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ABSTRACT

A Bayesian approach is applied to the observed regional and seasonal surface air temperature (SAT)
changes using single-model ensembles (SMEs) with the ECHO-G model and multimodel ensembles
(MMEs) of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)
simulations. Bayesian decision classifies observations into the most probable scenario out of six available
scenarios: control (CTL), natural forcing (N), anthropogenic forcing (ANTHRO), greenhouse gas (G),
sulfate aerosols (S), and natural plus anthropogenic forcing (ALL). Space–time vectors of the detection
variable are constructed for six continental regions (North America, South America, Asia, Africa, Austra-
lia, and Europe) by combining temporal components of SATs (expressed as Legendre coefficients) from
two or three subregions of each continental region.

Bayesian decision results show that over most of the regions observed SATs are classified into ALL or
ANTHRO scenarios for the whole twentieth century and its second half. Natural forcing and ALL scenarios
are decided during the first half of the twentieth century, but only in the low-latitude region (Africa and
South America), which might be related to response patterns to solar forcing. Overall seasonal decisions
follow annual results, but there are notable seasonal dependences that differ between regions. A compari-
son of SME and MME results demonstrates that the Bayesian decisions for regional-scale SATs are largely
robust to intermodel uncertainties as well as prior probability and temporal scales, as found in the global
results.

1. Introduction

Recently there have been increasing studies of cli-
mate change detection and attribution focusing on re-
gional-scale surface air temperatures (SATs) and other
variables such as precipitation, sea level pressure, and
ocean heat contents (International Ad Hoc Detection
and Attribution Group 2005, and references therein).
Another effort that has been made in the studies is to
consider uncertainties originating from intermodel dif-
ferences that affect the estimation of not only internal
variability (noise) but also model responses to given
external forcing (signal) and hence detection and attri-
bution results. In this context, Bayesian methods have
been suggested as a useful tool (Leroy 1998; Berliner et
al. 2000; Min et al. 2004, 2005a; Schnur and Hasselmann
2005; Lee et al. 2005).

The large number of ensemble simulations from 22
coupled climate models, which were integrated for con-
tributing to the Fourth Assessment Report (AR4) of
the Intergovernmental Panel on Climate Change
(IPCC), enables one to test the sensitivity of climate
change assessment to the intermodel uncertainties. Us-
ing the dataset of AR4 multimodel ensembles (MMEs)
and single-model ensembles (SMEs) of the ECHAM
and the global Hamburg Ocean Primitive Equation
(HOPE-G) model (ECHO-G), Min and Hense (2006b,
hereafter referred to as MH06) classified observed
global mean SAT changes over the twentieth century
into four scenarios, which are control (CTL), natural
(N), greenhouse gas (G), and natural plus anthropo-
genic forcing (ALL) scenarios, based on a Bayesian
method. They found that observed global SAT changes
over the whole twentieth century and its second half are
classified into ALL scenarios while there is evidence of
N and ALL forcing scenarios for the first half of the
century. Comparing results from SMEs with MMEs,
they demonstrated that the Bayesian assessments for
the global mean SATs are not sensitive to intermodel
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uncertainties, supporting previous studies mostly based
on conventional approaches such as optimal finger-
printing (e.g., Hegerl et al. 1997; Allen and Tett 1999).
Consistently, through evaluating the performance of
the 22 AR4 models on reproducing observed global
mean SAT variations over the twentieth century as well
as its first and second halves, Min and Hense (2006a)
showed that models with natural plus anthropogenic
forcing together have better skills than those with an-
thropogenic forcing only, indicating the important role
of the natural forcing in explaining observed changes.

Regional-scale SATs are analyzed in several recent
studies of detection and attribution (Stott 2003; Karoly
et al. 2003; Karoly and Braganza 2005; Zwiers and
Zhang 2003; Zhang et al. 2006; Knutson et al. 2006; Min
et al. 2005a). Stott (2003) used the Third Hadley Centre
Coupled Ocean–Atmosphere GCM (HadCM3) simula-
tions to attribute observed changes of decadal mean
SATs over six continental regions for the twentieth cen-
tury. Applying an optimal detection method, he de-
tected consistent greenhouse warming and sulfate aero-
sol cooling signals separately over all regions. Using
Canadian climate model simulations and an optimal
fingerprinting method, Zwiers and Zhang (2003) as-
sessed detectability of anthropogenic signals in SAT
patterns from global to continental scales over the
twentieth century, and detected greenhouse gas and
sulfate aerosol (GS) signals over continental scales in-
cluding North America and Europe. Zhang et al. (2006)
extended the work of Zwiers and Zhang (2003) by us-
ing simulations from four models and considering
smaller regions. They showed that GS signals are de-
tectable in all domains, confirming previous findings.

Karoly et al. (2003) and Karoly and Braganza (2005)
compared trends of simple SAT indices from observa-
tions and several coupled climate model simulations
over North America and Australia, respectively, and
detected GS signals for the second half of the twentieth
century. Knutson et al. (2006) assessed skills of the
Geophysical Fluid Dynamics Laboratory (GFDL) Cli-

mate Model version 2 (CM2) at simulating regional
SAT trends on several regional areas from land and
ocean over the twentieth century and its second half
and found a better consistency with observations in all-
forcing and anthropogenic-only forcing runs than natu-
ral-only forcing or no external forcing. Unlike the stud-
ies based on conventional statistics (optimal detection
or trend analysis), Min et al. (2005a) applied a Bayesian
method to the East Asian SAT patterns from
ECHAM3/LSG simulations and detected G signals that
have been robust to prior changes and spatial scales
were retained.

The objective of this study is to extend the multi-
model Bayesian study of MH06 to the regional and
seasonal mean SATs over six continental regions fol-
lowing Stott (2003). A space–time data vector is con-
structed by combining Legendre coefficients of regional
mean SATs for two or three subregions that constitute
continental regions. The block averages will reduce the
spatial degree of freedom while the Legendre expan-
sions concern temporal dimensions. Another extension
is applied on scenarios. In addition to four scenarios
(CTL, N, G, and ALL) used in our previous study, we
consider anthropogenic forcing only (ANTHRO) and
sulfate aerosol forcing only (S) as other possible expla-
nations of regional SAT changes. As in MH06, SMEs
come from the ECHO-G model (Legutke and Voss
1999; Min et al. 2005b,c) and MMEs are composed of
the IPCC AR4 22 models. The list of the six scenarios
and relevant SME and MME simulations used to define
them is given in Table 1.

The methods of Bayesian climate change assessment
and temporal refinement (Legendre series expansions)
are briefly described in the next section. Observations
and the model dataset from ECHO-G and IPCC AR4
models are introduced in section 3. In section 4, struc-
tures of detection variables are shown with regional
mean SAT time series and their Legendre coefficients
for three analysis periods (1900–99, 1900–49, and 1950–
99). Bayesian decision results for annual and seasonal

TABLE 1. Climate change scenarios for Bayesian decision analysis.

Abbreviation Forcing

Relevant model simulations
used for “mean” estimation*

SMEs MMEs

CTL Natural internal variability (control) ECHO-G_PD MME_PI
N Natural forcing (solar and volcanic activities) ECHO-G_N —
ANTHRO Anthropogenic forcing (greenhouse gases and sulfate aerosols) ECHO-G_ANTH MME_ANTH
G Greenhouse gases ECHO-G_G —
S Sulfate aerosols ECHO-G_S —
ALL Natural plus anthropogenic forcing ECHO-G_ALL MME_ALL

* PD: present-day control run; PI: preindustrial control run.
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space–time SAT patterns over six continental regions
are explained in section 5, where sensitivity to priors,
Legendre degrees retained, and intermodel uncertain-
ties are tested. Finally conclusions are given in sec-
tion 6.

2. Methodology

a. Bayesian decision method

Here we provide a brief description of the Bayesian
decision method. A detailed explanation can be found
in Min et al. (2004) and MH06. Given the observational
vector d and N defined scenarios mi (i � 1, . . . , N), we
want to estimate the probability of each scenario given
the observation P(mi|d), that is, the posterior probabil-
ity of the scenario. Applying Bayes’ rule, the posterior
can be evaluated from the prior probability P(mi) and
likelihood function l(d|mi):

P�mi|d� �
l�d|mi�P�mi�

�
j�1

N

l�d|mj�P�mj�

. �1�

The prior represents a subjective belief in the sce-
nario and the likelihood shows the observational prob-
ability given the scenario. Assuming multivariate Gau-
ssian distributions for the data vector from the obser-
vation and scenarios, the likelihood function can be
calculated as

l�d|mi� �
1

��2��q
� detAi

�1

det�i det�0
exp��

1
2

�i�, �2�

where q is the dimension of the data vector, �0 and �i

are the covariance matrices of the observation d and
the scenario mi, respectively, Ai is a function of the
covariance matrices as Ai � �i

�1 � �0
�1, and �i indi-

cates a generalized distance between the observation
and scenario expressed as �i � (d � �i)

T (�i � �0)�1

(d � �i), where �i is mean of the scenario mi (simplified
from Min et al. 2004).

The posterior probability calculated from Eq. (1) can
be used as a decision function (Duda and Hart 1973;
Berger 1985). We select the scenario with maximum
posterior (the most probable scenario) into which ob-
servations are classified. In case of identical prior as-
sumption between scenarios, the Bayes factor (likeli-
hood ratio) itself becomes a decision function. Accord-
ing to the descriptive scales suggested by Kass and
Raftery (1995), the logarithm of the Bayes factors
larger than 1, 2.5, and 5 represent “substantial,”
“strong,” and “decisive” observational evidences for
the scenario (or against a reference scenario, here

CTL), respectively (Lee et al. 2005; Schnur and Has-
selmann 2005; MH06).

Since a sort of significance is tested many times using
different scenarios and different prior values, one might
think that this Bayesian method might be related with
traditional multiple comparisons. In the multiple com-
parisons (or testing) one is required to adjust the sig-
nificance level to a much smaller magnitude in order to
consider the possible increase of “false positive” results
(type I errors) arising from repeated tests. This is not
the case in our Bayesian approach. Given a prior, we
always test significance once using two scenarios, one of
forced scenarios (N, ANTHRO, G, S, and ALL), and a
reference scenario (here CTL), through the Bayes fac-
tor.

One can test the sensitivity of Bayesian decision re-
sults to covariance matrices of the observation and sce-
nario (�0 and �i), which are normally estimated from
model simulations. MH06 found little effect of the un-
certainties in the estimated covariance matrices when
they carried out several sensitivity tests for global as-
sessment results to different covariance matrices from
the multimodel (Table 4 of MH06). In this study we
assume that the insensitivity to covariance matrices
holds for regional-scale assessment as well.

As discussed in MH06, a major limitation of the
Bayesian decision method is that its result definitely
depends on the scenarios that a user applies. Hence one
should define proper scenarios carefully, which can ex-
plain observed change better. In the case that all sce-
narios (model simulations) are a bad fit to the obser-
vations, the Bayesian decision might be made for the
best of the worst. It would be useful to make some
additional measures of “absolute” skills for the sce-
nario. One way can be to compare the likelihood of the
scenario to that of an idealized scenario (rather than to
that of CTL). Evaluating coupled climate models, Min
and Hense (2006a) suggested constructing a reference
model (mr), which has a mean identical to the observa-
tion [�r � d or �r � 0 in Eq. (2)], while its internal
variability is obtained from CTL. That method, how-
ever, tends to be too strict for higher-dimensional
analysis like this study using space–time vectors (Min
and Hense 2007). Yet another possibility is to monitor
the absolute values of the likelihood. If these are small
it would mean that the simulations are on the fringes of
the data distribution. Min et al. (2004) gave an example
of this type of behavior.

A main difference between our Bayesian decision
method and the optimal fingerprint methods, for ex-
ample, by Stott (2003), exists in the way of comparing
the model simulations with the observation. The opti-
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mal fingerprint uses the regression coefficient (i.e., beta
factor) for the rescaling of the model signal amplitude
to provide a better fit to the observed change. The
Bayesian decision method measures a generalized dis-
tance �i between the observation and model simula-
tions (defined as scenario) as a sort of error measure in
the likelihood of Eq. (2), and weights the prior prob-
ability of the scenario with the likelihood (negative ex-
ponential function of �i) to finally produce the poste-
rior probability. Thereby a scenario (or model) with
larger �i will have smaller likelihood, and hence poste-
riors, and vice versa.

b. Legendre series expansions

To avoid singular or near-singular matrices in the
likelihood calculation a dimension reduction method is
required. We take Legendre series expansions follow-
ing MH06. Regional SAT time series are decomposed
into temporal components representing overall warm-
ing (scale), linear trend (trend), and shorter-term dec-
adal and interannual fluctuations. The truncation point
of Legendre polynomials (LPs) is based on the models’
ability to simulate internal variability. For the evalua-
tion, we analyze power spectra of regional mean SATs
from the MME control runs. These results, to be pre-
sented below in section 4b, show that models can simu-
late well the internal variability over most of the sub-
regions on decadal time scales. This implies that one
can truncate LPs at up to the 12th degree, which cor-
responds to a 20-yr (10 yr) period for 100-yr (50 yr)
time series (MH06).

Additionally, in our space–time approach, the dimen-
sion of detection variable d also increases by a factor of
2 or 3 according to the number of subregions (see next
section for regional domains). Actually we apply LP
truncation up to the first five degrees only (from LP0 to
LP4) so that the maximum dimension of space–time
vector becomes 10 or 15. Then the resolved time scales
by the first 5 LPs are longer than 50 yr for the 100-yr
period, which would be 25 yr for the 50-yr period, es-
timated from power spectra of LP4 (not shown). How-
ever, it should be noted that time scales are not clearly
filtered in the LP structure since multiple time scales
are contained (see MH06). Testing the computational
limits to avoid singular matrices leads to different maxi-
mum dimensions of order 20 to 30 depending on the
range of internal variability and signal amplitude. The
finally chosen conservative limit of 10 or 15 is well be-
low the critical dimension.

3. Data and experiment

As the SAT observations we use the Climate Re-
search Unit (CRU) data over land (CRUTEM2v) for

1900–99 (Jones and Moberg 2003). Regional domains
are applied following Stott (2003). There are six conti-
nental-scale regions—North America (NAM), Asia
(ASI), South America (SAM), Africa (AFR), Australia
(AUS), and Europe (EUR)—with each region com-
prising two or three subregions (Fig. 1). Combining
Legendre coefficients of area-averaged SATs over the
subregions constructs the space–time data vector for
the six continental regions from observations and
model simulations.

There are two sources for the model dataset. At first,
data come from SME simulations with ECHO-G.
ECHO-G is a coupled climate model of the Model and
Data Group at the Max Plank Institute for Meteorol-
ogy that has the atmospheric component ECHAM4
with a horizontal resolution of T30 and 19 vertical lev-
els, and the ocean model HOPE-G with a T42 equiva-
lent horizontal resolution (a gradual equatorial refine-
ment in meridional direction up to 0.5° near equator)
and 20 vertical levels (Legutke and Voss 1999). We use
the SAT dataset from a 1000-yr present-day control run
(ECHO-G_PD; Min et al. 2005b,c) and historical en-
semble simulations over the period 1860–2000 for the
five forced scenarios (ECHO-G_N, ECHO-G_ANTH,
ECHO-G_G, ECHO-G_S, and ECHO-G_ALL; Table
1). Detailed descriptions about the historical simula-
tions can be found in MH06. ECHO-G_PD provides 91
overlapping samples of 100-yr regional SAT time series
for the CTL scenario with a moving window of 100-yr
length shifted by 10 yr. From the ECHO-G forced
simulations, we obtain three realization samples of
1900–99 (five from ECHO-G_ALL).

Simulations from 22 coupled models are used as the
second source of model data, which can be downloaded
from the IPCC AR4 archive (http://www-pcmdi.llnl.
gov/ipcc/about_ipcc.php). Information about models
and experiment details can be found at the same place.
We use historical climate change (twentieth-century cli-
mate in coupled models; 20C3M) and preindustrial (PI)
control runs. The 20C3M simulations are divided into
two groups on the basis of the external forcing imple-
mented: MME_ANTH (12 models with 25 members)
and MME_ALL (12 models with 48 members).
MME_PI and MME_ALL are exactly the same simu-
lations as in MH06. MME_ANTH (anthropogenic forc-
ing only) is newly added in this study and consists of 12
models with total 25 members (Table 2). Only two
models, ECHO-G and the Hadley Centre Global En-
vironmental Model version 1 (HadGEM1), provide
samples for MME_ANTH as well as MME_ALL. We
extract overall 25 and 48 nonoverlapping samples of
100-yr time series of regional mean SATs from
MME_ANTH and MME_ALL, respectively. For

2772 J O U R N A L O F C L I M A T E VOLUME 20



FIG. 1. Regional domains used in this study following Stott (2003). There are six continental
regions: NAM, ASI, SAM, AFR, AUS, and EUR, with each composed of two or three
subregions. The subregions are expressed as the attached number after the abbreviation of the
continental region.

TABLE 2. List of IPCC AR4 coupled climate models used in this study. The twentieth-century climate change simulations of the IPCC
AR4 models are divided into MME_ALL (natural plus anthropogenic forcing) and MME_ANTH (anthropogenic forcing only)
according to external forcing implemented. Ensemble members of the models are used as nonoverlapping samples for MME_ALL and
MME_ANTH. Preindustrial control simulations of the IPCC AR4 models provide overlapping samples for MME_PI that are obtained
from a moving window of 100-yr length with a 10-yr shift. More detailed information about MME_PI sampling can be found in MH06.

Model
MME_ALL

(ensemble member)
MME_ANTH

(ensemble member)

MME_PI
(No. of 100-yr

overlapping subsections)

BCCR_BCM2.0 — 1 16
CCSM3 8 — 55
CGCM3.1(T47) — 5 41
CGCM3.1(T63) — 1 26
CNRM-CM3 — 1 30
CSIRO-Mk3.0 — 3 29
ECHAM5/MPI-OM — 3 58
ECHO-G 5 3 25
FGOALS-g1.0 — 3 3
GFDL-CM2.0 3 — 41
GFDL-CM2.1 3 — 41
GISS-AOM — 2 32
GISS-EH 5 — 21
GISS-ER 9 — 41
INM-CM3.0 1 — 24
IPSL-CM4 — 1 14
MIROC3.2 (high res.) 1 — 1
MIROC3.2 (med. res.) 3 — 41
MRI_CGCM2.3.2 5 — 26
PCM 4 — 49
HadCM3 — 1 25
HadGEM1 1 1 5
SUM (models) 48 (12) 25 (12) 644 (22)

15 JUNE 2007 M I N A N D H E N S E 2773



MME_PI, overlapping 100-yr-long moving windows
with a 10-yr shift produce 644 samples. MH06 found a
negligible effect of using a different number of samples
from MME_PI (80 nonoverlapping versus 644 overlap-
ping samples) on the Bayesian decisions for global
mean SATs.

For each 100-yr-long sample, Legendre coefficients
are obtained for the whole period and the first and
second 50 yr, which correspond to observational peri-
ods of 1900–99, 1900–49, and 1950–99. Then the coef-
ficients are used to estimate means and covariance ma-
trices for the likelihood calculation in Eq. (2). For the
mean estimation, we use only SMEs for the G, S, and
N scenarios for which MMEs are not available,
while SMEs or MMEs are selectively used for CTL,
ANTHRO, and ALL. Covariance matrices from the
forced scenarios are assumed to be identical to that of
CTL, which is estimated from SMEs or MMEs. We
refer to these two kinds of settings with SMEs and
MMEs as the SINGLE and MULTI experiments, re-
spectively. The same assumption is applied for the co-
variance matrix of the observation. The SAT anomaly
is relative to the first 20 yr in every 100-yr sample. Prior
to calculating regional averages, model data are inter-
polated to and masked with the observational grids.

It should be noted that differences between
MME_ANTH and MME_ALL may partly result from
model differences as well as forcing differences. For
instance, MME_ANTH includes more models from dif-
ferent modeling groups than MME_ALL although one
cannot assess independence between the models cor-
rectly. Besides, here we have not removed the possible
effect of climate drift in the 20C3M runs. That is to say,
20C3M SAT anomalies are calculated directly from the
20C3m run, not as differences from the appropriate PI
control run. We have only excluded a few model simu-
lations that have noticeable climate drift defining
MME_PI as in Table 3 of MH06. The remaining drift
would increase the range of internal-model uncertainty
as discussed in MH06.

4. Structures of detection variables

a. Time series of regional temperatures

Figure 2 shows low-pass-filtered time series of area-
averaged SAT anomalies over the 16 subregions from
the CRU observations and the model simulations with
different forcing relevant to the six scenarios. Filtered
series for 1900–99 are obtained from Legendre degrees
retained at the 12th degree (see below for the trunca-
tion). Results from SMEs and MMEs are displayed to-
gether for the three scenarios of CTL, ANTHRO, and
ALL, while only SME outputs are shown for N, G, and

S. Observational SAT changes exhibit consistent warm-
ing trends over most of the subregions in recent de-
cades. Observations are also characterized by an early
warming near the 1940s, which is most obvious for the
areas NAM1–3 and SAM3. However, temporal behav-
ior and amplitude of the early warming varies signifi-
cantly between subregions. The subregions ASI1, AUS1,
and AUS2 do not carry any early-warming signals.

Unforced model simulations (CTL) reveal different
ranges of internal variabilities in the twentieth-century
SAT changes in different subregions. As a whole, the
variabilities are larger over high latitudes, especially
near the North Atlantic (NAM3 and EUR2) while they
get smaller over low latitudes such as ASI1, SAM1,
AFR1, AFR2, AUS1, and AUS2. The former is consis-
tent with regions of principal natural variability like the
Arctic Oscillation (AO) or North Atlantic Oscillation
(NAO), as shown in previous analyses of SAT variabil-
ity patterns (e.g., Stouffer et al. 2000; Collins et al. 2001;
Min et al. 2005b). Min et al. (2005b) reported that the
ECHO-G model overestimates the SAT variability
over the North Atlantic and North Pacific in time scales
from years to decades. This explains why over NAM3
the variability range of ECHO-G_PD is larger than that
of MME_PI. On the other hand, the variability in
MME_PI is stronger in EUR2. One might deduce a
conclusion that the recent observed warming is outside
of this range of internal variability in some subregions
while within the range in other subregions. However,
such interpretation highly depends on model simula-
tions that provide samples for internal variability esti-
mation. Therefore, the multimodel approach should be
pursued in this respect. We will examine the effect of
the multimodel on Bayesian decisions, where the inter-
nal variability range is a key factor as a background
noise, by comparing results from SINGLE with
MULTI below.

Natural forcing simulations (N) with ECHO-G are
characterized by a warming near the middle of the
twentieth century that is profound over a few subre-
gions (NAM3, ASI3, and EUR1), but with large uncer-
tainty between ensemble members. All together they
cannot explain the recent increasing trend in the obser-
vations. Greenhouse gas forcing simulations (G) repre-
sent a steady warming over the whole century in most
of the places. However, G runs seldom reproduce the
observed warming around the 1940s, for example, over
the NAM subregions. On the other hand, cooling
trends after the 1960s are dominant in the sulfate aero-
sol runs (S), which are stronger (	�1.0°C by 1999)
over the northern subregions NAM2, ASI2, ASI3, and
EUR2.

The ANTHRO simulations with ECHO-G show less
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FIG. 2. Reconstructed time series (retained at the 12th degree of Legendre polynomials) of regional annual mean
SAT anomalies during 1900–99 for the 16 subregions (Fig. 1) from CRU observations (thick black), SME (light gray)
simulations, and MME (dark gray) simulations under different forcing factors. Note that MMEs are available only for
CTL, ANTHRO, and ALL and that only max and min ranges are plotted for SME (also dashed) and MME in CTL.
Temperature anomalies are relative to 1900–20 means.
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recent warming than G through an offset by the S cool-
ing. MME results have a larger range than SMEs in the
simulations but tend to overestimate the recent warm-
ing in some subregions like AFR1, AFR2, SAM1, and
AUS2. This indicates possible effects of intermodel dif-
ference in responses to external forcing. Although ALL
runs from SMEs or MMEs capture well the observed
behavior over most of the subregions, deficiencies oc-
cur over ASI1, SAM1, AFR1, AUS1, and AUS2 where
models overestimate the early century warming. The
intuitive and qualitative comparisons described above
are quantified below through Bayesian analyses consid-
ering model uncertainties as well as natural variability.

b. Power spectrum analysis

We apply a power spectrum analysis to evaluate the
model performance at simulating internal variability of
regional-scale SAT. Based on this analysis, we can also
decide on the temporal truncation of the LP up to
which models represent reasonable variabilities com-
pared to those observed. As model simulations, we use
10 and 80 nonoverlapping samples of ECHO-G_PD
and MME_PI (MH06), respectively. Model power
spectra are calculated for each sample and the en-
semble average of the power spectrum and its range
(maximum and minimum) are analyzed in comparison
to observations. The 100-yr time series from the obser-
vations and simulations are detrended prior to analysis
to remove influences of external long-term forcing. It
should be kept in mind, however, that such detrending
may not be enough to eliminate effects of external forc-
ing that are delivered from decadal or interannual time
scales, especially from observations (Jones and Hegerl
1998; Stouffer et al. 2000).

Power spectra of regional-mean SATs obtained from
ECHO-G_PD are given in Fig. 3 with those from CRU
observations. As in the result for the global mean SATs
(MH06; Stone et al. 2007), regional SATs from obser-
vations and SME simulations over most of the subre-
gions have larger power in the lower frequency, which
corresponds to the red variance spectra of stochastic
climate models where slowly varying “climate” variabil-
ity is explained as the integral response of randomly
excited short-term “weather” disturbances (Hassel-
mann 1976). In terms of decadal variability, ECHO-G
simulations show a similar power spectrum compared
to observations in most subregions. Exceptions occur in
some subregions (SAM1, SAM3, AFR1, AFR2, and
AFR3) where the model underestimates the SAT de-
cadal variability and in NAM3 where the variance is
overestimated by the model. The larger variability over
NAM3 is a specific feature of ECHO-G as discussed in
Fig. 2. Min et al. (2005b) found a 2-yr spectral peak in

the global mean SATs from the ECHO-G_PD, which is
hardly seen in the observation. Its occurrence is related
to too strong and frequent El Niño events simulated by
the model (Min et al. 2005c). The 2-yr spectral peak can
also be found in the regional SATs mainly over lower
latitudes (ASI1, SAM1, AFR1, AFR2, and AUS2),
which are the areas of significant responses to the El
Niño–Southern Oscillation (ENSO) in the model (see
Fig. 10 of Min et al. 2005c).

If we extend the power spectrum analysis to
MME_PI (Fig. 4), we get two major changes of model
spectra. The first is a broadening of the spectral ranges
and the other is an improved consistency between simu-
lated multimodel mean powers and observed ones.
These changes happen over most of the subregions.
Especially the improved model performance at simu-
lating decadal variability emerges over subregions
where overestimation or underestimation by SMEs oc-
curs (see above). This indicates that the advantages of
using MMEs over SMEs hold in the regional climate
change assessment as well as global studies (MH06).
Considering the limit in the spectral comparison (e.g.,
using linear detrending to remove external influences
from observations), overall results suggest that, even
over smaller subregions, models can reproduce decadal
variability of SATs reasonably and one can refine tem-
poral decompositions at least up to decadal compo-
nents. According to MH06, this corresponds to retain-
ing Legendre coefficients at the 12th degree for the
period of 1900–99 (see below).

c. Legendre coefficients

Figure 5 displays the Legendre coefficients of re-
gional SATs for 16 subregions during 1900–99. The ob-
served patterns show that in general there is a warming
over most of the subregions (positive values of LP0 and
LP1), but with amplitude varying from region to region
relative to each range of the internal variability. Ob-
served Legendre coefficients at the 4th degree (LP4)
are also positive over some subregions (e.g., NAM1,
NAM2, SAM3, AFR3, and EUR1). These are associ-
ated with the early century warming near the 1940s,
although LP4 may contain warming signals from recent
decades as well (for LP patterns, see Fig. 1 of MH06).
Model simulations with different forcing factors show
that the coefficients from ALL and ANTHRO runs are
closer to observational patterns than those from the
other runs (N, G, and S). In some regions, positive
coefficients of LP4 are dominant in N and ALL runs,
which are also evident in the observations. This repre-
sents a possible role of natural forcing since LP4 con-
tains the early warming near the 1940s as explained
above. The distribution of internal variabilities of Leg-
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FIG. 3. Power spectra of regional monthly mean SAT anomalies during 1900–99 for the 16 subregions (Fig. 1) obtained
from a 1000-yr present-day control run with ECHO-G (ECHO-G_PD). The abscissa is frequency (year) and the ordinate
is spectral density (nondimensional).
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FIG. 4. Same as in Fig. 3, but for preindustrial control runs with IPCC AR4 models (MME_PI).
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FIG. 5. Legendre expansion coefficients (at zeroth to fourth degree) of regional annual mean SAT anomalies for 1900–99
over the 16 subregions from CRU observations (thick black), SME (light gray) simulations, and MME (dark gray)
simulations under different forcing factors. Note that MME results are available only for CTL, ANTHRO, and ALL and
that only maximum and minimum ranges are plotted for SME (also dashed) and MME in CTL.
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endre coefficients is well matched with SAT variabili-
ties in Fig. 2. The ranges of SMEs are similar to those of
MMEs over large parts of subregions, while notable
differences are found over a few subregions: SME vari-
ability is smaller than MMEs over NAM1 and EUR2,
while SME has a larger range over NAM3.

Simulated and observed Legendre coefficients for
the first half of the twentieth century are shown in Fig.
6. Except for several subregions such as ASI1, ASI2,
SAM1, AUS1, and AUS2, observed LP0 and LP1 are
showing positive values, which means overall warming
and increasing trend of SATs for this period. Model
simulations with different forcing factors show that N
and ALL runs are able to capture the observed warm-
ing while other runs cannot reproduce positive values
of LP0 and LP1.

Figure 7 shows Legendre coefficients for the second
half of the twentieth century (1950–99). Overall distri-
bution of LP coefficients is very close to that for 1900–
99 (Fig. 5). Compared to the results in 1900–49 when
some regions do not exhibit any warming (Fig. 6), ob-
servations in 1950–99 are characterized by clearer
warming patterns in most of the subregions where the
warming signals are stronger than background noise
simulated with models without external forcing (i.e.,
internal variability ranges of CTL). However, the
warming is very weak in NAM2, NAM3, and EUR2
compared to the noise arising from larger SAT variabil-
ity over the North Atlantic region. In the model simu-
lations, ANTHRO and ALL runs exhibit better skill at
reproducing the amplitude of observed warming. The
G runs tend to overestimate the warming trend (LP1)
over some subregions while S runs are characterized by
consistent cooling over most of the subregions. The N
runs display positive values at LP0 (warming relative to
1900–20) but weak negatives at LP1 (the trend within
this period). Through Bayesian decision analysis below,
we will quantify the comparison or similarity measure
between the observed and simulated Legendre coeffi-
cients with consideration of spatial and temporal pat-
terns together.

5. Bayesian decision results

a. Identical-prior case

In case of identical priors, the Bayes factor (or like-
lihood ratio) can be used as a decision function to clas-
sify observations into the most probable scenario. Fig-
ure 8 shows the distributions of the Bayes factors for
five scenarios (N, ANTHRO, G, S, and ALL) with re-
spect to CTL over six continental regions from the
SINGLE experiment. The dimension of the data vector
increases hierarchically in steps of 2 or 3 depending on

the number of subregions (Fig. 1) when going stepwise
from LP0 to LP4. Three analysis periods of 1900–99,
1900–49, and 1950–99 are applied as before. The de-
scriptive scales of Bayes factors by Kass and Raftery
(1995) are represented as shadings in the figure, which
provide substantial, strong, and decisive observational
evidence for the forced scenario (for the CTL) when
the logarithm of the Bayes factor is larger than 1, 2.5,
and 5 (less than �1, �2.5, and �5), respectively.

For the regional SATs of the entire twentieth cen-
tury, ALL (for NAM and SAM), ANTHRO (for ASI
and AFR), and G (for AUS) are the scenarios of maxi-
mum Bayes factors. Signals are amplified with increas-
ing LP retained and decisive pieces of evidence (log of
Bayes factor 
5) are found over all regions except for
EUR. Over EUR, ALL and ANTHRO have similar
Bayes factors, but with weaker substantial amplitudes.
When applying the Bayesian decision method to search
for the most probable scenario, one should take into
account the closeness (or discernibleness) of the sce-
narios. For regional SATs during 1900–99, ANTHRO
and ALL signals are very close to each other over all
regions, and the three scenarios of ALL, ANTHRO,
and G are grouped in AUS. This implies indistinguish-
able responses of models to different combinations of
external forcing factors that prevent one from selecting
single scenario. Hence it will not be reasonable to select
or decide only one scenario as a cause of observed
change. Rather one should consider common signals
emerging from multiple scenarios with at least strong
scales in this case. For the twentieth-century SAT over
continental regions, ANTHRO is the common signal
(except for AUS where G is the common signal).

Bayes factors for 1900–49 show that only two regions
of SAM and AFR have larger-than-strong signals of N,
ANTHRO, G, and ALL. The N signal appears slightly
dominant over SAM while disorganized patterns are
seen over AFR. It is hard to deduce a single common
signal from the four signals since N and G are indepen-
dent. Instead we conclude that both N and G contribute
separately to the total changes with similar amplitudes
for this period. Results for the second half (1950–99)
resemble those for the whole twentieth century. A dif-
ference is that the ANTHRO signal is larger than ALL
in SAM. Again ANTHRO and ALL share a similarity
over all regions except for AUS where the G signal is
strongest. Concerning this G signal in AUS, this might
be related with the underestimated response of
ECHO-G to greenhouse gas forcing over the region
(see below).

Figure 9 shows the distributions of the Bayes factors
from the MULTI experiment. The MULTI experiment
has some different settings compared to SINGLE. First
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FIG. 6. Same as in Fig. 5, but for 1900–49.
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FIG. 7. Same as in Fig. 5, but for 1950–99.
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FIG. 8. Bayes factors of the five forced scenarios (N, ANTHRO, G, S, and ALL) with respect to the CTL for annual mean SAT
anomalies during 1900–99, 1900–49, and 1950–99 over six continental regions (Fig. 1) from the SINGLE experiment. Gray shadings
represent (from light to dark) substantial, strong, and decisive observational evidence, respectively, for the forced scenario.

FIG. 9. Same as in Fig. 8, but for the result from the MULTI experiment.
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we take MME_PI to estimate the parameters (means
and covariance matrices) for the CTL scenario, which
affects Bayes factors for the other scenarios. Addition-
ally MME_ANTH and MME_ALL runs are used for
defining ANTHRO and ALL scenarios. For the three
analysis periods, Bayes factors from MULTI are very
similar to those from SINGLE. Some minor changes
can be identified. For 1900–99, ALL becomes more
dominant over NAM, SAM, AFR, and EUR, while
the ANTHRO signal is largest over AUS with the
closeness between the signals unaffected. For 1900–49,
the ALL signal is enhanced over AFR. The MME ef-
fects on Bayes factors for 1950–99 are characterized by
a strengthening of ALL signals over SAM and EUR
and of ANTHRO signal over AUS as in 1900–99, while
G has maximum Bayes factors over AFR. As a whole,
patterns of Bayes factors for regional SATs are insen-
sitive to intermodel uncertainties in cases of identical
priors, which is consistent with previous studies for glo-
bal mean SATs (MH06). We test the sensitivity of this
conclusion to varying priors below.

b. Varying-prior case

Priors of six scenarios are changed following the
method by MH06 using “uninformed” uniform priors.
We assume that the total sum of priors of six scenarios
is always unity and that priors of the forced scenarios
except for CTL are assumed to be identical. Then the
prior of CTL is shifted from 0.01 to 0.99, which corre-
sponds to varying priors of the forced scenarios from
0.198 to 0.002. By this we consider a range of prior
probabilities from weighting the forced scenarios by
19.8 (�0.198/0.01) times of CTL (when CTL prior is
0.01) to weighting CTL by 495 (�0.99/0.002) times of
the other scenarios (when CTL prior is 0.99). Introduc-
ing a similar definition of priors to ours with three sce-
narios (CTL, G, and GS), Schnur and Hasselmann
(2005) applied two settings of varying priors. They as-
signed 90% and 10% probabilities to CTL (degree of
belief in that the observed climate change can be ex-
plained by natural variability), which represent two
“extreme” views from a “climate change skeptic” and a
“climate change advocate,” respectively. We here take
a wider range of CTL priors from 1%–99%, which pro-
vides more extensive views on climate change although
other methods of prior modeling could be envisaged.

In the case of this generalized setting with varying
priors, posterior probability is used as a decision func-
tion. Given Legendre coefficients and prior values, we
can evaluate posterior probabilities of six scenarios us-
ing Eq. (1). Then the most probable scenario is decided
from a decision rule of selecting the scenario of maxi-
mum posteriors. Figure 10 shows the decision results as

a function of Legendre degrees and priors that are ob-
tained from the SINGLE experiment. Each decision
box over six continental regions can be interpreted as
an extension of the one-dimensional results in Fig. 8
into two-dimensional plots utilizing the prior as a ver-
tical axis. It should be noted that, however, only maxi-
mum scenarios are displayed in Fig. 10 without other
information such as signal amplitudes of each scenario
and their similarities or differences. Therefore distribu-
tions of Bayes factors in Fig. 8 should be analyzed to-
gether to interpret the Bayesian decision results more
clearly, especially when treating various scenarios.

Bayesian decision results for 1900–99 in Fig. 10a are
characterized by three scenarios of ALL, ANTHRO,
and G, which are largely insensitive to prior changes
(vertical axis) and temporal truncations (horizontal
axis) as in the global results (MH06). Interestingly, a
regional dependence of the decision patterns appears:
ALL signals over NAM and SAM, ANTHRO signals
over ASI and AFR, and G signals over AUS. Europe
has the weakest external forcing signals, losing ALL
and ANTHRO signals for CTL prior larger than 0.6,
which might be related to the large uncertainty range of
ECHO-G over EUR2 (Fig. 2 and Fig. 5).

For 1900–49, forced scenarios are decided only over
SAM and AFR and are composed of N, ANTHRO,
and ALL (Fig. 10b). As discussed above in Fig. 8, the
N signal is dominant over SAM, but a mixture of N,
ANTHRO, and ALL appears over AFR. The ALL sig-
nal over NAM is seen only for smaller priors of CTL.
Observations over EUR, ASI, and AUS are classified
into CTL. This means that N signals arising from global
mean SATs for this period (MH06) are contributed
mainly by the two low-latitude continental regions.
Considering that temperature responses to solar forcing
are more profound over the Tropics in some coupled
model simulations (Cubasch et al. 1997; Meehl et al.
2003; Rind et al. 2004) and observations (van Loon et
al. 2004), the decision patterns evident over SAM and
AFR in the first half of the twentieth century might be
related to model response to solar forcing. It is also
possible that this pattern might be related to low-
frequency variations in the Atlantic Ocean, affecting
the tropical Atlantic but not the Pacific (cf. Delworth
and Knutson 2000; Knutson et al. 2006).

The stronger solar influence on the tropical climate
originates from spatially heterogeneous solar input,
which affects more directly relatively cloud-free areas,
compared to spatially uniform forcing of greenhouse
gases (Meehl et al. 2003). However, the amplitude of
the regional response to solar forcing in Cubasch et al.
(1997), Meehl et al. (2003), and ECHO-G results used
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here might be a bit overestimated by using solar irra-
diance rather than spectral descriptions. Rind et al.
(2004) found effects of total and spectral solar forcing
to be that the tropical response was somewhat greater

with total irradiance while the stratospheric response
was greater with the spectral forcing. Meehl et al.
(2003) also suggested a possible nonlinear amplification
of the regional response when solar forcing occurs in

FIG. 10. Bayesian decisions for annual mean SAT anomalies during 1900–99, 1900–49, and
1950–99 over six continental regions (defined as in Fig. 1) from SINGLE. Each two-
dimensional box represents the most probable scenario out of the six scenarios (CTL, N,
ANTHRO, G, S, and ALL, as indicated by shadings and hatching pattterns) when Legendre
truncations are shifted from zeroth to fourth degree in the horizontal axis and priors of CTL
(and corresponding priors of the five forced scenarios) are varied from 0.01 to 0.99 (0.18 to
0.002) along the vertical axis. Black area in the decision plot indicates area of weak signal
where the logarithm of the posterior odds of the decided scenario with respect to CTL are less
than 1; i.e., the climate change signal is “not worth more than a bare mention” (Kass and
Raftery 1995). Under the situation of no significant signals, decisions will be white or black.
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combination with anthropogenic forcing, which might
be model dependent with the cloud physics parameter-
ization (Rind et al. 2004).

The decision results for the second half of the twen-
tieth century share main features of those for the whole
twentieth century (Fig. 10c). ALL, ANTHRO, and G
are major scenarios explaining observed SAT changes.
One notable difference is that ANTHRO is decided over
SAM rather than ALL. However, since Bayes factors of
the two scenarios are similar over the region (Fig. 8),
this is a minor change dependent on model simulations.

SME simulations might not be sufficient to repro-
duce observed regional SAT changes due to possible
model errors in simulating responses to external forc-
ing. This is explored below by comparing results using
SMEs with MMEs. Figure 11 represents the decision
results for six continental-scale regions from MULTI.
Decision results for 1900–99 (Fig. 11a) show that NAM,
SAM, AFR, and EUR have dominant ALL signals
while ASI and AUS prefer the ANTHRO scenario. In
1900–49, the N signal over SAM and the ALL signal
over AFR are manifest (Fig. 11b). Results for 1950–99

FIG. 11. Same as in Fig. 10, but for the result from MULTI.
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(Fig. 11c) resemble those for 1900–99 except that AFR
is dominated by the G signal, which indicates an under-
estimated warming trend over AFR in the late century
simulated by MMEs. In comparison with the results
from SINGLE (Fig. 10), some differences can be found.
The ALL signal extends over AFR for 1900–99 and
1900–49, SAM in 1950–99, and EUR for 1900–99 and
1950–99. Also ANTHRO is dominant over AUS for
1900–99 and 1950–99. These changes originate from dif-
ferent model responses to external forcing as well as
different ranges of internal variability. For instance, the
MME_ANTH response matches best with observations
over AUS (Figs. 11a,c) while for SME the ECHO-G_G
matches best over the region (Figs. 10a,c). Another ex-
ample of a different model response comes over AFR
for 1950–99 where MME_ALL and MME_ANTH have
worse skill than ECHO-G_G (Fig. 11c) while ECHO-
G_ANTH shows the best consistency with observations
(Fig. 10c). The effect of changes in internal variability is
responsible for different decision results over EUR be-
tween SINGLE and MULTI. The range over EUR2 is
much larger in SINGLE than in MULTI, which hinders
one from detecting external forcing signals.

Generally regional-scale decisions from MULTI are
insensitive to the priors and temporal truncations,
which is similar to that in SINGLE. According to the
patterns of the Bayes factors (Fig. 9), the strength of
ALL and ANTHRO signals over most of the regions is
very similar. Hence the prevailing ALL and ANTHRO
signals in the Bayesian decisions indicates that the ef-
fect of intermodel uncertainties appears to be weak
even for regional-scale climate change assessment.

c. Seasonal dependence

To examine seasonal dependence of Bayesian deci-
sion results, seasonal mean SAT series are analyzed
over six continental regions. Four seasons are defined
from calendar months as December–February (DJF),
March–May (MAM), June–August (JJA), and Septem-
ber–November (SON). One hundred samples are con-
structed for each season during 1900–99, and the first
and second halves are used for 50-yr subperiod analysis
for 1900–49 and 1950–99. For DJF, 99 (49) samples are
available for 1900–99 (1950–99). The same space–time
approach is applied by combining Legendre series ex-
pansions for two or three subregions as above.

Figure 12 shows the Bayesian decision results for
four seasons for three analysis periods from the
SINGLE experiment. Annual results (ANN) are plot-
ted together for comparison. They are identical to those
in Fig. 10. Seasonal dependence or contribution of the
attributed signals is very different from region to re-
gion. MAM is a season of the strongest signals over

NAM, while SON is strongest over SAM. JJA has the
strongest signal over EUR where the ANN signal is not
evident. On the other hand JJA is the only season of a
weak signal for ASI. Over AFR, different signals
emerge for different seasons such as the ALL signal for
DJF while the ANTHRO signal emerges for MAM and
JJA. This suggests that we might enhance signal detect-
ability in managing global patterns by confining analy-
sis to signal-favorable seasons.

Seasonal results for 1900–49 reveal some complex
decision patterns. Over SAM a mixture of ALL, G, and
ANTHRO signals is found while the N signal is domi-
nant for ANN. A similar complexity holds for AFR. It
is interesting to note that NAM and EUR have evident
ALL signals in JJA while their ANN signals are very
weak. No external signals show up for all seasons over
ASI and AUS. The most consistent picture is that the
low-latitude regions of SAM and AFR exhibit a clear
signal in the two seasons with strong insolation in the
Southern Hemisphere (SON and DJF). Results for
1950–99 are very similar to those for 1900–99. One
marked difference is that, as in the ANN results dis-
cussed above, SAM has ANTHRO signals rather than
ALL in the seasonal decisions.

Figure 13 shows seasonal decisions from the MULTI
experiment. Seasonal patterns largely follow ANN de-
cisions for each region. Compared to SINGLE, major
signals in the observed SAT changes are ALL for the
whole twentieth century as well as its first and second
halves, which are partly shared by ANTHRO. It seems
that multimodel ensembles have an effect of producing
more consistent signals across regions through im-
proved model response as discussed above. Here again
it should be noted that the signal amplitudes of ALL,
ANTHRO, and in some cases G are very similar to
each other according to patterns of Bayes factors (not
shown). Therefore we conclude that the main results of
climate change assessments are largely insensitive to
the intermodel uncertainties as well as the prior prob-
abilities and temporal scales retained, consistent with
global results by MH06.

6. Conclusions

A Bayesian approach is applied extensively to the
observed regional and seasonal SAT changes using
MMEs of the IPCC AR4 simulations and SMEs with
the ECHO-G model. A Bayesian decision method is
used as a tool for classifying spatially and temporally
varying observed SAT patters over six continental-scale
regions into six scenarios (CTL, N, G, S, ANTHRO,
and ALL). Observed and simulated spatial mean SATs
are decomposed into temporal components of overall
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mean, linear trend, and decadal variabilities through
Legendre series expansions. The coefficients are used
as detection variables. Parameters (means and covari-
ance matrices for likelihood calculation) for defining
each scenario are estimated from SMEs or MMEs, by
which sensitivity of Bayesian decision results to inter-
model uncertainties is examined.

Application results show that observed SAT changes
over continental regions are classified into ALL or

ANTHRO scenarios for the twentieth century and its
second half (1950–99), which corroborates previous
studies (Stott 2003; Karoly et al. 2003, Karoly and
Braganza 2005; Min et al. 2005a; International Ad Hoc
Detection and Attribution Group 2005). For the first
half of the twentieth century, the N or ALL signals are
dominant over Africa and South America only, which
might be related to response patterns to solar forcing
centered over the Tropics, especially when considering

FIG. 12. Bayesian decisions for seasonal mean SAT anomalies during 1900–99, 1900–49, and
1950–99 over six continental regions from SINGLE. Each two-dimensional plot represents
decision scenarios as a function of Legendre truncation (zeroth to fourth degree) and priors
of CTL (0.01 to 0.99) as explained in Fig. 10.
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the seasonal results for these regions (Cubasch et al.
1997; Meehl et al. 2003). Seasonal patterns of Bayesian
decisions in general are similar to annual results. How-
ever, we found notable seasonal dependences of de-
tected signals, which vary across regions. The implica-
tion is that the signal detectability may be enhanced by
combined assessments of seasons with stronger signals
from different regions. Overall decision results from
MMEs (MULTI) are not changed much from those
from SMEs (SINGLE), indicating the robustness of
Bayesian assessment to intermodel uncertainties, al-

though MULTI exhibits more prevailing signals of
ALL across regions than SINGLE. In most cases, the
Bayesian decisions for regional-scale SATs are largely
insensitive to prior probability and temporal scales, as
in the global results by MH06.
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