS suf-
fers from low bias, particularly in the upper bound,
when used with small ensemble sizes. TLS does not
suffer from the same biases (Allen and Stott 2001; Stott
et al. 2001). This is particularly important when esti-
mating confidence limits on the scaling factors, espe-
cially if there are weak signals. If OLS was used in the
current study, this would lead to an underestimate in
the uncertainty.

TLS does not account for all factors that may cause
the observations to differ from scaled versions of the
model response patterns. Inadequacies in the model
formulation or physical parameterizations and errors in
the spatial distribution or temporal evolution of the
forcing can all result in errors in the response patterns.
By allowing the response patterns to be scaled up or
down we are allowing for cases where these errors af-
fect only the amplitude of the response. We do not
allow for cases where the errors change the pattern of
the response. This could, in principle, be relaxed by in-

cluding these errors in the term �i (Huntingford et al.
2006). In practice a consistency test is applied to the
residuals of the fit (Allen and Tett 1999). One of the
reasons this consistency test may fail is if the errors in
the patterns cannot be accounted for by internal vari-
ability alone. If the consistency test is passed, we can be
reasonably confident that the response pattern pre-
dicted by the model is adequate.

TLS gives the best-guess estimates of the scaling fac-
tors and the probability that the true scaling factors are
different from these best estimates (Allen and Stott
2001). This probability distribution, P(�i), gives an es-
timate of our uncertainty in past climate change.

b. Uncertainty estimates in future climate change

Having determined the distribution of the �i using
optimal fingerprinting, a natural way of predicting the
future response of the climate system is to apply a
modified version of Eq. (1), but at forecast times:

yfor � �
i�1

m

�xi
for � �i

for��i � �0
for � ei, �2�

where xfor
i are the model forecast response patterns, �i

are the same scaling factors as calculated from the op-
timal fingerprinting of past climate change, and yfor is
the modified forecast. The noise terms �for

i are the un-
certainty in the model response patterns. This uncer-
tainty might be due to internal variability because only
small ensembles are used to produce the forecast re-
sponse, or due to uncertainties in the future forcing or
model physics that result in errors in the forecast pat-
tern. In this study we account for the uncertainty due to
small ensemble size. The additional noise terms (in this
case �for

0 and ei) represent any reason why the future
climate is different from the scaled versions of the mod-
eled forced response. These include internal variability
(�for

0 ), and any error resulting from assuming the scaling
factors calculated from optimal fingerprinting can be
used to scale the future response (ei).

Using the same scaling factors for past and future
response is equivalent to saying that fractional error is
constant over time. If a model underestimates the
forced response by 20% in the twentieth century, then
it will continue to underestimate the forecast-forced re-
sponse by 20% through the twenty-first century. The
errors do not change the shape of the response, only the
magnitude (Fig. 2). It is worth putting this in the con-
text of terminology used elsewhere. Following Allen et
al. (2000) earlier in this paper we have referred to this
as a linear transfer function. In the language of Allen
and Ingram (2002) the linear transfer function is just an
example of an emergent constraint. In this paper we
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will also use the term linear constraint to indicate an
emergent constraint that is associated with a linear
transfer function.

The uncertainty in future climate change can be cal-
culated from Eq. (2) given the P(�i) and the statistics of
�for

0 , �for
i , and ei. The simplest way to do this is by Monte

Carlo sampling of the distributions to generate a set of
sample points for yfor.

In the introduction we mentioned that ensemble-
based estimates of uncertainty are prone to a sampling
problem, even if weighted by a likelihood based on
observations. In the context of ASK we in effect gen-
erate an ensemble of model runs based on the scaling of
a set of AOGCM response patterns. The weight on
each ensemble member is then determined by the prob-
ability of the scale factors [P(�i)]. In estimating P(�i) by
optimal fingerprinting we do not assume any prior
knowledge of how much the model response has to be
scaled up or down to be made consistent with the ob-
servations. We assume that a model is equally likely to
under- or overestimate the observed response. This is
equivalent to saying that we start with a uniform sam-
pling of scaling factors (and hence model ensemble
members). The final distribution of scaling factors is
then determined by weighting by the likelihood based
on observations. Since we are using the same scaling
factor for past and forecast temperature change, then a
uniform prior in scaling factor is equivalent to a uni-
form prior in past and forecast temperatures. This uni-
form prior in future or forecast temperatures means

that, before accounting for model–observation differ-
ences, we are not assuming that any one forecast is any
more likely than any other. This is exactly what most
users of forecasts would expect (Allen et al. 2006;
Frame et al. 2005; Stainforth et al. 2005).

If we were to apply the method used in other studies
(Forest et al. 2002; Knutti et al. 2002; Murphy et al.
2004) we would find that, before weighting by the like-
lihood, the ensemble members would not be uniformly
distributed in the forecast quantity. The distribution is
biased by the sampling used to generate the ensemble.
In practice the prior distribution will be weighted to-
ward the base model since many of the perturbations to
the models physics will have little impact on the mod-
eled climate change. This will result in an underesti-
mate of the uncertainty. This could, of course, have
serious implications for any planning or policy based on
these estimates of uncertainty.

3. Models and data

In this study we apply the method outlined in the
previous section to forecasts of global mean surface
temperature change. Here we use AOGCM simula-
tions as outlined in Stott et al. (2000), Tett et al. (2002),
and Stott and Kettleborough (2002). The model simu-
lations, observations, and processing are all identical to
that in Stott and Kettleborough (2002). The observa-
tions used to estimate the uncertainty in the response to
recent climate change are surface temperatures taken
from an updated version of Parker et al. (1994). The
model used is the Third Hadley Centre Coupled
AOGCM (HadCM3; Gordon et al. 2000; Pope et al.
2000). Three ensembles of simulations of the period
1869–2000 have been used to estimate the uncertainty
in recent changes in surface temperature. Each en-
semble includes different radiative forcing: greenhouse
gas (GHG) only (G), greenhouse gas and anthropo-
genic sulphate (GS), and solar and volcanic forcing
(NAT). For notational convenience, where we need to
be specific about forcing, the subscript i will take values
G, GS, or NAT in terms in Eqs. (1) and (2). Each of the
forcings is described in more detail in Tett et al. (2002).
The ensembles are four-member initial condition en-
sembles. The ensemble means are used to define the
response patterns [xi, or more specifically xG, xGS, and
xNAT, in Eq. (1)]. We use decadal mean data, and the
observational mask is applied to the model patterns
before the space patterns are filtered using spherical
harmonics to scales above 5000 km (Tett et al. 2002).
Segments of the HadCM3 control run are used to pro-
vide estimates of the internal variability, �i. Optimal
fingerprinting applied in this way gives �G, �GS, and

FIG. 2. Scaling a reference time series is equivalent to 1) allow-
ing for errors in magnitude, but not shape, and 2) constant frac-
tional error.
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�NAT, the factors by which the modeled responses have
to be scaled in order to fit observations of the surface
temperature.

The estimates of internal variability by the model are
deficient at some scales (Stott and Tett 1998; Allen and
Tett 1999). This is overcome by truncating the response
patterns so that they include only modes of variability
that are sufficiently well represented by the model. The
level of truncation is determined by a consistency test
(Allen and Tett 1999). Here we use a truncation of 15
throughout. The variation of results quoted in this pa-
per is less than 0.1 K for truncations between 15 and 20.

The anthropogenic components of the forecast pat-
terns [xfor

G , xfor
GS in Eq. (2)] are taken from G and GS

integrations of HadCM3 for the period 2000–2100.
Simulations have been performed for each of the Spe-
cial Report on Emissions Scenarios (SRES) scenarios
SRES-A1FI, SRES-A2, SRES-B1, and SRES-B2. For
most of the SRES scenarios and forcing histories only
one simulation has been used (the exception is SRES-
B2, which has two simulations for both G and GS). The
resulting sampling error in the forecast response pat-
terns is taken into account by adding an error term �for

i .
The estimate of the sampling error is made by taking
the variance of the global mean temperature from the
control, scaling this to account for the ensemble size,
and adding it as Gaussian noise in Eq. (2).

Future changes in natural forcing due to volcanic
eruptions and changing solar irradiance (xfor

NAT) are hard
to determine. Volcanic eruptions with significant radia-
tive forcing appear to be random (Hyde and Crowley
2000) and so can be modeled by a stochastic process.
The solar output, at least over the next two decades,
may be predictable using variations in the solar cycle
(Lean 2001). Although predictions of longer-term solar
output variations can be made, there is no established
method for doing this. In principle, the forecasts of ran-
dom volcanic eruptions and solar radiance output could
be used in this analysis. Here, however, we use a sim-
pler approach based on the modeled response to natu-
ral forcing during the period 1860–1990. We assume
that the variation of solar output and effect of volcanic
eruptions of the next century will not be very different
from that in the last century. The uncertainty in the
natural forcing in the next century is modeled by a
random process with the same characteristics as the
recent past response to natural forcing modeled in the
HadCM3 NAT ensemble. This is achieved by adding a
Gaussian process to �for

NAT in Eq. (2). The variance of
this process is determined from the statistics of the
NAT historical integrations. The forecast temperatures
produced by this Gaussian process are based on the
modeled response. They are scaled by �NAT to make

them consistent with observations. (Fig. 1 puts this in
context.)

For estimates of uncertainty in future climate change
we concentrate only on the global mean surface tem-
perature. The forecast responses (xfor

G and xfor
GS) are the

global mean, ensemble mean temperature from the
forecast integrations. To maintain consistency with the
data used in the optimal fingerprinting the forecast data
have an observational mask applied before taking the
global mean. The mask used is the same mask that is
used in the last decade of the twentieth century. For
most of the forecast period the difference between the
global mean of the masked data and the true global
mean is less than 0.1 K. Toward the end of the twenty-
first century for high climate change scenarios the dif-
ference can be greater than 0.1 K, but remains less than
0.15 K. The decadal-scale internal variability to be
added onto the forecast forced response [�for

0 in Eq. (2)]
is represented by a first-order autoregressive process
[AR(1)]. The process variance is 0.003 K2, and the lag-
one correlation 0.251, estimated by fitting the control.
All results presented here are based on decadal mean
predictions.

4. The linear constraint

Having discussed the AOGCM component of Fig. 1
we now turn to the EBM and the linear transfer func-
tion. For a simple model of the climate system with a
constant heat capacity and linear feedbacks there is a
lagged response to a linearly increasing forcing (e.g.,
Hartmann 1994). The lag time is given by the response
time of the system. This means that, after an initial
adjustment time, uncertainties in the strength of the
feedbacks or the heat capacity have little impact on the
shape of the response, which is a linear function of time.
The errors simply scale the response up or down. As
discussed earlier this is equivalent to saying that the
fractional error is constant, or that there is a linear
transfer function between past and future warming. A
similar derivation to that given in Hartmann (1994) also
applies to an exponentially increasing forcing. For some
idealized forcing profiles there is a linear transfer func-
tion between past and future warming. Allen et al.
(2000) have demonstrated that a similar result holds for
the IS92A scenario. Here we extend their analysis to
SRES scenarios and estimate the error resulting from
using the linear transfer function.

The error is estimated using an ensemble of EBM
runs. The EBM consists of a mixed layer ocean with a
linear feedback and heat transport to the deep ocean
modeled by an effective diffusion (Hansen et al. 1985).
The model has been run using a range of values of the
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climate sensitivity (0.5–20 K) and ocean diffusivity
(0.0–4.8 cm2 s�1). The model realizations sample uni-
formly in climate sensitivity and in the square root of
ocean heat diffusivity following Forest et al. (2002).
One hundred values of each parameter have been used.
For each scenario the EBMs are run with both G only
and GS forcing from 1860 to 2100. The radiative forcing
time series used to force the EBMs are those diagnosed
from corresponding runs of HadCM3. This helps en-
sure consistency between the EBM and HadCM3 re-
sults.

In this section we concentrate on two of the SRES
scenarios. The forcing histories for A1FI and B1 are
shown in Fig. 3. The A1FI forcing increases with time,
with radiative forcing approaching 8 W m�2 by the end
of the twenty-first century. The rate of increase of the
forcing is not steady but accelerates, particularly in the
middle of the century. This acceleration is especially
noticeable for the GS forcing. This results from a de-
crease in the anthropogenic sulfate forcing. In contrast,
in the B1 scenario the G forcing is almost steady at
4 W m�2 by the end of the twenty-first century. The
anthropogenic sulfate forcing is decreasing with time,
so the GS forcing shows less stabilization. The decreas-
ing G forcing is offset by the decrease in the magnitude
of the negative anthropogenic sulfate forcing.

Figure 4 shows the error resulting from using a linear
constraint as a function of the climate sensitivity and
ocean heat diffusivity. Elsewhere in this study we scale
HadCM3 projections to estimate future warming rates
so the error has been calculated by scaling the EBM
that most closely matches the temperature and heat
content of HadCM3. For the A1FI scenario, at 2100,
the additional error resulting from scaling the reference
trajectory lies between �10% and 10%. Most of the
models sampled have positive errors. For the B1 sce-
nario, at 2100, the errors are larger and lie between
�30% and 20%.

The source of the errors can be understood in terms
of the relative time scales of the forcing and the model
response time. For stabilization scenarios, such as B1,
the time scale of the stabilization may be comparable to
the model response time. Models with large ocean heat
diffusion coefficients and climate sensitivities have
longer response time scales than models with small
ocean heat diffusion coefficients and climate sensitivi-
ties. Figure 4 shows that models with long time scales
tend to have larger temperature response than their
scaled analog because they have a large warming com-
mitment. In other words representing the system as a
scaled version of a model with less warming commit-
ment leads to an underestimate of the system response.
For models with very large warming commitment the

response is relatively insensitive to any stabilization in
the forcing. This explains why the error flattens out at
high time scales.

Models with short response time scales have smaller
temperature responses than their scaled analog. These
errors can become large for very short response time

FIG. 3. Radiative forcing time series (a) A1FI and (b) B1. Solid
lines: G; dotted lines: GS; dashed lines: anthropogenic sulfate.
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models. Models with short response times have very
little warming commitment. If the forcing stabilizes,
these models will respond quickly to the changes in
forcing. Their temperature response will therefore be
less than their scaled analog based on a model with
larger warming commitment.

When the forcing accelerates rather than stabilizes,
as it does in the A1FI scenario for the case of GS, then
for large time-scale models the scaled anolog tends to
overestimate the true response. Again this can be un-
derstood in terms of the model response time. When
the response is slow compared to the acceleration of the
forcing the model tends to have a temperature response
that is smaller than a scaled version of a shorter time
scale model. This is reflected in a negative error. This
behavior is seen in the EBMs, though the correspond-
ing Fig. 4 for GS is not shown here.

Not all EBM models are equally realistic when com-
pared with observations of the twentieth century. The
dotted contour overlaid on Fig. 4 shows the 95% con-
fidence limit based on comparing observations with the
EBM outputs. The confidence limits have been calcu-
lated using two sets of observations. First, Levitus et al.
(2000) observations of ocean heat content are used to
infer the effective heat capacity over the second half of
the twentieth century. Second, the optimal fingerprint-
ing outlined in section 3 is used to infer the amount of
twentieth-century warming attributable to GHG forc-

ing (Frame et al. 2005). The effective heat capacity and
the GHG attributable warming can also be calculated
from the G-forced runs of each EBM. The uncertainty
estimates on the observed effective heat capacity and
GHG attributable warming can then be used to assign
each EBM a likelihood. The 95% contour on Fig. 4
indicates that EBMs with very high sensitivities (	17
K) and ocean diffusion coefficients (	2.5 cm2 s�1) can
be excluded. Models with very large negative errors
(those with very low sensitivities and heat uptake rates)
can also be excluded.

The likelihoods of different EBMs can be used to
weight the errors shown in Fig. 4 to give a distribution
of error. This distribution, P(Ei), gives an estimate of
the probability that scaling the HadCM3 best fit EBM
results in an error, Ei. This error is denoted Ei as it
conceptually equivalent to the term ei in Eq. (2). In this
case i represents the forcings G and GS. Of course,
P(Ei) is dependent on the sampling strategy used to
generate the ensemble of EBMs. The distribution
would be different if we sampled evenly in the ocean
heat diffusion coefficient as opposed to the square root
of the ocean heat diffusion coefficient. Figure 5 shows
P(EG) and P(EGS) from the A1FI and B1 scenarios as
a function of time. The errors clearly grow with time in
all cases. The influence of down weighting the EBMs
according to their likelihoods when compared to obser-
vations is clear. For instance for the G forcing in A1FI

FIG. 4. Error resulting from using the linear transfer function shown as a function of EBM parameter
K� designates the ocean heat diffusion coefficient. (a) 2100 error for A1FI, (b) 2100 error for B1. The
overlaid dotted contour is the 95% confidence limit based on comparison with observations of the
heat content and attributable GHG warming. The cross is the EBM parameter combination that best
fits HadCM3 [EBM(HadCM3): climate sensitivity of 3.2K; ocean diffusion coefficient of 0.284cm2 s�1].
The error has been calculated for each EBM by first regressing the twentieth century temperature
response of the EBM onto the EBM(HadCM3) temperature. This gives the factor � by which the
EBM(HadCM3) temperature needs to be scaled to give the actual EBM temperature. The error is then,
E � [TEBM � �TEBM(HadCM3)]/TEBM.
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(Fig. 4a) shows that there are large numbers of EBMs
sampled that have positive errors. Most of these EBMs,
however, have relatively low likelihoods, and so P(EG)
and P(EGS) do not reflect a predominance of positive
values. The errors for A1FI are small, with most being
less than 10%. There is also a small negative bias, par-

ticularly early in the century. For B1 the errors are
larger than for A1FI, particularly for G. As discussed
earlier this reflects the fact that the B1 scenario is sta-
bilizing. Models with slow response times and large
warming commitments warm more than their scaled
analogs; models with fast response times and small
warming commitments warm less than their scaled ana-
logs. For B1 the errors associated with the slow re-
sponse models become large and the error distribution
shifts toward positive errors. These error distributions
are sensitive to the reference model chosen as this sets
the time scale of all the analog models. In this case the
errors calculated will be applied to forecasts based on
HadCM3. This means the EBM that best fits HadCM3
is a suitable choice for the reference.

The error P(EG) and P(EGS) quantifies the linearity
and compactness of the constraint. It can be used to
estimate the statistics of the term ei in Eq. (2) for the G
and GS forcings. It is this error that joins the EBM and
AOGCM parts of the analysis in Fig. 1. The errors are
generally small, indicating that the use of a linear trans-
fer function is valid.

5. Estimates of uncertainty

a. Accounting for uncertainty in the emergent
constraint

In this section we use the estimates P(Ei) to correct
the forecasts of twenty-first-century temperature
change made in Stott and Kettleborough (2002).

In this analysis we ignore the fact that there may be
correlation between the errors in the �i and ei. In other
words we ignore the fact that more severe errors in the
linear relationship occur as �i gets further away from 1.
This will have most impact in the extremes of the prob-
ability density function (PDF), but little impact on the
center of the PDF.

Figure 6 shows the uncertainty plumes for the A1FI
and B1 scenarios. The plumes calculated taking the er-
ror in the linear constraint into account are very similar
to the uncorrected plumes. The dominant error is our
uncertainty in twentieth-century temperature change
rather than the error associated with assuming a linear
transfer function. This is particularly so in the first half
of the century. For the A1FI scenario the correction
tends to bring the 5th, 50th, and 95th percentiles down
in temperature by less than 0.1 K in 2100. The lower
values reflect the negative errors associated with the
linear constraint, shown in Fig. 4. For the B1 scenario
the influence of errors in the linear constraint is very
small, and almost negligible. Given that the errors due
to the linear constraint for G forcing are relatively large
in the B1 scenario this is perhaps a surprising result. In

FIG. 5. Probability of an error, p(E ), resulting from scaling a
reference trajectory relative to the unscaled trajectory. E � [TEBM �
�TEBM(HadCM3)]/TEBM. The probability density function is based
on the EBM ensemble after weighting each model with its likeli-
hood. (a) A1FI and (b) B1. Solid line: GS; dotted line: G.

850 J O U R N A L O F C L I M A T E VOLUME 20



predictions made using HadCM3 based on the GS and
G patterns the scaling on the G pattern alone is quite
small, and so the influence of the errors associated with
this pattern is small. This is because the scaling on the
G pattern is the additional GHG warming needed to
match the observations over and above that in GS
(Allen and Tett 1999). If we applied the corrections to
a model that had a different ratio of greenhouse gas to
anthropogenic sulfate response in the twentieth cen-
tury, then the deviation of GHG response from a linear
transfer function could have more of an influence.

Accounting for uncertainty in the linear constraint
due to uncertainty in climate sensitivity and ocean heat
diffusivity has little effect on the main conclusions of
Stott and Kettleborough (2002). Percentiles of the dis-
tribution of forecast decadal mean global mean tem-
perature change relative to preindustrial climate are
given in Table 1.

b. Sensitivity to the uncertainty in natural forcing

Given the uncertainty in the future natural forcing, it
is worth understanding the sensitivity of results to
changes in the assumed future natural forcing. In the
context of this paper the future natural response is rep-
resented by the term �NATxfor

NAT in Eq. (2). The uncer-
tainty in the future natural response is therefore deter-
mined by the distributions of �NAT and xfor

NAT. The dis-
tribution of �NAT is determined by the optimal
fingerprinting. The distribution of xfor

NAT is represented
by a Gaussian process. In this section we vary the stan-
dard deviation of this Gaussian distribution to deter-
mine the sensitivity of the forecasts of global mean tem-
perature change to the uncertainty in the future natural
forcing. Figure 7 demonstrates the sensitivity of the un-
certainty in global mean temperature change to the un-
certainty in the natural response. For reference the
modeled global mean temperature standard deviation
over the period 1860–2000, used as the estimate for
much of this study and that of Stott and Kettleborough
(2002), is shown by the vertical dashed line. The mod-
eled global mean temperature variance over the period
1900–2000 is shown by the vertical dotted line. The
period 1860–2000 includes the eruption of Krakatoa in
1883, which accounts for the larger natural variance
over this extended period compared to the twentieth
century. At both 2020 and 2060 there is some sensitivity
to the assumed natural variance. This sensitivity, how-
ever, is relatively small compared to the total uncer-
tainty in the temperature forecasts. This is especially
the case at 2060. This reflects the strengthening green-
house gas signal and corresponding increase in the un-
certainty in the forecast due to the uncertainty in the
greenhouse gas forcing.

FIG. 6. Uncertainty estimates in future climate accounting for
errors in the assumption of constant fractional error. (a) A1FI and
(b) B1; solid lines are the uncorrected plumes, and dashed lines
are the corrected plumes. For each case the midlines are the me-
dian estimate and the extremes are the 5% and 95% confidence
limits. Warming is relative to preindustrial climate.
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c. Probability of global warming exceeding 1.5 K

An alternative way of viewing the uncertainties in
twenty-first-century warming is to look at the probabil-
ity of temperature exceeding a given threshold as a
function of time. This shifts the emphasis from looking
at whether a certain temperature change will occur to
looking at when that temperature change occurs. This is
particularly relevant when there are processes with

thresholds or where there is an identifiable level of dan-
gerous change (Hulme 2003; Knutti et al. 2005). The
probability of the warming since 1995 exceeding 1.5 K
is shown in Fig. 8 (approximately equal to a warming of
2 K since the preindustrial era). This has been calcu-
lated, for every year of the century, by adding an esti-
mate of the annual subdecadal variability onto each of
the possible future temperature time series. Looking at
the probability of exceeding 1.5 K very clearly shows
the difference between the forcing scenarios. Especially

TABLE 1. Percentiles of the estimated PDFs of future decadal
mean temperature change relative to preindustrial climate.

Decade/
percentile 5% 10% 33% 50% 66% 90% 95%

SRES A1FI
2000–10 0.8 0.8 1.0 1.1 1.2 1.4 1.6
2010–20 1.0 1.1 1.3 1.4 1.5 1.8 1.9
2020–30 1.2 1.3 1.5 1.6 1.7 2.0 2.2
2030–40 1.4 1.6 1.8 2.0 2.1 2.5 2.7
2040–50 1.8 1.9 2.2 2.4 2.6 3.0 3.2
2050–60 2.2 2.4 2.8 3.0 3.3 3.8 4.1
2060–70 2.6 2.9 3.5 3.8 4.1 4.9 5.3
2070–80 3.0 3.3 4.0 4.4 4.7 5.6 6.0
2080–90 3.4 3.7 4.5 4.8 5.2 6.2 6.7
2090–2100 3.8 4.2 5.1 5.6 6.1 7.2 7.8

SRES A2
2000–10 0.7 0.8 1.0 1.1 1.1 1.4 1.5
2010–20 0.9 1.0 1.2 1.3 1.4 1.7 1.8
2020–30 1.1 1.2 1.5 1.6 1.7 2.0 2.1
2030–40 1.4 1.5 1.7 1.9 2.0 2.3 2.5
2040–50 1.7 1.8 2.1 2.2 2.4 2.8 2.9
2050–60 2.0 2.1 2.5 2.7 2.9 3.4 3.6
2060–70 2.3 2.5 2.9 3.2 3.4 4.0 4.2
2070–80 2.6 2.8 3.4 3.6 3.9 4.6 5.0
2080–90 3.0 3.2 3.9 4.2 4.5 5.3 5.7
2090–2100 3.4 3.7 4.4 4.8 5.2 6.1 6.6

SRES B1
2000–10 0.7 0.8 0.9 1.0 1.1 1.4 1.5
2010–20 0.9 1.0 1.1 1.3 1.4 1.6 1.7
2020–30 1.1 1.2 1.4 1.6 1.7 2.0 2.1
2030–40 1.3 1.4 1.6 1.8 1.9 2.2 2.3
2040–50 1.4 1.5 1.8 1.9 2.0 2.4 2.5
2050–60 1.6 1.7 2.0 2.2 2.4 2.8 3.0
2060–70 1.8 1.9 2.3 2.5 2.7 3.1 3.4
2070–80 1.9 2.1 2.5 2.7 2.9 3.4 3.7
2080–90 2.1 2.3 2.7 2.9 3.2 3.7 4.0
2090–2100 2.1 2.3 2.8 3.1 3.3 4.0 4.3

SRES B2
2000–10 0.8 0.9 1.0 1.1 1.2 1.5 1.6
2010–20 1.0 1.1 1.3 1.4 1.5 1.8 1.9
2020–30 1.2 1.3 1.5 1.6 1.7 2.0 2.2
2030–40 1.4 1.5 1.8 1.9 2.0 2.4 2.5
2040–50 1.5 1.7 2.0 2.1 2.3 2.6 2.8
2050–60 1.7 1.8 2.2 2.3 2.5 2.9 3.1
2060–70 1.9 2.1 2.5 2.7 3.0 3.5 3.8
2070–80 2.1 2.3 2.7 3.0 3.2 3.8 4.0
2080–90 2.3 2.5 3.0 3.3 3.5 4.2 4.5
2090–2100 2.5 2.7 3.2 3.5 3.7 4.3 4.7

FIG. 7. Sensitivity of the forecast uncertainty to changes in the
assumed standard deviation in natural forcing. (a) Forecast tem-
perature in 2020. (b) Forecast temperature in 2060. Shown are the
5%, 50%, and 95% percentiles of the predicted temperature dis-
tribution. Vertical dotted line is the standard deviation of the
ensemble mean global mean temperature of the naturally forced
ensemble of HADCM3 during 1900–2000. The vertical dashed
line is the standard deviation of the same ensemble over 1850–
2000.
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notable is the difference between the A1FI and B1 sce-
narios. Under the A1FI scenario there is a 20% chance
that the global mean temperature will have exceeded
1.5 K by about 2030. In contrast, under the B1 scenario
this same probability of warming is delayed for about
15 yr, until about 2045. Under the fossil fuel intensive
scenario, A1FI, in 2050 there is over an 80% chance
that the global mean temperature will have risen by
over 1.5 K. For the less fuel intensive scenarios, B1 and
B2, however, the probability of exceeding 1.5 K is less
than half of that for A1FI. Figure 8 also demonstrates
that, although following a particular scenario may delay
warming, there are high probabilities of over 1.5-K
global mean temperature increase by the end of this
century under all of the scenarios: A1FI, A2, B1, and
B2.

6. Discussion and summary

We have given a detailed discussion of the method-
ology used by ASK in making predictions of uncer-
tainty in global mean temperature change (Allen et al.
2000; Stott and Kettleborough 2002). Estimates of un-
certainty based on this method should be relatively ro-
bust to changes in model formulation. We have mini-
mized the input of models by 1) assuming a uniform
prior in the forecast quantity rather than relying on a
model parameter sampling strategy and 2) using a con-
straint between an observed quantity and a forecast
quantity that is robust to known errors. It is worth iden-

tifying the places where the results may be dependent
on model errors. Two sets of models are involved (Fig.
1): the EBM ensemble and a set of HadCM3 integra-
tions. The EBM is used for two purposes. The first is to
establish the existence of the constraint between twen-
tieth-century and twenty-first-century temperature
change. The second is to estimate the error associated
with the fact that the constraint may not be exact. This
error is the only place that the EBM has a quantitative
impact on the results in assessing the uncertainty in the
emergent constraint [P(Ei) in section 4].

In section 4 we calculated the uncertainty in using a
linear constraint based on the uncertainty in the model
parameters of the simple EBM. These are not the only
sources of uncertainty that can impact the linearity or
compactness of the constraint. Others include model
structural uncertainty and historical radiative forcing
uncertainty. Both of these could be included using en-
sembles of more complex models and a range of his-
torical forcing histories. The results of section 4 suggest
that the existence of the emergent constraint between
twentieth-century and twenty-first-century warming ap-
pears to be a consequence of energy conservation, lin-
ear feedbacks, and the relative time scales of the forcing
and the climate system response. If there are nonlinear
feedbacks or different time scales in the real climate
system response, then the errors associated with using a
linear constraint may become large, in effect making
the constraint useless. In the case of structural uncer-
tainty there is some evidence that complex models ex-
hibit nonlinear behavior (Stocker and Schmittner 1997;
Cox et al. 2000; Senior and Mitchell 2000), but the ro-
bustness of these results to model uncertainties is still to
be established. In the case of uncertainty in historical
forcing there will be an impact on the constraint if the
forcing history introduces new time scales or has a sig-
nificant impact on the shape of the forcing.

Although we have not accounted for the influence of
structural or historical forcing uncertainty on the linear
constraint there is some evidence that the additional
errors are not large. Stott et al. (2006b) have compared
ASK projections of uncertainty in global mean tem-
peratures from three AOGCMs. These projections, just
as here, exploit the existence of a linear constraint. The
models have structural differences and different radia-
tive forcing histories. The resulting projections are in
good agreement, suggesting that use of the linear con-
straint has not introduced a large error.

The second use of models is in using HadCM3 to
make estimates of the uncertainty in recent climate
change. In this part of the problem HadCM3 is used
both to provide the pattern of recent climate change

FIG. 8. Probability of global mean warming since 1995
exceeding 1.5 K.
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and to provide estimates of internal variability. Use of
a different model, with different variability, will change
the estimates of uncertainty in recent climate change,
but as shown in Allen et al. (2000) and Stott et al.
(2006b) these changes are relatively small.

The third use of models is the use of HadCM3 to
provide the shape of the forecast of future global mean
temperature change. For a given future radiative forc-
ing other models should give similar results. This is a
consequence of the emergent constraint: model errors
tend to scale the same basic warming profile shape,
rather than change the shape. One aspect of model
predictions that may lead to model dependence in the
estimates of uncertainty is when the same emissions
scenario leads to different radiative forcing. This could
be a particular problem in the prediction of uncertainty
in future sulfate cooling. Differences in the chemistry
and cloud physics schemes of models can lead to dif-
ferent radiative forcing for the same SO2 emissions.
There may, of course, still be an emergent constraint
between twentieth-century and twenty-first-century
temperature change even accounting for errors in sulfur
chemistry and physics, in which case STAID forecasts
would still be possible. In the absence of the constraint
we can still make STAID forecasts, but they become
explicitly dependent on the radiative forcing time se-
ries.

We have shown that for some scenarios constraints
may themselves be uncertain. For instance, the emer-
gent constraint for the G component of temperature
change is more uncertain for the B1 scenario than the
A1FI scenario. Although for predictions made with
HadCM3 this is not too big a problem since the emer-
gent constraint on the combined GS response domi-
nates. This suggests, however, that for some scenarios it
may be easier to make STAID forecasts of climate
change than for others. The uncertainty in the con-
straint for global mean temperature has little impact on
the results.

In this study we have applied the method of ASK to
global mean temperatures. The method could be ap-
plied to other variables or spatial scales provided there
is a compact transfer function between the forecast
variables and some quantity or set of quantities for
which observationally based uncertainty estimates can
be made. For instance Gregory et al. (2002) in effect
apply the same method to determine the equilibrium
temperature response to a doubling of CO2. Stott et al.
(2006a) apply the method to regional temperature
change. Piani et al. (2005) again apply a similar method
to the climate feedbacks and climate sensitivity. In the
case of Piani et al. (2005) the transfer function emerges
from a large perturbed physics ensemble rather than an

EBM. Large perturbed physics ensembles (such as
those provided by www.climateprediction.net) will help
establish the range of climate variables for which un-
certainty forecasts can be made using a method similar
to ASK.

We have also calculated the probability of global
mean warming exceeding a temperature threshold of
1.5 K for four SRES scenarios. Low fossil fuel scenarios
delay the probability of exceeding this threshold at
some level by 20–30 yr. Under the fossil fuel intensive
scenario (A1FI) the twenty-first-century warming as
high as 5.5 K cannot be ruled out at the 95% level. The
estimates of twenty-first-century global mean tempera-
ture change are relatively insensitive to the future natu-
ral forcing because of the dominance of the GHG sig-
nal.
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