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Abstract Probabilistic climate projections based on two SRES scenarios, an IMAGE
reference scenario and five IMAGE mitigation scenarios (all of them multi-gas
scenarios) using the Bern2.5D climate model are calculated. Probability distributions
of climate model parameters that are constrained by observations are employed as
input for the climate model. The sensitivity of the resulting distributions with respect
to prior assumptions on climate sensitivity is then assessed. Due to system inertia,
prior assumptions on climate sensitivity play a minor role in the case of temperature
projections for the first half of the 21st century, but these assumptions have a
considerable influence on the distributions of the projected temperature increase in
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the year 2100. Upper and lower probabilities for exceeding 2◦C by the year 2100 are
calculated for the different scenarios. Only the most stringent mitigation measures
lead to low probabilities for exceeding the 2◦C threshold. This finding is robust
with respect to our prior assumptions on climate sensitivity. Further, probability
distributions of total present-value damages over the period 2000–2100 for the
different scenarios are calculated assuming a wide range of damage cost functions,
and the sensitivity of these distributions with respect to the assumed discount rate is
investigated. Absolute values of damage costs depend heavily on the chosen damage
cost function and discount rate. Nevertheless, some robust conclusions are possible.

1 Introduction

There are by now many studies on estimation of uncertainty of climate system
properties and model parameters (e.g. Knutti et al. 2002, 2003; Murphy et al. 2004;
Stainforth et al. 2005; Forest et al. 2006) but still only few on probabilistic climate
projections. Moreover, most of these studies focus on so-called non-intervention
scenarios (Wigley and Raper 2001; Stott and Kettleborough 2002; Knutti et al. 2002;
Tebaldi et al. 2005) or idealized stabilization profiles (Meinshausen 2005; Knutti
et al. 2005). The most prominent of those non-intervention scenarios are the SRES
scenarios (Nakicenovic et al. 2000) developed for the Intergovernmental Panel on
Climate Change (IPCC) Third Assessment Report (IPCC 2001) and also used for
the IPCC Fourth Assessment Report (IPCC 2007).

While idealized scenarios (Knutti et al. 2005) are useful to study processes and
compare methods, realistic scenarios are preferred for decision making, because they
are based on a more consistent set of assumptions and scenario outcomes concerning,
e.g., relations between drivers and emissions and across different gases. This makes
it possible to compare the effects of policy measures with scenario assumptions.
Moreover, it permits transient 21st century projections and mitigation cost estimates
for specific stabilization scenarios.

Developing multi-gas mitigation scenarios has become a main focus of recent mit-
igation research (Weyant et al. 2006). It is estimated that including other greenhouse
gases as part of the mitigation strategy may lead to a reduction of mitigation costs
of up to 30–40% compared to CO2-only strategies with the same radiative forcing
target (van Vuuren et al. 2006).

Probabilistic climate projections are important as a basis for decision making as
they allow for an effective method in communicating and considering uncertainty.
This goes beyond the traditional approach of merely computing an expected outcome
and a best action based on this outcome. In this conventional decision theoretical
framework, the optimum is the alternative that maximizes the expected value of
an intertemporal objective function (Webster 2003). However, this rests on the
assumption that we can predict the future and neglects the fact that some of the
underlying premises of what we know about the future may be (partially) wrong. In
terms of the models’ ability to represent climate processes, problems can arise from
a variety of sources: from uncertainties and inadequacies in the way models attempt
to represent the climate system, arising from features such as coarse resolution,
simplified parameterizations, scientific uncertainty about the feedbacks between
processes, and so forth. These problems are compounded by a scarcity of data that
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can act to constrain many of the climate processes we are most interested in, and
such data issues are particularly acute when we attempt to consider pre-industrial
climates. A further uncertainty of entirely different nature is due to the unknown
future social and economic development of the world (Webster 2003).

In the absence of reliable probabilistic inferences, strategies focussing on re-
silience and vulnerability reduction become preferable to more traditional risk
analysis and optimization approaches. Alternative policies should be systematically
and analytically evaluated against a wide range of plausible scenarios (Camerer
and Weber 1992). Only by seeking strategies that are robust against a wide range
of plausible climate-change futures can a consensus among the multiple actors
within society on political actions be achieved (Lempert and Schlesinger 2000).
Hallegate (2009) discusses specific decision-making frameworks of this kind: no-
regret strategies, reversible strategies, safety margin strategies, and strategies that
reduce decision-making time horizons. A detailed case study on robust adaptation
strategies in the water management sector is presented in Dessai and Hulme (2007).

In this paper, we present probabilistic climate projections based on a wide range
of multi-gas, non-intervention as well as mitigation, scenarios using an Earth System
Model of intermediate complexity. The ensemble of model parameters that are
propagated through the climate model is constrained by past observations of global
annual surface mean temperature and change in world ocean heat content.

A special focus of this work is the robustness of statements concerning climate
change impacts with respect to prior assumptions on climate sensitivity. In 1996,
the European Union formulated a target of a maximum 2◦C rise in global average
temperature. This target has since been reaffirmed by the EU on a number of
occasions (e.g. Commission of the European Communities 2007). We investigate the
sensitivity of the probability of exceeding 2◦C by the year 2100 with respect to prior
assumptions on climate sensitivity and find this sensitivity to be of relatively minor
importance.

The structure of the present paper is as follows. In Section 2 the IMAGE reference
and mitigation scenarios are described. Section 3 introduces the Bern2.5D climate
model that is used for the global mean temperature projections. Section 4 describes
the calculation of the multi-gas forcing from the emissions defined by the scenarios.
This forcing is then used as input to the climate model. Section 5 is on statistical
methods. The ensemble of climate model parameters that is used for the climate
projections is described as well as the framework for the ensuing sensitivity studies.

Section 6 contains the results: probabilistic climate projections for the different
scenarios, an assessment of the influence of prior assumptions on the projections,
and a sensitivity study of damage costs for the various scenarios. Discussions and
conclusions are presented in Section 7.

2 IMAGE scenarios

Most mitigation scenarios published today only consider reducing energy-related
CO2 emissions. Only recently, emission modelers have started to focus on long-
term multigas stabilization scenarios (for an overview, see Weyant et al. 2006). As
one of the teams involved in these activities, van Vuuren et al. (2006, 2007) devel-
oped different sets of multi-gas mitigation scenarios that aim to stabilize radiative
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forcing of greenhouse gases. Although the two sets are based on slightly different
assumptions with respect to mitigation potential and reference scenario emissions
(i.e. emissions without any climate policy), they are sufficiently comparable to be
combined for the purpose of this paper into a large set of scenarios that cover a
wide-range of stabilization levels.

The scenarios were developed using the IMAGE 2.3 Integrated Assessment
model (MNP 2006)—including the TIMER energy model (van Vuuren 2007)—and
the climate-policy model FAIR 2.0 (den Elzen and Lucas 2003). The IMAGE model
is an Integrated Assessment model, consisting of a set of linked and integrated
models that together describe important elements of the long-term dynamics of
global environmental change, such as agriculture and energy use, climate change,
land-use change and environmental impacts.

In total, six different scenarios have been selected from the IMAGE set: a
reference scenario and five multi-gas mitigation scenarios. Three of these scenarios
stabilize radiative forcing at 5.3 W/m2, 4.5 W/m2, 3.7 W/m2 by 2100. Two other
scenarios are overshoot scenarios that lead to 2.9 W/m2 and 2.6 W/m2 in the year
2100, having peaked at 3.2 W/m2 and 2.9 W/m2, respectively. The last scenario
was only achievable by adding the option of bio-energy and carbon storage to the
model. All scenarios assume full participation of countries in emission reductions
from 2015 onwards. Note, however, that the actual forcing levels presented in this
paper corresponding to the different scenarios differ slightly from the ones reported
by van Vuuren et al. (2006, 2007) because we calculated the forcings here based
on the Bern2.5CC model and Joos et al. (2001) instead of the IMAGE model (see
Section 4). As a result, also the effective stabilization levels are not precisely the
ones suggested by the names of the scenarios. Figure 1 (left panel) shows the total
forcing for the years 2000 to 2100 of all the scenarios presented in this paper. Table 1
summarizes the total forcing of the different scenarios in the year 2100.
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Fig. 1 Left panel: total radiative forcing for all scenarios for the years 2000 to 2100. Right panel: the
different forcing components of the IMAGE reference scenario. Note that both panels include the
direct forcing only, and that the climate feedback on the carbon cycle is considered separately
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Table 1 Value of total forcing
at year 2100 for all scenarios

Scenario Forcing at year 2100 [Wm−2]

Reference 5.7
Level 5.3 Wm−2 4.6
Level 4.5 Wm−2 4.2
Level 3.7 Wm−2 3.4
Level 2.9 Wm−2 2.7
Level 2.6 Wm−2 2.3
SRES B1 4.2
SRES A2 7.5

The IMAGE scenarios were defined by first constructing a reference scenario that
describes development of emissions without climate policy. Next, global emission
profiles were devised that lead to the stabilization (or peak) of greenhouse gases
at different forcing levels. On the basis of mitigation potential and associated costs,
the global emission reduction objective was distributed among different gases and
sources. Finally, the resulting emission profiles were rerun in the overall IMAGE
framework to develop consistent energy, land use and emission scenarios.

The reference scenario, an updated implementation of the SRES B2 scenario,
should be regarded as a medium emission scenario, on the basis of median assump-
tions for population, economic growth, energy use and land use. The stabilization
scenarios were developed on the basis of a set of rules: 1) they needed to comply
with the stabilization target, 2) reductions were required to be consistent with the
identified emission potential in different sectors, 3) for most levels, concentrations
were not allowed to overshoot the target level (this requirement was relaxed for
the lowest levels) and 4) maximum reduction rates of 3% per year were allowed to
account for system inertia (depending on the stabilization levels). More information
can be found in van Vuuren et al. (2006) and den Elzen et al. (2007).

The resulting stabilization scenarios form a consistent representation of reduction
scenarios across the different gasses. As they were partly developed within the EMF-
21 modeling exercise (Weyant et al. 2006), they are consistent with current literature
on this issue.

In order to set the IMAGE scenarios in relation to the widely used SRES
(Special Report on Emission Scenarios) family, we also present probabilistic climate
projections based on the SRES A2 and SRES B1 scenarios (Section 6.1). These
two non-intervention scenarios basically span the full range of the SRES emission
scenario family (see Section 6.1 for the economic and demographic story lines of the
two scenarios).

3 Climate model

For our climate projections we use the Bern2.5D climate model, an Earth System
model of intermediate complexity. It consists of a zonally averaged dynamic ocean
model (Stocker and Wright 1991; Wright and Stocker 1991) resolving the Atlantic,
Pacific, Indian and Southern oceans, coupled to a zonally and vertically aver-
aged energy- and moisture-balance model of the atmosphere (Stocker et al. 1992;
Schmittner and Stocker 1999).
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The additional radiative forcing at the top of the atmosphere is specified as

�Ftoa(t) = �Fdir(t) + μ · �Tatm(t), (1)

where �Fdir is the direct radiative forcing reconstructed over the industrial period.
Feedback processes which increase the climate sensitivity S are represented by the
feedback term μ · �Tatm(t), where �Tatm is the time-dependent atmospheric global-
mean temperature increase and μ is a constant, which is prescribed to lead to
different climate sensitivities for the same radiative forcing.

The climate sensitivity S is defined as the equilibrium global mean near-surface
warming for a doubling of preindustrial atmospheric carbon dioxide, equivalent to a
radiative forcing of about 3.71Wm−2 (Myhre et al. 1998).

We used a model version with a lateral ocean mixing scheme and depth indepen-
dent vertical ocean diffusivity Kv (Wright and Stocker 1991). Knutti et al. (2000)
investigated the effect of different ocean mixing parametrizations. For the present
study, the relevance of other mixing schemes is small and was subsequently neglected
(Knutti et al. 2002).

The net heat uptake by the ocean, F, is given by Stocker et al. (1992) as

F = (1 − κ)Qshort − σeOT4 + σeAT4
A − D(T − TA) − E , (2)

where E is the temperature-dependent evaporation, TA is the atmospheric tempera-
ture, T the ocean surface temperature, Qshort the net incoming shortwave radiation,
κ a constant atmospheric absorptivity, eA and eO are atmospheric and oceanic
emissivities, σ is the Boltzmann constant, cE the bulk coefficient of evaporation, and
D a constant transfer coefficient for sensible heat (Haney 1971).

The forcing of the climate model as calculated from the emissions defined by the
scenarios is described in the next section.

4 Forcing

The following paragraphs of this section describe the radiative forcing that was used
for the simulations with the Bern2.5D climate model. The right panel of Fig. 1 shows
the different forcing components for the IMAGE reference scenario as an example.

4.1 Non-CO2 atmospheric components

The radiative forcings from non-CO2 greenhouse gases and other radiative forcing
agents (CH4, N2O, SF6, 28 halocarbons including those controlled by the Mon-
treal Protocol, stratospheric O3, the direct forcing of black and organic carbon,
stratospheric H2O due to CH4 changes, and the direct and indirect effects of
aerosols) for the historic period are calculated from emissions and concentrations
using simplified expressions according to IPCC Third Assessment Report (IPCC
2001) as described in detail by Joos et al. (2001). For the IMAGE baseline and mit-
igation scenarios, the simplified expressions and parameters of the radiative forcing
calculations have been updated based on the recent IPCC Fourth Assessment Report
(IPCC 2007; Forster et al. 2007). These updates include, e.g., updated lifetimes and
radiative efficiencies for some of the halocarbons and updated year-2000 radiative
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forcings for some groups of radiative agents, used to scale the forcing over the entire
period. In addition, for SOx, updated historic emission data were used (Stern 2005).

The sum of all non-CO2 radiative forcings for each individual scenario is pre-
scribed as external input to the Bern2.5D model, i.e. for non-CO2 components the
respective radiative forcing was computed externally and added to the radiative
forcing input of the climate model.

4.2 CO2 radiative forcing

The atmospheric CO2 concentration, and thus CO2 radiative forcing, are determined
by the Bern2.5CC model (Joos et al. 2001; Plattner et al. 2001). This version of
the Bern2.5D model includes an interactive carbon cycle module which allows to
project atmospheric CO2 from prescribed carbon emissions. For the historic period
until year 2000, atmospheric CO2 concentrations are prescribed by a spline through
ice core data from Siegenthaler et al. (2005) and Etheridge et al. (1996), and
direct atmospheric measurements from Mauna Loa and South Pole from Keeling
and Whorf (2005). From year 2000 on until year 2100, CO2 emissions from the
IMAGE emission scenarios are prescribed, and atmospheric CO2 concentrations are
interactively calculated in the model. The CO2 radiative forcing is then calculated
from atmospheric CO2 according to IPCC Third Assessment Report (IPCC 2001) as

RFCO2(t) = 5.35
W
m2

· log

(
CO2(t)
CO2(0)

)
(3)

where CO2(0) denotes the preindustrial CO2-concentration, here taken to be
277.8 ppm in year 1765.

The calculations with the Bern2.5CC model are performed with constant climate
with respect to the carbon cycle, and thus the projected atmospheric CO2 and CO2

radiative forcing do not account for climate-carbon cycle feedbacks (which tend to
increase atmospheric CO2 and radiative forcing compared to the constant climate
case; Joos et al. 1999; Friedlingstein et al. 2006; Plattner et al. 2008). Instead these
climate-carbon cycle feedbacks are parameterized in the Bern2.5D climate model
and included in the uncertainty analysis (Knutti et al. 2003; see Section 5.1).

4.3 Solar forcing

For the SRES scenarios, historic solar forcing was taken from Crowley (2000; based
on Bard et al. 2000). For the IMAGE scenarios, the updated solar forcing time series
from Wang et al. (2005) was used which shows a smaller amplitude of variability
compared to the Crowley time series.

For the IMAGE scenarios, solar irradiance has been converted to radiative forcing
using

RFsolar(t) = (Irr(t) − 1366 W
m2 )

4
· 0.7 (4)

After 1998 the solar forcing is assumed to be constant and the mean from the years
1977 to 1998 is prescribed.
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4.4 Volcanic forcing

For the simulations in Tomassini et al. (2007) the volcanic forcing of Ammann et al.
(2003) was prescribed for the historic period. In the IMAGE scenarios, the Crowley
(2000) volcanic forcing was used and scaled to mean zero forcing for the period 1000
to 1998. After year 2000, the volcanic forcing is set to zero. This scaling to the long-
term mean excludes a net positive forcing from volcanoes after the year 2000.

5 Statistical methods

For the probabilistic climate projections, we use a multidimensional probability
distribution for the parameters of the Bern2.5D climate model and propagate it
through the model. This results in probability distributions for the projected rise in
surface temperature.

The probability distribution of the parameters was derived using a Bayesian
formalism (Tomassini et al. 2007). That is, for a vector of parameters θ = (θ1, . . . , θp)

and observations y = (y1, . . . , ym), we calculated the multivariate posterior probabil-
ity density of the parameters given the data according to Bayes’ theorem:

p(θ | y) ∝ �(y, θ) · p(θ) (5)

where �(y, θ) is the likelihood function (the conditional probability density of the
observations y given the parameters θ) and p(θ) the prior probability density for the
vector of parameters.

The observations that were used consist of global annual mean surface temper-
ature data (Jones and Moberg 2003) from the years 1861 to 2003 and annual mean
change in world ocean heat content down to 700 meters depth (Levitus et al. 2005)
from the years 1955 to 2003. Both data sets are publicly available (see the URLs in
the reference section). A discussion of the effect of ocean heat uptake uncertainty in
transient warming is given in Knutti and Tomassini (2008).

For the precise definition of the likelihood function and the technical issues
regarding the estimation of the posterior probability distribution see Tomassini
et al. (2007).

5.1 Parameters and distributions

We included 12 parameters of the Bern2.5D climate model in the Bayesian uncer-
tainty analysis to derive the posterior distributions. The set of considered parameters
consists of the climate sensitivity S, the vertical ocean diffusivity Kv , the transfer
coefficient for sensible heat D and 9 forcing scale parameters.

Climate sensitivity is the key parameter that governs the long-term temperature
response of the climate system to an increase in the radiative forcing. The vertical
ocean diffusivity determines the strength of mixing of heat into the deep ocean,
and the forcing parameters take the uncertainty in the historical radiative forcing
reconstructions into account. The transfer coefficient for sensible heat is an uncertain
parameter that affects the exchange of heat between ocean and atmosphere.

The forcing parameters consist of multiplicative dimensionless factors by which
the historical forcing reconstructions for the various atmospheric components were
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individually scaled. This includes a scale parameter sindir for the indirect aerosol
forcing (Knutti et al. 2002). Greenhouse gases CO2, CH4, N2O, SF6 and halocarbons
were combined in one group. The standard deviations of the prior distributions for
the forcing scale parameters were derived from the assumption that the uncertainties
given by IPCC in the Third Assessment Report (IPCC 2001) represent a range of plus
or minus one standard deviation. A Gaussian prior distribution was assumed where
the uncertainties are given in percent, and a log-normal distribution was used where
the uncertainty is given as a factor (Knutti et al. 2003).

For climate sensitivity and the vertical ocean diffusivity, uniform prior distrib-
utions were applied in our baseline assumptions but see Section 5.2 for different
prior assumptions on climate sensitivity S). The uniform prior for climate sensitivity
is restricted to the interval [1◦C, 10◦C] because the climate sensitivity S of the
model is controlled by the parameter μ. The relation between S and μ is non-
linear and approximated numerically. This approximation is only accurate on the
interval [1◦C, 10◦C]. Similarly, the uniform prior for Kv is restricted to the interval
[1.375 · 10−4m2/s, 15.125 · 10−4m2/s]. Previous modelling studies suggest that these
are reasonable ranges for this model (Knutti et al. 2003; Tomassini et al. 2007).

For the transfer coefficient of sensible heat D, an objectively estimated best guess
value is available (Haney 1971), and a Gaussian prior was used.

For simplicity we assume a priori that all parameters are independent. Note that
all prior distributions used are proper.

Figure 2 in Tomassini et al. (2007) shows all marginal prior and marginal posterior
distributions for the different parameters involved.

For the climate projections, we introduce an additional parameter γ to account
for the uncertainty in the carbon cycle-climate feedback (Knutti et al. 2003). The
difference in projected CO2 between model simulations with global warming and
without global warming quantifies the feedback between climate change and the
global carbon cycle. It is expressed here as the ratio γ of the change in radiative
forcing per degree surface warming. Radiative forcing RFCO2(t,�T2000) from at-
mospheric CO2 is thus calculated for each scenario as a function of the simulated
global mean surface temperature change �T2000 since year 2000 and a scenario
dependent trajectory of future CO2 forcing RFCO2(t,�T2000 = 0):

RFCO2(t,�T2000) = RFCO2(t,�T2000 = 0) + γ · �T2000(t) (6)

While there are multiple processes on various timescales that operate in the carbon
cycle, it has been shown that a single feedback parameter with an appropriate
strength can capture the main effect up to 2100 (Knutti et al. 2003; Friedlingstein
et al. 2006; Plattner et al. 2008; Gregory et al. 2009).

For the uncertain parameter γ , a normal distribution with mean 0.25 Wm−2/K
and a standard deviation of 0.05 Wm−2/K was used (Knutti et al. 2003, Appendix
1). The mean is justified by simulations with the Bern2.5CC model, the standard
deviation was based on uncertainty estimates in IPCC (2001). These uncertainty
estimates remained virtually the same in the IPCC Fourth Assessment Report.

5.2 Classes of priors and their projections

Following robust Bayesian practice (Berger 1984, 1994), in Tomassini et al. (2007)
we introduced a non-parametric set of prior distributions for climate sensitivity that
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Fig. 2 a Normalized upper and lower bound of the prior density ratio class; b Prior density ratio
class for climate sensitivity; c Normalized upper and lower bound of the posterior density ratio class;
d Posterior density ratio class for climate sensitivity

includes the uniform distribution as well as informative priors. This entire set of prior
distributions was then updated according to Bayes’ theorem, which resulted in a set
of posterior distributions.

We made use of the density ratio class of distributions (De Robertis and Hartigan
1981). This is defined by the set of distributions of the form

B(l, u) =
{

p ∈ C(�) | p = q∫
�

q dμ
, l(x) ≤ q(x) ≤ u(x)∀x ∈ �

}
, (7)

where l and u are specific functions, called the lower bound and the upper bound,
respectively, of B(l, u).

In words, for any probability density function p in B(l, u) there is a continuous
function q, which is bounded by l and u, such that p is equal to q times a normalizing
constant (which guarantees that p is normalized to 1).
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In Tomassini et al. (2007) the lower bound l and the upper bound u were chosen
in such a way that B(l, u) contains the uniform distribution as well as several expert
priors of Morgan and Keith (1995) for climate sensitivity.

The upper bound is a rescaled density function of the uniform distribution, the
lower bound a rescaled density of the log-normal distribution with mean m = 3 ◦C
and standard deviation std = 1.2 ◦C. Expert priors for climate sensitivity often have
the form of a lognormal distribution, and the value of 3 ◦C is a reasonable best guess
value for climate sensitivity (Knutti and Hegerl 2008). The prior distributions for all
the other parameters are kept fixed.

Figure 2 shows the prior and posterior set of distributions for climate sensitivity
that were derived in Tomassini et al. (2007) and used in the present study.

For the climate projections, it suffices to project a sample of only the upper bound
of the density ratio class through the climate model. The projected lower bound of
the class can then be estimated based on the following considerations:

We call a sequence of pairs (wi, xi)i=1,...,N a weighted sample for a probability den-
sity p, if i) wi ∈ �,

∑N
i=1 wi = 1, ii) (xi)i=1,...,N is a sample of an arbitrary probabilility

density q, and if iii) any expectation Ep[ϕ] with respect to p can be approximated
by Ep[ϕ] ≈ ∑N

i=1 wiϕ(xi).
An analogous statement holds if the density p is not normalized but still inte-

grable. In this case the weights wi do not sum up to one, but to the total mass
of p.

Weighted samples are invariant under projections in the sense that if (wi, xi)i=1,...,N

is a weighted sample for p, then (wi, f (xi))i=1,...,N is a weighted sample for the
projected density f ∗ p for any model function f (Isaaks and Srivastava 1989,
Chapter 8).

In our situation, we can choose a weighted sample for the lower bound of the
density ratio class which consists of a sample of the upper bound of the class and
appropriate weights wi. This immediately gives a weighted sample for the projected
lower bound from the projected sample of the upper bound.

6 Results

6.1 Probabilistic climate projections

Probabilistic climate projections were performed with the Bern2.5D climate model
making use of the IMAGE reference scenario, the five corresponding IMAGE
mitigation scenarios (Section 2), and SRES scenarios B1 and A2 (Nakicenovic et al.
2000). The posterior parameter sample for the climate model as derived in Tomassini
et al. (2007) was used, as well as a probability distribution for the carbon cycle-climate
feedback parameter γ as described in Section 5.1. This means that we consider only
the uncertainty in climate model parameters, and not uncertainty in the economic
development (for a fixed scenario) or other aspects. We also neglect uncertainty due
to short-term climate variability.

Figure 3 gives an overview of the probabilistic climate projections for the different
scenarios. Here the posterior parameter sample of what was called the baseline
case in Tomassini et al. (2007) was used. The first panel shows projected global
mean temperature in the year 2050 for the IMAGE scenarios. One can see that the
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Fig. 3 a Scenario projections of global mean temperature increase in the year 2050 for the IMAGE
scenarios; b Scenario projections of global mean temperature increase in the year 2100 for the
IMAGE scenarios and two SRES scenarios

probability distributions differ only slightly. For the reference scenario, the mean
temperature increase for the year 2050 is 1.7◦C with a standard error of only 0.4◦C.
This means that, for the considered scenario family, the temperature increase in the
year 2050 is largely independent of the scenario and likely lies within the range of
[1.3◦C, 2.2◦C].

In the second panel, global mean temperature in the year 2100 is presented for the
IMAGE scenarios and two SRES scenarios. Table 2 summarizes means, standard
deviations, and the 0.05 and 0.95 quantiles of all the distributions for global mean
temperature increase in the year 2100.

The IMAGE scenarios are described in Section 2. Here we also consider the two
SRES scenarios B1 and A2 for comparison.

The scenario A2 is at the high end of the SRES (non-intervention) scenario
family developed for the IPCC Third Assessment Report (IPCC 2001). It assumes
a heterogeneous world and continuously increasing global population. Economic
development is primarily regionally oriented and per capita economic growth and

Table 2 Means, standard
deviations, and 0.05/0.95
quantiles of global mean
temperature in the year 2100
for the different scenarios

Scenario Mean Standard Quantile Quantile
[◦C] deviation [◦C] (0.05) [◦C] (0.95) [◦C]

Reference 3.29 0.98 2.03 5.25
Level 5.3 Wm−2 2.70 0.86 1.61 4.47
Level 4.5 Wm−2 2.49 0.83 1.44 4.19
Level 3.7 Wm−2 2.10 0.74 1.16 3.64
Level 2.9 Wm−2 1.73 0.67 0.90 3.15
Level 2.6 Wm−2 1.53 0.63 0.76 2.88
SRES B1 2.34 0.76 1.37 3.87
SRES A2 3.83 1.01 2.54 5.9
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technological change are more fragmented and slower than in other storylines.
Accordingly the distribution for projected global mean temperature increase shows
a high mean value of 3.83 ◦C and a 90% confidence bound of [2.54◦C, 5.9◦C]. The
probability that global mean temperature increase in the year 2100 exceeds 2 ◦C is
0.98, that is, it is almost certain.

The B1 scenario describes a convergent world with a global population that peaks
in mid 21st century and declines thereafter, with rapid changes in economic structures
towards a service and information economy, with reductions in material intensity,
and the introduction of clean and resource-efficient technologies. The emphasis is
on global solutions to economic, social, and environmental sustainability, including
improved equity, but without additional climate initiatives. The B1 scenario can
therefore be termed a “sustainable development scenario” and is representative of
the lowest scenarios in the literature that do not include explicit climate policy. The
probability that global mean temperature increase in the year 2100 exceeds 2 ◦C is
0.6 for this scenario.

The IMAGE reference scenario has lower emissions than the A2 scenario, but
still shows a substantial increase of emissions. The mean value of 2100 temperature
is 3.29 ◦C and the probability of exceeding the 2 ◦C is 0.95 (very likely). The IMAGE
mitigation scenario that stabilizes the forcing at 5.3 Wm−2 reduces the probability of
exceeding the 2 ◦C target to 0.78 (still a likely exceedance). The 4.5 Wm−2 scenario
results in similar climate change as the B1 scenario: the mean value for global mean
temperature increase is 2.49 ◦C and the probability of exceeding the 2 ◦C target is
0.69. For the scenario that stabilizes the forcing at 3.7 Wm−2 this probability further
declines to 0.48 (about as likely as not).

In other words, the probability distributions for global mean temperature increase
in the year 2100 for the IMAGE mitigation scenarios that stabilize radiative forcing
at 3.7 Wm−2, 4.5 Wm−2, and 5.3 Wm−2 are rather similar. The maximum difference
in mean values is only 0.6 ◦C. However, these differences could become substantial
when extending the time horizon to later years such as 2200 or 2300.

The picture is substantially different with the overshoot scenarios that stabilize
radiative forcing at 2.9 Wm−2 and 2.6 Wm−2, respectively. The means of projected
global temperature increase in the year 2100 are considerably lower than in the case
of the other scenarios. The probability that global mean temperature increase in the
year 2100 exceeds 2 ◦C is only 0.19 in the case of the scenario that stabilizes forcing
at 2.6 Wm−2, and 0.29 in the case of the scenario that stabilizes forcing at 2.9 Wm−2

(in both cases unlikely).
Since the critical tails of the distributions for projected temperature increase are

mainly a consequence of the tails in the propagated distribution of climate sensitivity,
in the following we investigate the effect of different assumptions regarding prior
distributions for climate sensitivity on the temperature projections.

6.2 Projected prior uncertainty of climate sensitivity

As described in Section 5.2, in Tomassini et al. (2007) we considered a non-
parametric set of prior distributions for climate sensitivity and derived a correspond-
ing set of posterior distributions (see Fig. 2). This permitted the assessment of the
robustness of the parameter estimates with respect to prior assumptions on climate
sensitivity.
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Similarly, we can quantify the effect of these prior assumptions on the climate
projections. The right panels of Fig. 4 show the projected density ratio class, that
is, a density ratio class for global mean temperature increase in the year 2100 for
four different scenarios. These density ratio classes are constructed by projecting the
upper bound ũ and the lower bound l̃ of the posterior density ratio class for climate
sensitivity through the climate model.

As described in Section 5.2 it suffices to perform the model simulations for the
(normalized) upper bound. The projected lower bound can then be estimated using
the importance sampling idea, as outlined in Section 5.2. The left panels of Fig. 4
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depict the normalized upper and lower bounds of the corresponding density ratio
classes.

One can observe that prior assumptions on climate sensitivity have an influence
on the tails of the resulting distributions for global mean surface temperature in the
year 2100. To better assess the significance of this influence in a tangible decision
making context, we calculate upper and lower probabilities (e.g. Wasserman and
Kadane 1992) of exceeding a temperature increase of 2◦C for the different sets of
distributions (corresponding to the different scenarios).

More precisely, the maximum (minimum) of all probabilities of exceeding the 2◦C
threshold over the set of probability distributions presented in Fig. 4 are computed.
The results are summarized in Table 3 and are largely in agreement with similar
estimates by Meinshausen (2005) and Meinshausen et al. (2009).

The range between upper and lower probabilities, that is the influence of the prior
assumptions on climate sensitivity, is largest in the case of the mitigation scenarios
that stabilize radiative forcing at low levels. This is probably due to the fact that, in
the case of the low level scenarios, the system is closest to realizing its equilibrium
warming, so the response is more related to climate sensitivity than it would be in the
situations where the response is still near-transient.

In terms of the IPCC terminology (0–10% probability: very unlikely, 10–33%:
unlikely, 66–90%: likely, 90–100%: very likely) the result is quite robust with
respect to prior assumptions on climate sensitivity: only in the case of the most
stringent mitigation scenarios considered (stabilization at 2.6 Wm−2 and 2.9 Wm−2)
exceeding a temperature increase of 2◦C is unlikely. Here, the lower bounds on
probability would even imply that exceedance is very unlikely. (Note, however, that
one may question whether a probability of “failure” of 20–30% would be considered
acceptably low in other policy areas.).

6.3 Pdfs for monetized damage costs

When assessing impacts of climate change, as a first stage, global mean temperature
increase with respect to preindustrial times is often used as a metric for damages. In
the present work, we go one step further and present also probabilistic estimates of
(monetized) damage costs for the different scenarios and different assumptions on
damage costs.

Although our analysis is simple, it has the advantage of being transparent. This
allows for a detailed sensitivity analysis. We consequently consider not so much

Table 3 Upper and lower
probabilities of exceeding 2◦C
for different scenarios

Scenario Probability of Lower Upper IPCC
exceeding 2◦C prob. prob. terminology

Reference 0.95 0.91 0.99 Very likely
Level 5.3 Wm−2 0.78 0.65 0.88 Likely
Level 4.5 Wm−2 0.67 0.52 0.79 Likely
Level 3.7 Wm−2 0.48 0.34 0.65 Likely
Level 2.9 Wm−2 0.29 0.09 0.39 Unlikely
Level 2.6 Wm−2 0.19 0.03 0.27 Unlikely
SRES B1 0.6 0.42 0.72 Likely
SRES A2 0.98 0.98 1.0 Very likely
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specific values (of costs) as the main outcome of our analysis, but general results
that are robust with respect to a wide range of statistical and economic assumptions.

We will use three different damage cost functions. The following function d(t) is
used in the DICE-99 model (Nordhaus and Boyer 2000; Warren et al. 2006):

d(t) := −0.0045 · T(t) + 0.0035 · T2(t), in [% world GDP] (8)

where t is time, and T is temperature increase (in [◦C]) relative to preindustrial time.
We also consider the damage cost functions

d1(t) := −0.0025 · T(t) + 0.00341 · T2(t) (9)

d2(t) := 0.0005 · T(t) + 0.00315 · T2(t) (10)

The function d(t) is similar to the output-weighted damage cost function of the RICE-
99 model, and d2(t) is similar to the population-weighted damage cost function of
the RICE-99 model (Nordhaus and Boyer 2000; Warren et al. 2006). The left panel
of Fig. 5 shows a plot of the three functions. The damage cost functions of the
DICE/RICE model have since been updated (Nordhaus 2008), but the new functions
lie within the range covered by d, d1, and d2. Potential “catastrophic” losses in
economic output due to irreversible changes in the climate system are not considered
in our investigation.

Our sensitivity analysis also comprises the assumption on the discount rate for
calculating future damage costs. At the high end, Nordhaus’ earlier work (Nordhaus
and Boyer 2000) uses a monetary discount rate of about 6% per year, which is
consistent with the rates of return paid by risky financial assets such as stocks. On
the other hand, safe assets pay returns of just about 1%. These may be appropriate
for evaluating policies that are known to have a precautionary justification (Howarth
2003). For simplicity, here we present our results for two different discount rates, i.e.
flat rates of 2% and 5%. The right panel of Fig. 5 presents the world GDP assumed
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in the present study for the calculation of the damage costs with no discounting (solid
line), discounting at 2% (dotted line), and discounting at 5% (dashed line).

Figure 6 summarizes the results for three different scenarios: the IMAGE refer-
ence scenario (solid line), the IMAGE mitigation scenario that stabilizes radiative
forcing at 4.5 W/m2 (dotted line), and the scenario that stabilizes radiative forcing
at 2.9 W/m2 (dashed line). The probability density functions for damage costs are
shown using the three damage cost functions d (first row of the figure), d1 (second
row of the figure), and d2 (third row of the figure), and discount rates of 2% (first
column) and 5% (second column). Note that cumulative damages over the whole
time span were computed, discounted back to the year 2010. In the third column, the
probability density functions of the coefficients d(year2100) (first row), d1(year2100)

(second row), and d2(year2100) (third row), calculated according to equations (8)–
(10), are presented.

The derived distributions for absolute (cumulative) damage costs depend heavily
on the assumed discount rate, the chosen damage cost function, and the GDP
trajectory of the scenario, and thus have to be interpreted with care. Nevertheless,
three main observations can be made: (1) There is a clear distinction between the
damage cost distributions of the different scenarios. However, the differences in
the shape of the distributions are somewhat less pronounced than the differences
in the distributions of 2100 temperature increase as a result of discounting (the
smaller differences in early periods of time are given a higher weighting in the total).
(2) The distributions are not well constrained from below, even for the IMAGE
(non-intervention) reference scenario and the damage cost function d2. This again
is an effect of discounting. (3) Distributions tend to become flatter, i.e. predictions
more uncertain, when using damage cost functions that imply larger damage costs
due to climate change, especially when considering scenarios that result in large
temperature increases by the end of the 21st century. Larger damage costs at the
end of the century (due to larger temperature increases) counteract the effect of
discounting. Therefore, larger damage costs become more likely and the distributions
spread out.

The third column of Fig. 6 allows for comparing damage costs in the year 2100
without considering the effect of discounting. Here the differences between the
scenarios are most distinct. The damage coefficients measure the percent reduction
in future (year 2100) economic output caused by climate change damages. These
range from low (0–4 %) to moderate (0–8%) depending on the damage function.

In summary, even when considering only uncertainties in climate system proper-
ties (as in the present study) damage costs are not well constrained, especially from
below. However, in the case of stringent mitigation the risk of very high damage
costs is reduced. The problem of discounting future damage costs as well as the
appropriate choice of the damage cost function can be identified as the central
issues. However, when comparing different mitigation options, discounting is of more
central importance than the specific choice of a damage cost function.

Of course the question concerning the most adequate estimates of mitigation
costs is also of major importance (Edenhofer et al. 2006), but this is not the focus
of the present paper. Naturally, it would be desirable to compare damage costs
with mitigation costs for the different mitigation scenarios. However, the Integrated
Assessment Model IMAGE, which was used to develop the scenarios and estimate
the corresponding mitigation costs, only calculates changes in energy technologies
and associated costs in the energy system, but not macro-economic costs (i.e. GDP
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Fig. 6 Net present value of (cumulative) damage costs until year 2100 for different scenarios
in trillion U.S. Dollars 1995, discounted to year 2010 with a discount rate of 2% (left column)
and 5% (mid column), respectively, using damage cost functions d (a), d1 (b), and d2 (c). Solid
lines refer to the IMAGE reference scenario, dotted lines to the IMAGE mitigation scenario that
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stabilizes radiative forcing at 2.9 W/m2. In the right column the probability density functions of
the coefficients d(year2100) (row a), d1(year2100) (row b), and d2(year2100) (row c), calculated
according to equations (8)–(10), are presented

losses). The mitigation costs calculated by IMAGE should thus be seen as annual
additional investments for mitigation, mostly into the energy system (which can spur
investments and development in other sectors of the economy not considered by
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the energy system model), and not as GDP losses as in the case of macro-economic
models (such as DICE/RICE models). Therefore, damage costs calculated by our
damage cost functions can not be directly compared to mitigation costs that are
estimated using IMAGE.

7 Discussion and conclusions

We present probabilistic temperature projections based on two SRES emission
scenarios, an IMAGE reference emission scenario and five IMAGE mitigation
emission scenarios, aimed at stabilizing radiative forcing, using a climate model of
intermediate complexity. Importantly, all scenarios are multi-gas scenarios in that
they also consider contributions to radiative forcing from non-CO2 greenhouse gases
and other radiative agents apart from CO2. While projections for the first half of
the 21st century are rather insensitive to the choice of scenario for a given family of
scenarios, the scenarios diverge markedly with respect to both projected temperature
increase and associated uncertainty by the year 2100. Thus, given current knowledge
about climate model parameters as constrained by historical observations, some
mitigation scenarios are much riskier than others. Explicit consideration of this
risk has important implications for the required robustness of planned adaptation
strategies (Heinz Center 2007).

For the SRES scenarios, our results are in broad agreement with earlier studies
(see Knutti et al. (2008) for an overview). The heavy tails towards high warming
appear to be a bit more pronounced than in some other studies, in particular for
the lower scenarios, while the distributions for the reference and SRES A2 case, for
example, are more symmetric. The apparent heavy tails in the estimated probability
density functions of projected temperature increase in the present work are mainly
a consequence of the tail in the propagated distribution of climate sensitivity and
are due to two reasons. First, the propagated probability distribution for climate
sensitivity in our case is on the low end compared to other published estimates.
Therefore our model may be closer to equilibrium than others in 2100 and the
imprint of the heavy tail in climate sensitivity is clearer. Second, some of the scenarios
considered essentially stabilize climate by the year 2100, so for those cases the
distributions for temperature must be similar to the distribution of climate sensitivity.
Figure 3b confirms that the low scenarios have a more pronounced long tail, whereas
the SRES A2 case, for instance, is more symmetric, in agreement with earlier studies
which mostly focused on scenarios with increasing forcing (see Knutti et al. 2008).
Both the somewhat lower sensitivity estimate and the stabilizing forcing tend to make
the transient response more similar to the equilibrium response.

In addition, some earlier studies (e.g. Stott et al. 2006; Harris et al. 2006; Furrer
et al. 2007) did not account for uncertainties in the carbon cycle climate feedback.
The latter affects the high end of the distribution much more strongly than the low
end as already shown (Knutti et al. 2003, Fig. 7d) using a different statistical frame-
work, different prior distributions, and different ocean mixing parameterizations.
The heavy tails towards high warming found in this study are therefore a combi-
nation of stabilizing climate (a feature of the scenarios), a lower climate sensitivity
estimate compared to other estimates (a result of the statistical assumptions and
the observational constraints) and an amplification at high warming caused by the
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carbon cycle-climate feedback (an effect often ignored so far) rather than the effect
of prior assumptions on parameters other than climate sensitivity, or the statistical
framework.

In the Bayesian framework, predictive probabilities may be sensitive to the choice
of prior distributions. To assess how well our projections are constrained depending
on different assumptions on the priors for climate seinsitivity, we evaluated a broad
set of such distributions including the uniform prior. The resulting upper and lower
probabilities for a temperature increase of more than 2◦C in the year 2100 show
spans that are approximately consistent with those used in the IPCC terminology.
Extreme probabilities (i.e. “very likely”, “very unlikely”) have spans of less than
10%, while those closer to the middle have spans of about 30%. Thus, the IPCC
terminology seems to appropriately represent the degree of “imprecision” that
is currently present in probabilistic projections due to alternative possible priors.
However, quantitative descriptions such as those given in our Table 3, have the
potential to be more informative, especially for scenarios with probabilities that cross
the thresholds used in the definitions of the IPCC terminology (e.g. Level 4.5 Wm−2).

Our projections are quite robust with respect to prior assumptions on climate
sensitivity. Only the most stringent mitigation scenarios are considered “unlikely” to
exceed a temperature increase of 2◦C by the end of the 21st century. These stringent
mitigation scenarios are overshoot scenarios that peak radiative forcing in the mid
21st century and show a decrease afterwards, consistent with findings of Meinshausen
(2005), Meinshausen et al. (2009), and Allen et al. (2009). Our results also suggest
that the question of whether it is important to consider the uncertainty in climate
sensitivity in impact studies depends on the chosen time horizon as well as the specific
decision problem under investigation (Frame et al. 2006).

Going one step further, we also calculate probability distributions of damage costs
for the different scenarios assuming a range of damage cost functions. Moreover,
the sensitivity of these distributions with respect to the assumed discount rate is
investigated. Absolute values of damage costs heavily depend on the chosen damage
cost function and discount rate. For the decision problem of what stabilization path
should be followed in the future, discounting is the more fundamental issue.

Relatively high discount rates (e.g. 5.5% of Nordhaus 2007) are often justified by
observed market rates of return. However, low discount rates (e.g. 1.4% of Stern
(2006) which sets the discount rate almost at the long-term per capita growth rate
of consumption) can be justified based on moral arguments concerning intergenera-
tional equity and responsibility. Some have argued for a strongly decreasing discount
rate over time (e.g. Weitzman 2001). One caveat is that some of these arguments
cast doubt on the use of present-value calculations in justifying particular climate
stabilization goals. Therefore, while we treat the discount rate in our analysis as
if it were an uncertain quantity, in reality it is a normative choice about how to
distribute the burden and benefits of climate change policy over time (see Howarth
(2005) and Odling-Smee (2007) for a detailed discussion), and hence a policy choice.
We hope that our results can shed some light on how the implications of this
choice interact with uncertainties in 21st century temperature projections and the
anticipated pattern of damage costs.

Various tools can be used to evaluate climate targets. These include both risk
based approaches (description of potential impacts as a function of climate change)
and cost–benefit analyses (a monetary assessment of costs and benefits of vari-
ous policies). Recently, people have started a lively debate on the strengths and
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weaknessess of cost–benefit analyses in the context of climate change (Weitzman
2009). Part of this are various problems with the valuation of climate change. Con-
tentious issues include: valuation of damages to non-marketed goods and services,
aggregation of damages over the globe, huge uncertainties in the actual future
development of the world etc. More importantly, traditional cost–benefit analysis
tends to ignore the large uncertainties involved in climate outcomes. In specific
decision-making contexts, the presence of uncertainty implies that approaches that
focus on robust strategies are preferable to adaptation designs that are based on a
single projected climate condition (Hallegate 2009). For example, land-use policies
that aim at limiting urbanization in flood-prone areas reduce disaster losses in the
present climate. Likewise, policies that foster energy efficiency are beneficial in
a wide range of respects. Under climate change conditions such measures might
become even more desirable.

The analysis of a comprehensive range of possible scenarios in combination with
probabilistic approaches as presented in this paper can contribute to improved tools
to support the decision making process.
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