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[1] Global-land mean observations of 20th century
precipitation are compared to modelled values using an
optimal regression technique for nine general circulation
models. The combined influence of major anthropogenic
and natural forcings is detected in five cases. Comparing the
accuracy of precipitation and temperature simulation of
each model, we find that low temperature simulation
accuracy produces low precipitation simulation accuracy,
but temperature accuracy does not determine precipitation
accuracy in general. Model formulation appears to be more
important for accurate precipitation simulation than
inclusion of a more complete set of forcings. The
implications for possible constraints on land precipitation
are discussed. Citation: Lambert, F. H., N. P. Gillett, D. A.

Stone, and C. Huntingford (2005), Attribution studies of observed

land precipitation changes with nine coupled models, Geophys.

Res. Lett., 32, L18704, doi:10.1029/2005GL023654.

1. Introduction

[2] Changes in climate have been attributed to external
forcings using optimal regression techniques for a variety of
climate variables. Stott et al. [2000] and Tett et al. [2002]
attributed changes in large scale near-surface temperature to
a combination of natural and anthropogenic factors, Gillett
et al. [2003] found that changes in sea-surface pressure
cannot be explained by natural variability alone and Barnett
et al. [2001] attributed changes in basin-scale ocean heat
content to anthropogenic forcings, for example.
[3] Studies attributing changes in precipitation have

lagged behind because observing and modelling precipita-
tion accurately is difficult. A recent study using the
HadCM3 model by Lambert et al. [2004], however, found
an attributable response for global-land precipitation to
natural and anthropogenic forcings that appeared to be
largely due to volcanic forcing. This was supported by
Gillett et al. [2004] who detected the influence of volcanic
forcing, but not greenhouse gases (GHGs), anthropogenic
sulphates or changes in solar irradiance, using the PCM
model. Both studies found that the model simulations they
used possibly underestimate the observed response to
forcing. Further, Allen and Ingram [2002] showed that
the range of modelled global precipitation responses to
global warming varies by a factor of �3. In this work,
we therefore compare observed precipitation to results from

nine state-of-the-art coupled models. We then compare the
accuracy of modelled temperature and precipitation and
discuss the implications for possible constraints on land
precipitation change.

2. Observed and Modelled Data

[4] Observed 20th century precipitation data are
compared to simulations from nine General Circulation
Models (GCMs). The observations are land-based gauge
data taken from the Hulme data set for 1900–98 interpo-
lated onto a 3.75� longitude by 2.5� latitude grid [Hulme,
1992; New et al., 2000]. Following Gillett et al. [2004], we
restrict ourselves to 1944–98, when the largest changes in
climate forcings occur.
[5] The modelled data are taken from the IPCC model

output archive and were provided by modelling centres for
the imminent IPCC Fourth Assessment Report. The simu-
lations are driven with estimates of historical forcings for
the 20th century. We consider only models forced with at
least the following four factors: changes in GHGs, the direct
effect of tropospheric sulphate aerosols, stratospheric
volcanic sulphate aerosols and solar irradiance. Some of
the models are also driven by changes in the indirect effects
of tropospheric sulphates (IS), black carbon aerosol
concentration (BC), stratospheric ozone (SO) and land use
(LU), see Table 1.
[6] A global land mean time series is calculated for the

observations and each GCM. Observed data are masked so
that in each year, only gridboxes having data for at least 7 of
12 months are considered. (The series produced is
insensitive to this criterion, however.) The mean
climatology from 1961–90 is then removed at each spatial
point, ensuring that we are only considering anomalies
about a base period. The GCM data are masked identically
to the observations and anomalies taken with respect to their
own climatologies. Each GCM has a minimum of three
ensemble members with different initial conditions
(Table 1). These are averaged together to improve the
signal-to-noise ratio for the detection of forced signals,
because we expect model-simulated internal variability to
be uncorrelated between ensemble members. Figure 1
shows land mean time series for observed and model data.
In the plot, we differentiate between those models forced by
IS, and those which are not. There do not appear to be
significant differences between the time series, however.

3. Attribution of Changes in Precipitation

[7] We now compare the observed and modelled time
series for 1944–98 using the optimal total least squares
regression technique described by Allen and Stott [2003].
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First, 11 5-year means of the observed and modelled time
series are taken, because this was the timescale on which
Lambert et al. [2004] found forcing to be most dominant.
The time series are then projected onto the first 11 Empirical
Orthogonal Functions (EOFs) of an identically prepared
unforced control run, the minimum number necessary to
completely describe the data. Signal-to-noise optimisation is
achieved by weighting the resulting components by the
inverse of the noise variance of the relevant EOF. The
control run used is the same in each case, and consists of
data from each model concatenated together, because only
a short section of control is available in each case. We do
not spatially optimise our data because we are interested in
the behavior of and constraints on global land mean
precipitation.
[8] Assuming that model response amplitude may be

scaled up or down linearly, the regression coefficients, b,
that we calculate, inform us whether or not the model is
under or overestimating the observed precipitation response
to forcing. If the confidence interval that contains b is entirely
greater than zero, then we say that the influence of the
forcings applied to the model is detected. If the confidence
limit includes 1, and the residual observed variance is
consistent with an estimate of natural variability derived from
the control run, then we say that we have attributed observed
changes in precipitation to the forcings applied to the model.
[9] The regression coefficients we obtain for the period

1944–98 are summarised in Table 1. For GFDL0,
HadCM3, and PCM we detect the influence of the forcings
applied to the model at the 5% level, and find that residual
variance is not inconsistent with control variability at the
10% level using the F-test, despite these models not being
forced with the full range of forcings. We also detect the
applied forcings in the case of GISS-ER and MIROC, but
find that residual and control variability are marginally
inconsistent. The observed residual variance is unrealisti-
cally large, suggesting that either the control variance
underestimates natural variability, or that significant forced
responses are not simulated by the models.
[10] We cannot detect the influence of applied forcings

with the other models at the 5% confidence level for
1944–98. GFDL1, and MRI, in particular, fail to capture
the observed response (Figure 1). For CCSM3, MRI and
GISS-EH the confidence limits that we calculate are

unbounded, indicating that the forced signal in these
runs is not significantly different from zero. We can
attribute forced precipitation response to forcing in 3 of
9 cases - more than 1 in 20 that we would expect from
chance at the 5% level. Still, we conclude that Lambert
et al. [2004] and Gillett et al. [2004] were fortunate to
employ GCMs that adequately simulate forced changes
in precipitation.
[11] We also calculate joint regression coefficients for the

nine models using the ‘‘error in variables’’ method of
C. Huntingford et al. (Incorporating model uncertainty into
attribution of observed temperature change, submitted to
Geophysical Research Letters, 2005). The method makes an
estimate of modelling uncertainty by adding the variance of
individual models from the model mean time series to the
covariance matrix of control run variability used to form
confidence intervals. Giving equal weight to each model, we
then form themean time series across all models and carry out
detection as normal. For our nine models, we find 5–95%
confidence limits for b that span �27.6 to 6.44, reflecting
large differences between models, and the inability of some
models to capture observed precipitation changes.
[12] Inspection of Figure 1 suggests that the observations,

and those models that successfully mimic them, are chiefly
responding to volcanic forcing, which is the cause of the
large fluctuations in the lower forcing curve of Figure 1c.
This supports the findings of Gillett et al. [2004], who were
able to formally attribute observed changes to volcanic
forcing, but not to anthropogenic GHGs and sulphates or
solar forcings. We cannot follow up their work, because we
do not have access to GCM simulations forced with
only volcanic forcing. Although only PCM formally
underestimates the size of the response (the confidence
limits enclosing b are entirely greater than 1), all the models
appear to show precipitation changes smaller than those
observed. This is confirmed by the ratio of the average
variance of individual forced ensemble members to
observed variance shown in Table 1, and could be caused
by model errors or missing forcings, or measurement errors
we have not considered. There is also a small (and statis-
tically insignificant) downward trend in the observations,
replicated by MIROC and GISS-ER but not apparent in the
other models. We speculate that this may be due to the
indirect effects of sulphate aerosols, which are expected to

Table 1. The Size of the Initial Condition Ensemble for Each Model, and Whether or Not It is Forced With IS, BC, SO or LUa

Model Runs IS BC SO LU Vol bmin, ~b, bmax Variance Ratio r̂precip
GFDL CM2 0 3 No Yes Yes Yes R 0.79, 1.7, 3.4 0.70 0.70
GFDL CM2 1 3 No Yes Yes Yes R �0.99, �0.18, 0.57 0.80 �0.09
GISS Model E H 5 Yes Yes Yes Yes HS unbounded 0.33 0.91
GISS Model E R 9 Yes Yes Yes Yes HS 0.30, 1.3, 2.5 0.35 0.94
MIROC3 2 medres 3 Yes Yes Yes Yes Yes 0.26, 1.3, 3.6 0.79 0.94
MRI CGCM2 3 2a 5 No No No No S93 unbounded 0.21 0.87
NCAR CCSM3 8 Yes Yes Yes No Yes unbounded 0.29 0.91
NCAR PCM1 4 Yes No Yes No A 1.3, 3.2, 16. 0.39 0.80
UKMO HadCM3 4 Yes No Yes No S93 1.0, 1.9, 3.7 0.56 0.48

aAll nine models are also forced with GHGs, the direct effect of tropospheric sulphate aerosols, volcanic aerosols and changes in solar irradiance. The Vol
column shows whether the volcanic forcing comes from C. M. Ammann et al. (Coupled climate simulations of the 20th-century including external forcing,
submitted to Journal of Climate, 2005), A; Hansen and Sato [2001], HS; Sato et al. [1993], S93; or Ramachandran et al. [2000], R, where known. The bs
are the 5–95% range of scaling factors derived from regression. The variance ratio is the average ratio of individual model ensemble member variance to
observed variance for 5-year precipitation means from 1944–98. r̂precip are the correlations between land and global precipitation for the same averaging
periods.
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cause reductions in precipitation through their effects on
cloud water.

4. Comparison of Precipitation Simulation to
Temperature Simulation

[13] What are key features of the climate system that
must be modelled if observed responses to forcing are to be

captured? In the case of temperature, a simple model
simulating bulk climate sensitivity and the rate of ocean
uptake can reproduce the observed global response [e.g.,
Sokolov and Stone, 1998]. For precipitation, it has been
suggested that a linear model of perturbations to the
tropospheric energy budget dependent only on temperature
and forcings may be able to predict changes [Allen and
Ingram, 2002]. This model can explain why precipitation
appears to respond strongly to volcanic forcing, but not to
anthropogenic GHGs [see also Mitchell et al., 1987; Yang et
al., 2003]. However, it fails to account for large differences
in land and global precipitation in some models (see GCM
correlations in Table 1), despite very high correlations
between land and global temperature (�0.99 for all
9 models) and quite similar changes in forcing [e.g.,
Ramaswamy et al., 2001]. This was confirmed by Lambert
et al. [2004], who found the energy budget model
successful globally, but less applicable when the data were
restricted to land in a GCM simulating only a shallow ocean
with no dynamics. From our precipitation correlations it
appears that different constraints may be important in
different models.
[14] Here we compare the accuracy of global precipita-

tion and temperature simulation in the nine coupled models.
Temperature changes are important to both the energy
budget argument and soil moisture levels, which were cited
as a possible alternative constraint on land precipitation
changes by Koster et al. [2004]. Figure 2 shows the root
mean squared difference between modelled and observed
global mean temperature and precipitation for individual
ensemble members. (The observed temperature data are
taken from CRUTEMP2(v) [Jones and Moberg, 2003].)
The bottom right corner of the figure is devoid of points,
indicating that a poor simulation of temperature guarantees
a poor simulation of precipitation. A good simulation of
temperature, however, does not guarantee a good simulation
of precipitation. Examining individual models, we see that
temperature and precipitation accuracy in CCSM3 may be
linearly related, GISS-ER shows large variations in precip-
itation accuracy unrelated to temperature and MRI shows
large variations in temperature accuracy unrelated to pre-
cipitation. It is more difficult to draw conclusions for the
models with fewer ensemble members, but we note
that HadCM3 and GISS-EH consistently provide accurate
simulations and PCM shows little variation in accuracy,
consistent with the small natural precipitation variability
shown by the model. The differences between individual
ensemble members are comparable to the differences
between models. As in Section 3, we conclude that the
models driven with all eight forcings do not provide
significantly better simulations. Differences in model
formulation appear to be more important.

5. Conclusion

[15] We detect the influence of applied forcings on
global-land mean precipitation in five of nine coupled
GCMs for 1944–98. While the forcings we consider are
sufficient to explain the bulk of observed precipitation
changes during this period using five models, we see that
model formulation is important for successful detection.
This is confirmed where we incorporate modelling

Figure 1. 5-year running averaged global land mean
precipitation anomalies with respect to 1961–90 in the
better-observed, latter part of the record (1940–98). In
Figures 1a and 1b, the solid black line represents
observations. (a) Model ensemble mean values prepared
identically to observations and forced with IS: CCSM3
(dark blue), GISS-EH (pale blue), GISS-ER (green),
HadCM3 (yellow) MIROC (red) and PCM (black dashes).
(b) Not forced with IS: GFDL0 (dark blue), GFDL1 (pale
blue) and MRI (green). The mean value across all nine
model ensembles (and giving equal weight to each model)
is plotted as a dashed black line. (c) Unsmoothed global
mean annual forcing time series applied to the models.
Greenhouse gas forcing is plotted in red. Total anthropo-
genic sulphate, volcanic and solar forcing is plotted in dark
blue.
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uncertainty into a single multi-model detection experiment:
we do not detect the applied forcings and find a large range
for the possible signal amplitude. This differs from the
surface temperature case where detection results are fairly
consistent for the same models (D. A. Stone et al., A multi-
model update on the detection and attribution of global
surface warming, submitted to Journal of Climate, 2005).
Although realism of temperature response is important to
two precipitation constraints we discuss, we find that it does
not fully determine realism of precipitation response. Given
the wide range of responses of the nine models, if a simple
constraint on land precipitation changes does exist, it does
not appear to be a ubiquitous feature of GCMs. More study
is needed if we are to find how observed land precipitation
is controlled.
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Figure 2. Accuracy of precipitation and temperature
simulation compared. For each model ensemble member,
the root mean squared difference with observations is
calculated for the 11 5-year means between 1944 and 1998.
The ensemble members are plotted with the same colour
coding as in Figure 1 with models from Figure 1a
represented as stars and models from Figure 1b as triangles.
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