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[1] We survey the IPCC AR4 models’ responses to SRES A1B forcing in order to
evaluate a prediction of climate change common to all models and testable using GPS
radio occultation data over the coming decades. Of the IPCC AR4 models that
submitted runs of the SRES A1B forcing scenario, we select twelve because of the
timeliness of their submission. Trends in the global average surface air temperature show
better overall agreement over the first 50 years than in the IPCC Third Assessment Report,
but the patterns of global surface air temperature trends show little improvement in
intermodel agreement. These same twelve models show qualitatively better agreement in
their patterns of upper air temperature trends. All show maintenance of a moist
adiabatic temperature profile in the tropics, making tropospheric temperature trends the
greatest at 200 hPa in the tropics. We test the climate models’ predictions using optimal
fingerprinting. In order to do so, we use long preindustrial control runs of four of the IPCC
AR4 models. Simulating trends in the log of the vertically integrated microwave
refractivity, or ‘‘dry’’ pressure, of the atmosphere is nearly the same as measuring trends in
geopotential heights of constant pressure surfaces. The first four EOFs of interannual
variability of log-dry pressure, as determined by two independent climate models, are
ENSO, modes closely associated with the southern and northern annular modes, and a
previously unidentified symmetric jet migration EOF. The latter is characterized by
poleward migration of the eddy-driven midlatitude jet correlated between hemispheres.
The ENSO mode and especially the symmetric jet migration EOF contribute most to
optimal detection and are similarly predicted by the IPCC AR4 models. The common
prediction of all climate models will be tested with 95% confidence with GPS radio
occultation data in 7 to 13 years. The fingerprint is dominated by symmetric poleward
migration of the eddy-driven midlatitude jets.
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1. Introduction

[2] That global surface air temperature has been increas-
ing over the past century is beyond doubt; that the warming
can be attributed to anthropogenic greenhouse gas increases
is gaining in certainty; and yet accurate forecasting of future
climates remains a distant goal. Nevertheless, it is a goal
demanded by governments worldwide and called for in
programmatic planning documents [Goody et al., 2002;
Climate Change Science Program, 2003; National Research
Council, Committee on Radiative Forcing Effects on
Climate, 2005]. Two rigorous methodologies have been
described to attain this goal through regimes of climate
model testing and improvement using data [Goody et al.,
1998]. They are second moment testing through comparison
of lagged covariances of observations and climate model

simulations and first moment testing by monitoring climate
trends. Second moment testing is done within the context of
the statistical fluctuation dissipation theorem [Leith, 1975]
and has been pursued with satellite based measurements of
high spectral resolution infrared spectra [Haskins et al.,
1997, 1999], a data type particularly rich in information.
First moment testing of climate models is an offshoot of the
problem of climate signal detection and attribution, derived
by putting that problem in its Bayesian context [Leroy,
1998]. Our intention is to explore the technique of first
moment testing using profiles of atmospheric refractivity
obtained by GPS radio occultation.
[3] The discipline of climate signal detection and attribu-

tion has as its specific goal estimating the probability with
which observed changes in the climate over the past several
decades can be attributed to specific external radiative
forcings, particularly anthropogenic greenhouse gas
increases. The data types used in these analyses are most
frequently surface air temperature measurements by mete-
orological stations, upper air temperature measurements by
radiosondes, and, more recently, microwave brightness
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temperatures as measured by the Microwave Sounding
Units (MSU) on NOAA weather satellites. A series of
studies using primarily surface air temperature measure-
ments shows, with increasing certainty, that much of
the warming observed over the past several decades is
attributable to greenhouse gas increases [Hegerl et al.,
2000; Tett et al., 1999, 2002; Stott et al., 2000a, 2000b,
2001]. Radiosonde and MSU measurements of upper
air temperature are not well suited to climate signal
detection and attribution studies because their calibration
properties are questionable. Multiple attempts to calibrate
radiosonde data in postprocessing have yielded significantly
different results for upper air temperature trends [Seidel
et al., 2004]. Two different but not wholly independent
efforts to calibrate the MSU temperature record now
yield results consistent with each other [Mears and Wentz,
2005].
[4] Climate benchmarks have three properties: they are

traceable to international standards of measurement, they
adequately sample the climate in space and time so that
they truly represent what they are meant to represent, and
they are independently determined. One of several mea-
surement techniques that satisfy these criteria is radio
occultation using the Global Positioning System (GPS)
[Leroy et al., 2006]. The observed quantity of a radio
occultation, one that is independent of observation geometry,
is the profile of atmospheric microwave refractive index, n.
The difference between n and unity is unambiguously
proportional to atmospheric density in the troposphere and
stratosphere with a contribution from water vapor significant
only in the lower troposphere. With the absolute positioning
information of GPS and the hydrostatic equation, it is
possible to measure directly geopotential heights of constant
pressure surfaces with near absolute accuracy [Kursinski et
al., 1997, 2000; Leroy, 1997]. Trends in geopotential heights
come about because of thermal expansion of the tropo-
sphere, a consequence of warming of the troposphere on
global scales. With the deployment of COSMIC, GPS radio

occultation should become the standard in climate bench-
marking and climate monitoring [Rocken et al., 2000].
[5] We will explore how climate models can be tested, via

first moment analysis, using synthetic GPS radio occultation
data. The radiative forcing of climate over the next century
is a major source of uncertainty in climate prediction, but
we focus instead on how accurately and precisely climate
models respond to a prescribed forcing. (Climate bench-
marking of radiative forcing agents is also necessary.) The
ensemble of climate model runs done for the Fourth
Scientific Assessment of the IPCC (IPCC AR4) can be
examined for the range of uncertainty in climate model
response to a prescribed forcing, there being 21 contributing
climate models. Because our intention is to estimate the
accuracy with which GPS occultation must observe micro-
wave refractive index and the amount of time needed before a
trend emerges with which climate models can be tested, we
use SRES A1B, a moderate estimate of future radiative
forcing by greenhouse gases. With the SRES A1B output
of several of the IPCCAR4 climate models, we simulate GPS
radio occultation observables, and, using optimal fingerprint-
ing, we determine how long before climate signals can be
detected by GPS radio occultation. Thorough climate model
testing first involves determining whether the most robust
elements of predicted decadal climate change are borne out in
data. Subsequent climate model testing involves rating mod-
els against each other according to their differences using
data sufficient to distinguish between them.
[6] In this, the first section, we introduce the background

to our work. In the second we survey decadal trend estimate
of the near surface air and upper air temperatures and
heights to gain an overview of the similarities and differ-
ences in climate model response to prescribed forcing. In
the third we discuss how climate signals emerge in atmo-
spheric microwave refractive index profiles. In the fourth
we estimate how long it takes for the anthropogenic climate
signal to emerge in GPS radio occultation data using
optimal fingerprinting techniques, the IPCC AR4 models

Table 1. IPCC AR4 Models Used in This Studya

Model Horizontal
Vertical
Levels

Tropospheric
Levels

Boundary Layer
Levels

GFDL-CM2.0 and GFDL-CM2.1, U.S. Department of Commerce, NOAA,
Geophysical Fluid Dynamics Laboratory

2.5� � 2.0� 24 19 8

GISS-AOM, NASA Goddard Institute for Space Studies 4.0� � 3.0� 12 8 2
GISS-EH and GISS-ER, NASA Goddard Institute for Space Studies 5.0� � 4.0� 4
INM-CM3.0, Institute for Numerical Mathematics, Russia 5.0� � 4.0� 21 13 5
IPSL-CM4, Insitut Pierre Simon Laplace 3.75� � 2.5� 19 11 5
MIROC 3.2 (medres), Center for Climate System Research, University of
Tokyo, National Institute for Environmental Studies, and Frontier Research
Center for Global Change (JAMSTEC)

T42 (2.8�) 20 12 5

ECHAM5/MPI-OM, Max Planck Institute for Meteorology, Hamburg T63 (1.9�) 31 22 5
MRI-CGCM2.3.2, Meteorological Research Institute, Japan T42 (2.8�) 30 14 5
CCSM3, National Center for Atmospheric Research T85 (1.4�) 26 13 4
PCM, National Center for Atmospheric Research, U.S. Department of Energy T42 (2.8�) 26 13 4
UKMO-HadCM3, Met Office, Hadley Centre for Climate Prediction and Research 3.75� � 2.5� 19

aThese are the climate models of the IPCC AR4 used in this study. We give the names of the institutes responsible for each model, the horizontal
resolution, the total number of vertical levels, number of levels in the troposphere, and the number of levels in the planetary boundary layer. When the
horizontal resolution reads ‘‘Txx,’’ a spectral transform method is used. In these cases, the equivalent horizontal resolution at the equator is given in
parentheses. Otherwise, a grid point scheme is indicated by the format ‘‘x � y’’ where x is the spacing in longitude and y is the spacing in latitude. For the
MIROC model, the ‘‘(medres)’’ indicates that the output of their medium resolution model was used. (Information was obtained from the IPCC AR4
website.)
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to simulate the patterns, and two models to simulate natural
variability. In the fifth we discuss our results and summarize
our findings.

2. Climate Models’ Responses to SRES A1B

[7] In order to survey climate models’ response to a fixed
but realistic forcing in the upcoming decades, we choose the
SRES A1B greenhouse gas forcing scenario. SRES A1B is
characterized by rapid population and economic growth for
the next 50 years with energy generated from a ‘‘balanced’’
mixture of fossil fuel and alternative sources [Intergovern-
mental Panel on Climate Change, 2001]. It is characterized
by 1% yr�1 growth in carbon dioxide and stabilization after
doubling. While the IPCC AR4 ensemble lists 21 contrib-
uting models, at the time of this analysis only 15 had
contributed SRES A1B runs. Of those, three contained
flaws which prohibited their utility in this analysis, leaving
12 climate models for us to compare. They are listed Table 1
and represent a broad range of atmospheric gridding nu-
merical integration schemes. The MIROC 3.2 (medres)
model is a medium resolution version of the Japanese Earth
Simulator model.
[8] The most basic and relevant geophysical quantity to

begin the comparison is global average surface air temper-
ature. In Figure 1 we show the global annual average
surface air temperature from years 2000 through 2100. Over
this time frame, the various models predict globally aver-
aged surface air temperature increases between 1.8 and
3.2 K. Roughly half the models show nearly linear (but
noisy) trends, but the other half show distinct changes
in growth rate between the beginning and the end of this
100 year period. Since our aim is to detect climate signals in
the briefest period of time possible, we estimate trends in
the climate system only over the first 50 years of the SRES
A1B runs. If global surface air temperature is a good
indicator of linearity in trends, then over this 50-year period
we can safely assume that the trends in atmospheric
variables are all linear.
[9] While the claim can be made that climate models

agree in their responses better than they did in the Third

Assessment Report of the IPCC [Houghton et al., 2001],
climate model response on regional scales remains highly
uncertain. In Figure 2 we show maps of surface air
temperature trends as determined by linear regression. On
average, high latitudes show higher surface air temperature
trends than in the tropics, but even on continental scales
climate models do not agree on the sign of surface air
temperature trends. In some regions the differences are
startling. For example, Siberia shows temperature trends
ranging from �1 to +1 K decade�1 depending on the
climate model. Substantial disagreement also exists for
temperature trends in the immediate vicinity of the Pacific
intertropical convergence zone (ITCZ).
[10] The differences in predicted patterns of surface air

warming have severe consequences for climate signal
detection and attribution when surface air temperature is
the data set used. Recent works in signal detection distin-
guish anthropogenic greenhouse warming from natural
variability under the assumption that the pattern of warming
is known a priori while the integrated global warming is not.
Figure 2 calls this assumption into question. Model pre-
dictions of surface air temperature trends depend not only
on trends in the dynamical structure of the atmosphere but
also on regional effects which are highly uncertain. For
climate signal detection and attribution and climate model
testing, it is important to find quantities more directly
related to changes in the dynamical structure of the atmo-
sphere that are clear in a climate benchmark data type such
as GPS radio occultation.
[11] Upper air temperature reveals more about atmospheric

structure. Figure 3 shows upper air temperature trends for
12 models. Features common to all models are readily
apparent. Maximum warming occurs in the tropical upper
troposphere, consistent with the tropospheric temperature
structure remaining close to a moist adiabat [Manabe et al.,
1965]. Maintenance of a moist adiabat produces a maxi-
mum in temperature trends at 200 hPa because latent heat
per unit mass in the boundary layer, which is chiefly
responsible for convective heating near the detrainment
level at 200 hPa, increases much more rapidly than sensible

Figure 1. Global annual average surface air temperature shown for twelve of the IPCC AR4 climate
models subjected to SRES A1B greenhouse gas forcing. All are referenced to the mean of the first
10 years of the run. When a model contributed an ensemble of SRES A1B runs, all ensemble members
were averaged together.
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heat per unit mass in the boundary layer. Also, the strato-
sphere shows strong cooling, consistent with the known
radiative properties of carbon dioxide in the stratosphere.
This pattern is well known and has been used in climate
signal detection and attribution studies [Tett et al., 2002] even
though it is not useful for evaluating the uncertainties in
climate models’ tropospheric predictive capabilities. Some
but not all models also show near surface air warming in the
Arctic. It is not clear whether this effect is caused by
increasing poleward heat transport in the North Atlantic, by
atmospheric eddies, or a stronger ice-albedo feedback or
both, but in any case the effect is a regional one.
[12] Strongly related to upper air temperature trends but

containing more information on dynamical structures in the

atmosphere are geopotential height trends. The IPCC AR4
models produced geopotential heights on constant pressure
surfaces in addition to temperature fields. In Figure 4 we
show the trends in geopotential height as produced by the
IPCC AR4 models subject to SRES A1B greenhouse
forcing. Geopotential height is related to temperature
through the hydrostatic equation:

h pð Þ ¼ hs þ
Z ps

p

RT p0ð Þ
mg0

d ln p0 ð1Þ

where h(p) is the geopotential height at pressure p, hs the
surface geopotential height, ps the surface pressure, R the
ideal gas constant, T(p0) the temperature profile, m the mean

Figure 2. Trend in global average surface air temperature for each model over the first 50 years of the
SRES A1B runs. The SRES A1B runs represent a moderate growth in greenhouse gases from year 2000
through 2100. The reference temperature for each model is taken to be the average of the first 10 years of
its runs. Some models show less apparent interannual variability in the global average surface air
temperature, but only because some of those represent the average of an ensemble of SRES A1B runs
executed by that model.
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molecular mass, and g0 the WMO standard of gravity
(9.80665 m s�2). Thus the time rate of change of
geopotential heights on constant pressure surfaces is

dh pð Þ
dt

¼ RTs

mg0

d ln ps

dt
þ
Z ps

p

R

mg0

dT p0ð Þ
dt

d ln p0 ð2Þ

in which Ts is the surface air temperature. Except for
horizontal redistribution of atmospheric mass, trends in
geopotential heights are the integral of trends in temperature
in log-pressure from the surface upward. This is obvious
when comparing Figures 3 and 4. What stands out
immediately is thermal expansion of the troposphere. The
maximum in the plots of Figure 4 is the maximum in the
tropics centered at about 70 hPa. This is the location of
maximum thermal expansion of the atmosphere below it. At
70 hPa in the tropics, models predict anywhere from a 19 to
a 46 m decade�1 expansion of the atmosphere beneath it.
Also noteworthy in the plots of Figure 4 are the anomalous
Antarctic stratospheric trends in just two of the models:
CCSM3 and PCM.
[13] In Figure 5 we show the zonal average trends of

geopotential height of the 200-hPa surface and the contri-

bution from the surface term, first on the right of equation (2).
All models show very nearly the same initial zonal average
geopotential height at 200 hPa, but the trends differ dramat-
ically, and those differences do not correlate with the surface
term. All models, as noted previously, show thermal expan-
sion of the tropical troposphere. Outside the tropics, the
predicted trends in the surface pressure and the 200-hPa
height fields contain no obvious common patterns. We
understand this to represent the near complete uncertainty
in the prediction of dynamical trends in the extratropics. In
the Southern Hemisphere, that uncertainty appears tied to the
uncertainty in the sensitivity of the tropics: those models
which are more sensitive in the tropics show lesser increases
in geopotential heights in southern high latitudes. No such
clear correlation exists in northern high latitudes.
[14] The sensitivity of a climate model is generally

couched in terms of the rate of global average surface air
warming [Houghton et al., 2001]. Figures 3 and 4 suggest
that zonally averaged upper air heights might be better
indicators of bulk atmospheric response to greenhouse gas
forcing. It is customary to describe global warming as a
trend in global average surface air temperature despite the
influence of surface-air interaction processes and the sam-
pling difficulties encountered in measuring it. The global

Figure 3. Zonal average upper air temperature trends for 12 of the IPCC AR4 models. The trends were
computed by linear regression of the first 50 years of the SRES A1B runs. The units are K decade�1. The
ordinate is pressure, from 1000 to 10 hPa. The abscissa is latitude, from north to south. When a model
contributed an ensemble of SRES A1B runs, all runs in the ensemble were averaged together.
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thickness of the troposphere, or height of the 200-hPa
surface, is directly measurable from space by GPS radio
occultation. For this reason, we describe global warming in
terms of global tropospheric thickness. (For conversion,
60 m of tropospheric thickness increase corresponds to
1 K of tropical surface air warming.)

3. Climate Signals in Microwave Refractive Index

[15] The microwave index of refraction n is related to
microwave refractivity N and pressure, temperature, and
water vapor through

N ¼ n� 1ð Þ � 106 ¼ a
p

T
þ b

pW

T2
ð3Þ

wherein p is pressure, T is temperature, pW is partial
pressure of water vapor, and a = 77.6 K hPa�1 and b =
373 � 103 K2 hPa�1 are empirically determined constants.
The natural independent coordinate for refractivity is
geopotential height rather than pressure because pressure
cannot be unambiguously determined from the measure-
ment whereas geopotential height can [Leroy, 1997]. The
first term on the right of equation (3) is the ‘‘dry’’
component, proportional to density, and is about 300 near
the surface. The second term is the ‘‘wet’’ component,
proportional to specific humidity divided by temperature,

and is about 60 near the surface. The second term falls off
more rapidly with height than does the first term and
consequently is only significant in the lowest few kilo-
meters of the atmosphere, predominantly in the tropics.
[16] Integrated refractivity, or ‘‘dry pressure,’’ is an ideal

product derived from refractivity for monitoring global
change [Leroy and North, 2000]. The dry pressure, pN,
can be computed from refractivity by

pN hð Þ ¼ mdg0
aR

Z 1

h

N h0ð Þdh0 ð4Þ

where md is the molecular mass of dry air. Under the
approximation that the mean molecular mass of wet air does
not vary substantially from the molecular mass of dry air,
the integrated refractivity, or dry pressure, is related to
temperature, pressure, and humidity through

pN hð Þ ’ p hð Þ þ b

a

md
mw

Z p hð Þ

0

q p0ð Þ
T p0ð Þ dp

0 ð5Þ

where mw is the molecular mass of water vapor and q is
specific humidity. Dry pressure is pressure plus a water
vapor term which contributes substantially only in the
tropical lower troposphere.

Figure 4. As in Figure 3 but for geopotential height trends. The units are m decade�1.
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[17] Above the lower troposphere, trends in log-dry
pressure, nearly the same as atmospheric pressure, are
strongly related to trends in the height of constant pressure
surfaces. Simple manipulation of the hydrostatic equation
yields

@h

@t

� �
p

¼ H
@ ln p

@t

� �
h

ð6Þ

with H the local scale height. Trends in log-dry pressure of
air above the lower troposphere are directly proportional to
thermal expansion of the atmosphere beneath it. Figure 6
shows the trends in log-dry pressure. They mirror the trends
in geopotential height (Figure 4) as expected except in the
lowest 4 km of the ITCZ, which show the influence of water
vapor trends. The most sensitive models show maximum
trends of 0.7% decade�1 near 20 km height, and the least
sensitive show maximum trends of 0.3% decade�1. These
numbers suggest that, if a climate signal should be
detectible in radio occultation over a time baseline of
10 years, then dry pressure should be measured with an
accuracy of better than 0.1%. Since most of the contribution

to dry pressure comes from one scale height above the
height of interest, the accuracy requirement on microwave
refractivity is better than 0.1% on vertical scales of a scale
height.

4. Detection of Climate Signals

[18] We seek to find the least amount of time which must
elapse before a climate signal emerges in radio occultation
data and the components of the signal that emerges which
are the strongest and most reliable indicators of climate
change. The method we choose to employ is optimal
fingerprinting [Hasselmann, 1993; North et al., 1995]. See
Leroy and North [2000] for its generalization to arbitrary
geometries.
[19] Optimal fingerprinting takes as its assumptions that

the pattern of climate change is known but its overall
scaling is not and that the uncertainty of detection is
dominated by interannual natural variability of the climate
which can be safely approximated by control runs of climate
models. When actual data are used, the assumptions are
known to break down at some sufficiently small spatial
scale or low variance component of natural variability, so
statistical tests are used to truncate the implementation of
optimal fingerprinting [Allen and Tett, 1999]. From our
survey of the differences between climate model forecasts
of climate change, though, there is little justification for the
assumption that the pattern of climate change can be known
any more reliably than its scaling factor a priori. When
undertaking a study such as this without data, statistical
consistency checks are no longer possible, so the remaining
alternative is subjective interpretation of the signals we wish
to detect and the components of natural variability we wish
to retain. That is the approach we take.
[20] We seek to find a signal s, known to an arbitrary

scale factor a, in the difference d between data sets taken
after a time interval Dt. In optimal fingerprinting, the
optimal detection of a is given by

a ¼ sTN�1s
� ��1

sTN�1d ð7Þ

wherein N is the covariance of the data vector d due only to
the influence of natural variability, typically simulated in a
control run of a climate model. The uncertainty s in the
determination of a is

s2 ¼ sTN�1s
� ��1

: ð8Þ

We assume the observed data are exactly the same as
predicted by trend rates as produced in the previous section:
d = s = _sDt. Under this assumption, a = 1 and the signal-to-
noise ratio of detection (a/s = SNR) is

SNR ¼ _sTN�1 _s
� �1=2

Dt ð9Þ

or the amount of time for a 1-sigma detection of climate
change is (_sTN�1_s)�1/2. A two-sigma detection will take two
times as long if the natural variability N remains the same
over longer timescales.
[21] In optimal fingerprinting, inversion of the natural

variability covariance matrix N is complicated by the

Figure 5. (top) Zonal average 200-hPa geopotential height
at the beginning of the SRES A1B model runs in units
of km. It is determined as the intercept in a linear regression
of the geopotential height in time over the first 50 years of
the SRES A1B model runs and is therefore a representation
of the zonal average 200-hPa geopotential height in
year 2000. (middle) Zonal average trend of the 200-hPa
geopotential height in units of m decade�1 as computed
in the linear regression. (bottom) Trend in zonal average
200-hPa geopotential heights due to mass redistribution in
the atmosphere, the first term on the right of equation (2) in
units of m decade�1. The difference between the second and
third plots represents the influence of tropospheric tem-
perature in trends of the 200-hPa height surface, or the
second term on the right of equation (2).
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limited sampling used to construct the matrix. Efforts to
identify modes of the climate system by EOF decomposi-
tion must determine whether an EOF is nondegenerate
given limited sampling [North et al., 1982]. Such a deter-
mination is unimportant in optimal fingerprinting insofar as
it only requires EOF decomposition for the sake of calcu-
lating a matrix inverse. What remains important is that the
eigenvalues of the EOF decomposition are not so small as to
be indistinguishable from zero and make N�1 indeterminate.
In evaluating N�1, we retain EOFs according to the princi-
ple that the variance contributed by the rejected EOFs does
not exceed the sampling error of North et al. [1982].
[22] We compute the interannual natural variability in zonal

average annual average log-dry pressure using preindustrial
control runs of the GFDL-CM2.0, ECHAM5/MPI-OM,
UKMO-HadCM3 and MIROC 3.2 (medres) models. Using
the IPCC AR4 present-day control runs would have been
more appropriate, but those runs were not made avail-
able in as timely a manner as the preindustrial control
runs. For each model the first EOF indicates a general

expansion of the tropical troposphere and moistening of
the ITCZ. Simple linear regression onto the 200-hPa height
field produces a pattern like an El Niño/Southern Oscilla-
tion (ENSO) pattern as produced by GCMs [Spencer and
Slingo, 2003], meaning that EOF 1 is the ENSO mode.
Associating the remaining EOFs with previously described
modes of the atmosphere is complicated by the fact that the
domain used to define our EOFs is unusual. In defining the
Northern Annular Mode (NAM) and Southern Annular
Mode (SAM) [Thompson and Wallace, 1998, 2000], surface
pressure from 20� latitude to the pole constituted the
domain. The NAM and the SAM are characterized by a
net migration of atmospheric mass from the polar region,
poleward migration of the midlatitude eddy-driven jet, and
intensification of the circumpolar vortex. Our EOF 2 of
every model of Figure 7 shows the polar mass decrease
and the poleward jet migration associated with the SAM.
EOF 2 of GFDL-CM2.0 in Figure 7 is correlated with the
SAM to 92% on interannual timescales. Likewise, EOF 3 of
GFDL-CM2.0 bears the signature of north polar atmospheric

Figure 6. As in Figures 3 and 4 but for the trends in log of dry pressure, a variable derived from the
microwave index of refraction profiles ordinarily obtained by GPS radio occultation (see equation (4)). The
independent vertical coordinate is geopotential height rather than pressure, and the units of the contoured
values are % decade�1, the trend in log-dry pressure multiplied by 100%. Except in the immediate vicinity
of the ITCZ in the lowest 4 km, trends in log-dry pressure are the same as trends in geopotential height
normalized by the local scale height. (Multiply the values in this plot by �6 km, and divide by 100%, to
approximate geopotential height trends.) Dry pressure itself is nearly the same as actual pressure except in
the tropical lower troposphere, where variability in dry pressure is dominated by water vapor.
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mass decrease and the polar migration of the eddy-driven jet
associated with the NAM and is correlated with the NAM to
77% in GFDL-CM2.0 on interannual timescales. (The EOF
most closely associated with the NAM in the UKMO-
HadCM3 model is the fifth.)
[23] Every model exhibits an EOF which bears the

signature of broad based poleward migration of the eddy-
driven jets symmetrically between the hemispheres coupled
neither to an atmospheric mass deficit in the polar regions
nor to a strengthening of the circumpolar vortices (EOF 4 in
GFDL-CM2.0 and MIROC 3.2 (medres); EOF 3 in
ECHAM5/MPI-OM and UKMO-HadCM3). Jet migration
associated with the NAM and SAM have a full width at half
maximum of �15� in their height anomalies whereas this
new symmetric jet migration EOF shows a full width at half
maximum in its height anomalies of �30�. While the NAM
and SAMexhibit stronger gradients associated with the eddy-
driven jet migration, the new symmetric EOF shows a
stronger geopotential anomaly. If the symmetric (poleward)
motion of the eddy-driven jet which characterizes this EOF
were the result of random motion of the northern and
southern jets and a lack of correlation between them, then

both a symmetric migration EOF and an antisymmetric
migration EOF ought to be present and they ought to be
degenerate. In the case of each of the models used in the
analysis of Figure 7, an antisymmetric jet migration EOF
does exist and is consistently less significant than the
symmetric jet migration EOF. The probability of this occur-
ring should the motions of the eddy-driven jets be uncorre-
lated is just one in eight. Nevertheless, the separation in their
eigenvalues is �1.5% of the total variance, so the limited
sampling of the IPCC AR4 control runs prohibits our
concluding that this symmetric motion of the eddy-driven
jet is a mode of the atmosphere. We call this the symmetric jet
migration EOF. In Figure 8 we show the horizontal structure
of the symmetric jet migration by regressing the 200-hPa
height field onto the EOF’s principle component time series.
[24] We apply the optimal detection methodology using

natural variability as simulated by GFDL-CM2.0 and
ECHAM5/MPI-OM. Since this is a sensitivity study for
climate signal detection and model testing and we are not
using data, the EOF truncation of Allen and Tett [1999]
cannot be used. Instead, we examine the signal detection
problem component by component, interpreting each

Figure 7. First four EOFs of the interannual natural variability of log-dry pressure shown for GFDL-
CM2.0, ECHAM5/MPI-OM, UKMO-HadCM3, and MIROC 3.2 (medres). The EOFs are multiplied by
the square root of the corresponding eigenvalue. The ordinate is height and the abscissa is latitude. The
units are %. (Multiply the values in these plots by �6 km, and divide by 100%, to approximate
fluctuations in geopotential height.)

D17105 LEROY ET AL.: FIRST MOMENT CLIMATE MODEL TESTING

9 of 15

D17105



according to physical phenomena. Equation (9) can be
rewritten as

SNR ¼
Xm
m¼1

em; _s
� �2

lm

" #1=2
Dt ð10Þ

in which em and lm are the mth EOF and eigenvalue of
natural variability and h,i is the inner product. The
inner product is computed by hu, vi =

P
iuivi wi,i where

w is the diagonal matrix of weights used in the EOF equation
N w em = lmem. The signal-to-noise ratio of detection is
dominated by those modes which project strongly onto the
signal relative to the noise associated with those modes. It is
these modes which enable signal detection in the least
amount of time.
[25] In Figure 9 we show spectra of square projections

hem, _si2 and the natural variability eigenvalues lm broken
down by EOF. EOFs are sorted according to descending
eigenvalue. In such plots, the greater a square projection is
in comparison to its corresponding eigenvalue, the more
that component of the signal will contribute to detection.
When using an ensemble of different models to simulate the
signal to be detected, we also gain insight into the certainty

with which the pattern of change can be prescribed. When
all models tend to cluster their squared projections for a
single EOF, the component of the signal described by that
EOF can be considered reliable. When the squared projec-
tions for a single EOF tend to scatter, that component of
the signal can be considered uncertain and does not
represent a prediction common to all models. In fact, the
latter represent the cumulative uncertainties in forecasting
climate change. In this case, the sensitivity mode and the
symmetric jet migration EOF are certain patterns of climate

Figure 8. Annual average 200-hPa geopotential height
field from the preindustrial control runs of GFDL-CM2.0
(ECHAM5/MPI-OM) regressed onto the fourth principal
component of GFDL-CM2.0, the third principal component
of ECHAM5/MPI-OM, the third principal component of
UKMO-HadCM3, and the fourth principal component of
MIROC 3.2 (medres). As such, these plots show the
anomaly of the two-dimensional 200-hPa height associated
with the symmetric jet migration modes shown in Figure 7.

Figure 9. Spectra of eigenvalues lm associated with
interannual variability, shown as open black diamonds
and the solid line. Also shown is the square of the
projection of each EOF onto the signals as simulated by
the IPCC AR4 models. Each figure shows the results of
optimal fingerprinting computations using a different model
for prescribing the interannual natural variability: The first is
GFDL-CM2.0, the second is ECHAM5/MPI-OM, the third is
UKMO-HadCM3, and the fourth is MIROC 3.2 (medres).
The square projections hem, _si2 have units of (%)2 kg yr�2,
and the eigenvalues lm have units of (%)2 kg. In optimal
fingerprinting, a filter is constructed such that the components
of the signal in which there is comparatively more signal
than natural variability are weighted preferentially over
those components where natural variability comparatively
dominates the signal. Clustering of squared projections
indicates good intermodel agreement; scatter indicates
intermodel disagreement.
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change. Recall that the symmetric jet migration EOF is the
fourth EOF in GFDL-CM2.0 prescribed variability, the third
in ECHAM5-MPI/OM prescribed variability, the third in
UKMO-HadCM3 prescribed variability, and the fourth in
MIROC 3.2 (medres) prescribed variability. The trends in the
spaces of the EOFs closely associated with the NAM and the
SAM are uncertain: models disagree on the trends in these

modes over the next half century. It so happens that these
modes do not contribute significant signal-to-noise ratios in
detection, so including them in optimal detection will have
little impact. Because we understand the first four modes and
because most modes beyond the first four show scatter in the
squared projections, we truncate the detection at six EOFs,
which captures variability associated with the NAM, the

Figure 10. Optimal fingerprints c given natural interannual variability of GFDL-CM2.0 (first twelve
plots) and ECHAM5/MPI-ON (second twelve plots) and signals as determined by the IPCC AR4 models.
This is the pattern by which data are multiplied in order to obtain an ‘‘optimal’’ estimate of the climate’s
response to increasing greenhouse gases. They are best thought of as ‘‘adjoint’’ signals to trends predicted
by climate models. The optimal estimate is the one least influenced by natural interannual variability of
the climate.
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SAM, the symmetric jet migration EOF, and antisymmetric
jet migration.
[26] With real data, the signal detection is accomplished

by multiplying the trend data d by a set of coefficients c so
that the detected signal amplitude a is

a ¼ c; dh i: ð11Þ

The trend data d is the difference between two radio
occultation data sets separated by time Dt, the expected
signal pattern is s = _s Dt, the eigenvectors (EOFs) and

eigenvalues of natural interannual variability are em and lm,
and the optimal set of coefficients is

c ¼ 1

Dt

Xm
m¼1

em; _s
� �2

lm

 !�1 Xm
m¼1

em; _s
� �

em

lm
ð12Þ

with the truncation m = 6. These coefficients c together form
the optimal fingerprint.
[27] In Figures 10 and 11 we show the optimal finger-

prints for detecting climate change given four prescriptions
of interannual natural variability and 12 prescriptions for the

Figure 11. Same as in Figure 10 but with UKMO-HadCM3 and MIROC 3.2 (medres) prescribing the
interannual variability.
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signal shape expected to emerge in log-dry pressure as
determined by GPS radio occultation. The most prominent
aspect of these fingerprints common to all models and
variability prescriptions is the pattern of high coefficients
in the optimal fingerprints centered at 45�N and S and at
14 km height with a meridional width of 30�. The large
weighting pattern extends nearly vertically upward and
downward. This is the most prominent feature of the
symmetric jet migration EOF. On the other hand, there is
minimal weighting in the tropics where most of the warm-
ing due to greenhouse gas increases is expected to occur. In
testing climate models’ predictions for upper air trends, the
first test which will obtain a result with strong confidence in
the face of naturally occurring interannual variability is
symmetric poleward motion of the eddy-driven midlatitude
jets. The midlatitude jetstream not only is expected to
migrate poleward in response to greenhouse gas forcing, it
naturally migrates meridionally infrequently. Net mass mi-
gration from polar regions is less predictable in that models
show less agreement in such trends and more interannual
variability is associated with polar atmospheric mass.
[28] Another prominent feature of the optimal fingerprints

is the set of negative coefficients in the lowest �4 km of the
ITCZ. Seemingly, the fingerprint searches for a negative
trend in ITCZ water vapor content, which would not be
optimal. These negative coefficients are associated with the
positive coefficients at 45� latitude, both features of the jet
migration mode, the mode which contributes most to the
signal-to-noise ratio of detection. If the truncation took into
consideration more EOFs (m > 4), at some point the
fingerprint coefficients would have become positive in the
lowest 4 km of the ITCZ. With more restrictive truncations,
the detection is made less optimal, and the negative coef-
ficients in the lowest 4 km of the ITCZ are an example of
this phenomenon.
[29] Two-sigma detection times are summarized in Table 2.

(A two-sigma detection connotes a 95% probability that a
signal is the result of greenhouse gas forcing rather than a
natural fluctuation of the climate.) The range of two-sigma
detection times is 7 to 13 years. Even though the models used
to prescribe natural variability have different sensitivities, the
detection times are nearly independent of which model is

used to prescribe natural variability. ECHAM5/MPI-OM is
more sensitive because its ENSO mode is associated with
more variability; however, the symmetric jet migration EOFs
have similar amounts of variance associated with them.
Since the symmetric jet migration EOF dominates the
optimal detection, the detection times are very similar. Those
models which show stronger trends in tropospheric expan-
sion have shorter two-sigma detection times. In general, a
95% confidence test will be possible after 10 m of tropo-
spheric expansion.

5. Summary and Discussion

[30] Surface air temperature is not a strong candidate for
testing climate models’ common prediction for atmospheric
change because its geographic pattern is highly uncertain.
Many climate signal detection and attribution studies of the
past utilized the surface air temperature record of the past
�120 years. The many models of the IPCC AR4 effort
which contributed SRES A1B runs show that the spatial
pattern of surface air warming is highly uncertain. In
regions such as Siberia, the range of temperature trend
estimates over the coming decades ranges from �1 K
decade�1 to +1 K decade�1. Climate model testing studies
must utilize other current or future data types with more
certain patterns for climate signal detection and attribution.
[31] Even though optimal detection studies have been

performed with postprocessed historical radiosonde temper-
atures, the radiosonde trends do not produce a pattern of
warming like any exhibited by the IPCC AR4 SRES A1B
models [cf. Tett et al., 2002]. While the comparison of
SRES A1B model runs to 20th century trends may not be
valid, nonetheless, there is no evidence that the tropical
troposphere behaves like anything other than a moist
adiabat in all simulations. Radiosonde temperature trends
do not unambiguously maintain a moist adiabat: Their
temperature trends are too small in the tropical upper
troposphere with respect to lower tropospheric temperatures
to be physically credible. In conjunction with the fact that
multiple analyses of the historical radiosonde record pro-
duces different upper tropospheric temperature trends
[Seidel et al., 2004], there is good reason to look toward

Table 2. Summary of Detection Timesa

Model
GFDL-CM2.0,

years
ECHAM5/MPI-OM,

years
UKMO-HadCM3,

years
MIROC3.2 (medres),

years
Thermal Expansion,

m decade�1

GFDL-CM2.0 8.67 9.05 8.29 6.63 11.02
GFDL-CM2.1 7.88 8.65 7.57 6.21 12.86
GISS-AOM 10.53 11.54 10.47 8.38 9.67
GISS-EH 10.41 11.74 10.77 8.50 9.12
GISS-ER 10.89 12.70 11.07 9.32 8.79
INM-CM3.0 9.98 11.23 9.79 8.15 10.71
IPSL-CM4 9.29 10.02 8.95 7.36 10.54
MIROC-3.2(medres) 7.09 7.47 6.83 5.39 13.04
ECHAM5/MPI-OM 7.78 8.16 7.45 5.87 12.34
MRI-CGCM2.3.2 9.95 11.70 9.92 8.35 10.68
CCSM3 8.87 9.62 8.68 6.80 11.97
PCM 12.69 12.32 11.95 8.45 7.27

aThese are the 2-sigma detection times for each of the twelve models under four prescriptions of interannual natural variability. Each row is for a different
model prescription of the log-dry pressure signal; the second through fifth columns are for the different prescriptions for natural interannual variability of dry
pressure. The sixth column gives the thermal expansion rate of the troposphere, defined as the global average trend in geopotential height of the 200-hPa
surface. SRES A1B forcing is assumed: 1% yr�1 carbon dioxide growth.
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data sets other than radiosonde data sets to detect upper air
temperature trends. We instead estimate what to look for in
radio occultation data and how long to wait in order to test
climate models’ common prediction for upper air tempera-
ture trends in the coming decades.
[32] The first four EOFs in both interannual geopotential

height variability and log-dry pressure, a product easily
derivable from GPS radio occultation data, can be explained
as previously known atmospheric phenomena. The first
EOF as simulated by GFDL-CM2.0, ECHAM5/MPI-OM,
UKMO-HadCM3 and MIROC 3.2 (medres) models is
ENSO and is characterized by dramatic warming of the
tropical troposphere, especially in the Pacific basin. The
second EOF is most closely associated with the Southern
Annular Mode. The third EOF of GFDL-CM2.0 and
MIROC 3.2 (medres) and fourth EOF of ECHAM5/MPI-
OM is the Northern Annular Mode. The fourth EOF of
GFDL-CM2.0 and third of ECHAM5/MPI-OM is closely
associated with the symmetric jet migration EOF. It is
characterized by poleward wander of the eddy-driven mid-
latitude jets in the Northern and Southern hemispheres and
is statistically more significant than the hypothesis of
independent jet migration between the hemispheres. While
the phenomenon has been identified in the Northern and
Southern hemispheres as the first EOF of zonal mean zonal
winds [Lorenz and Hartmann, 2001, 2003], we have found
that the migration is actually coupled between hemispheres.
[33] A diagnostic analysis of optimal climate change

detection using log-dry pressure shows that the features
common to all models’ predictions for 21st century climate
change can be tested with 95% confidence in 7 to 13 years
and that the strongest indicator of climate change is pole-
ward motion of the midlatitude jet. Because we have
assumed 1% yr�1 carbon dioxide growth, slower carbon
dioxide increases would increase detection times in inverse
proportion. While the symmetric jet migration EOF is one
of the top four modes of interannual variability of log-dry
pressure (and geopotential height), its associated variance is
comparatively small with respect to the projection of the
global warming signal onto this mode. As a consequence,
poleward migration of the eddy-driven midlatitude jets is
the most robust prediction of climate change in the tropo-
spheric upper air.
[34] It is already possible that climate models can be

tested in the difference between the GPS radio occultation
missions GPS/MET (1995–1997) [Ware et al., 1996] and
CHAMP (2001–present) [Wickert et al., 2001]. The GPS/
MET mission was a proof of concept for the technique of
GPS radio occultation. It proved successful, but because of
technical limitations at the time, it collected small numbers
of accurate soundings in just four three week periods
between 1995 and 1997. The CHAMP GPS radio occulta-
tion mission has been collecting significantly more occul-
tation data, nearly continuously, since July 2001. Depending
on whether GPS/MET collected enough data to form
sufficiently accurate snapshots of the atmosphere, it may
be possible already to use the archive of GPS radio
occultation to test climate models according to their com-
mon predictions.
[35] Rigorous testing of climate models is still possible on

timescales shorter than 7 to 13 years. We have restricted this
sensitivity study to GPS radio occultation, 95% confidence

levels, and first moment testing. Other benchmarks besides
GPS radio occultation are available, for example high spectral
resolution infrared interferometry [Dykema and Anderson,
2006]. Joining multiple climate benchmarks together in the
statistical evidence function might increase the sensitivity of
detection and reduce detection times. Finally, as was men-
tioned in the introduction, second moment testing of climate
models remains as an alternative to first moment testing, and it
might provide an authoritative testing regimen for climate
models in a shorter period of time.

[36] Acknowledgments. We acknowledge Brian Farrell and Richard
Goody for their advice. We also acknowledge the international modeling
groups for providing their data for analysis, the Program for Climate Model
Diagnosis and Intercomparison (PCMDI) for collecting and archiving the
model data, the JSC/CLIVAR Working Group on Coupled Modelling
(WGCM) and their Coupled Model Intercomparison Project (CMIP) and
Climate Simulation Panel for organizing the model data analysis activity,
and the IPCC WG1 TSU for technical support. The IPCC Data Archive at
Lawrence Livermore National Laboratory is supported by the Office of
Science, U.S. Department of Energy. This work was supported by grant
ATM-0450288 of the National Science Foundation.

References
Allen, M. R., and S. F. B. Tett (1999), Checking for model consistency in
optimal fingerprinting, Clim. Dyn., 15(6), 419–434.

Climate Change Science Program (2003), Strategic Plan for the U.S. Cli-
mate Change Science Program, 211 pp., Washington, D. C.

Dykema, J. A., and J. G. Anderson (2006), A methodology for obtaining
on-orbit SI traceable spectral radiance measurements in the thermal infra-
red, Metrologia, 43, 287–293.

Goody, R. M., J. G. Anderson, and G. R. North (1998), Testing climate
models: An approach, Bull. Am. Meteorol. Soc., 79(11), 2541–2549.

Goody, R., J. Anderson, T. Karl, R. B. Miller, G. North, J. Simpson,
G. Stephens, and W. Washington (2002), Why monitor the climate?,
Bull. Am. Meteorol. Soc., 83(6), 873–878.

Haskins, R. D., R. M. Goody, and L. Chen (1997), A statistical method for
testing a general circulation model with spectrally resolved satellite data,
J. Geophys. Res., 102(D14), 16,563–16,581.

Haskins, R., R. Goody, and L. Chen (1999), Radiance covariance and
climate models, J. Clim., 12(5), 1409–1422.

Hasselmann, K. (1993), Optimal fingerprints for the detection of time-
dependent climate change, J. Clim., 6(10), 1957–1971.

Hegerl, G. C., P. A. Stott, M. R. Allen, J. F. B. Mitchell, S. F. B. Tett, and
U. Cubasch (2000), Optimal detection and attribution of climate
change: Sensitivity of results to climate model differences, Clim.
Dyn., 16(10–11), 737–754.

Houghton, J. T., , Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden,
X. Dai, K. Maskell, and C. A. Johnson (Eds.) (2001), Climate Change
2001: The Scientific Basis—Contribution of Working Group I to the
Third Assessment Report of the Intergovernmental Panel on Climate
Change, 881 pp., Cambridge Univ. Press, New York.

Intergovernmental Panel on Climate Change (2001), Special Report on
Emissions Scenarios, Working Group I, Geneva, Switzerland.

Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy
(1997), Observing Earth’s atmosphere with radio occultation measure-
ments using the Global Positioning System, J. Geophys. Res., 102(D19),
23,429–23,465.

Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman (2000), The GPS
radio occultation technique, Terr. Atmos. Oceanic Sci., 11(1), 53–114.

Leith, C. E. (1975), Climate response and fluctuation dissipation, J. Atmos.
Sci., 32(10), 2022–2026.

Leroy, S. S. (1997), Measurement of geopotential heights by GPS radio
occultation, J. Geophys. Res., 102(D6), 6971–6986.

Leroy, S. S. (1998), Detecting climate signals: Some Bayesian aspects,
J. Clim., 11(4), 640–651.

Leroy, S. S., and G. R. North (2000), The application of COSMIC data to
global change research, Terr. Atmos. Oceanic Sci., 11(1), 187–210.

Leroy, S. S., J. A. Dykema, and J. G. Anderson (2006), Climate bench-
marking using GNSS occultation, in Atmosphere and Climate: Studies by
Occultation Methods, edited by U. Foelsche, G. Kirchengast, and
A. Steiner, pp. 287–301, Springer, New York.

Lorenz, D. J., and D. L. Hartmann (2001), Eddy-zonal flow feedback in the
Southern Hemisphere, J. Atmos. Sci., 58(21), 3312–3327.

Lorenz, D. J., and D. L. Hartmann (2003), Eddy-zonal flow feedback in the
Northern Hemisphere winter, J. Clim., 16(8), 1212–1227.

D17105 LEROY ET AL.: FIRST MOMENT CLIMATE MODEL TESTING

14 of 15

D17105



Manabe, S., J. Smagorinsky, and R. F. Strickler (1965), Simulated clima-
tology of a general circulation model with a hydrologic cycle, Mon.
Weather Rev., 93(12), 769–798.

Mears, C. A., and F. J. Wentz (2005), The effect of diurnal correction of
satellite-derived lower tropospheric temperature, Science, 309(5740),
1548–1551.

National Research Council, Committee on Radiative Forcing Effects on
Climate (2005), Radiative Forcing of Climate Change: Expanding the
Concept and Addressing Uncertainties, 225 pp., Natl. Acad. Press,
Washington, D. C.

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng (1982), Sampling
errors in the estimation of empirical orthogonal functions, Mon. Weather
Rev., 110(7), 699–706.

North, G. R., K.-Y. Kim, S. S. P. Shen, and J. W. Hardin (1995), Detection
of forced climate signals: I. Filter theory, J. Clim., 8(3), 401–408.

Rocken, C., Y. H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, and
C. McCormick (2000), COSMIC system description, Terr. Atmos.
Oceanic Sci., 11(1), 21–52.

Seidel, D. J., et al. (2004), Uncertainty in signals of large-scale variations in
radiosonde and satellite upper-air temperature trends, J. Clim., 17(11),
2225–2240.

Spencer, H., and J. M. Slingo (2003), The simulation of peak and delayed
ENSO teleconnections, J. Clim., 16, 1757–1774.

Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, W. J. Ingram, and J. F. B.
Mitchell (2000a), Anthropogenic and natural causes of twentieth century
temperature change, Space Sci. Rev., 94(1–2), 337–344.

Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and
G. J. Jenkins (2000b), External control of 20th century temperature by
natural and anthropogenic forcings, Science, 290(5499), 2133–2137.

Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, W. J. Ingram, and J. F. B.
Mitchell (2001), Attribution of twentieth century temperature change to
natural and anthropogenic causes, Clim. Dyn., 17(1), 1–21.

Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell
(1999), Causes of twentieth-century temperature change near the Earth’s
surface, Nature, 399(6736), 569–572.

Tett, S. F. B., et al. (2002), Estimation of natural and anthropogenic con-
tributions to twentieth century temperature change, J. Geophys. Res.,
107(D16), 4306, doi:10.1029/2000JD000028.

Thompson, D. W. J., and J. M. Wallace (1998), The Arctic Oscillation
signature in the wintertime geopotential height and temperature fields,
Geophys. Res. Lett., 25(9), 1297–1300.

Thompson, D. W. J., and J. M. Wallace (2000), Annular modes in the
extratropical circulation, part I: Month-to-month variability, J. Clim.,
13(5), 1000–1016.

Ware, R., et al. (1996), GPS sounding of the atmosphere from low
Earth orbit: Preliminary results, Bull. Am. Meteorol. Soc., 77(1), 19–
40.

Wickert, J., et al. (2001), Atmosphere sounding by GPS radio occulta-
tion: First results from CHAMP, Geophys. Res. Lett., 28(17), 3263–
3266.

�����������������������
J. G. Anderson, J. A. Dykema, and S. S. Leroy, Anderson Group,

Division of Engineering and Applied Science, Harvard University,
12 Oxford Street, Cambridge, MA 02138, USA. (leroy@huarp.harvard.edu)

D17105 LEROY ET AL.: FIRST MOMENT CLIMATE MODEL TESTING

15 of 15

D17105


