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Abstract

A global land cover classification data set is used to partition the globe into seven regions

to study surface temperature changes over different vegetation/surface classes. Statistically

significant warming is found from the year 1900 over all regions (except for the ice sheets over

Greenland and Antarctica). Outputs from three coupled climate models (CGCM2, HadCM2

and the Parallel Climate Model) are used to examine the detection and attribution of surface

temperature trends over the various vegetation classes for the past half century. An anthro-

pogenic warming trend is detected in six of the seven regions. Observed trends are consistent

with those simulated in response to greenhouse gas and sulphate aerosol forcing except over

tropical forest and water where the models appear to overestimate the warming. The similarity

between the resultant scaling factors for each region from the different models underscores the

reliability of our detection results.
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1 Introduction

The IPCC Third Assessment Report (TAR) (Folland et al., 2001) reports that globally-

averaged instrumental surface temperatures records show increases estimated to be 0.4 – 0.8
�

since the late 19th century to the year 2000. This warming is very unusual compared with

the past 1000 to 2000 years of variation shown by proxy temperature data (Mann and Jones,

2003; Briffa et al., 2004; Cook et al., 2004; Moberg et al., 2005) and does not show any sign

of ceasing as we enter the 21st century. There are also substantial spatial and temporal varia-

tions in surface air temperatures. At hemispheric scales, surface air temperatures show general

warming trends since the start of the Industrial Revolution in both the Northern and Southern

Hemispheres. At other planetary-scale levels, such as over land and ocean, average surface

air temperatures also show warming trends during the same period (Folland et al., 2001). In

smaller regions, a surface cooling may exist. Giorgi (2002) examined monthly surface air tem-

peratures from the CRU (Climate Research Unit of the University of East Anglia) dataset (New

et al., 1999, 2000) and found that the observed temperatures showed significant warming trends

throughout the 20th century over the majority of 22 land regions of sub-continental scale. The

exceptions were central America, eastern Africa and east Asia in summer. Another surface

cooling example is from Doran et al. (2002). Their research suggests a net continental cooling

of Antarctica over the period 1966 – 2000 based on an analysis of Antarctic meteorological

data.

Studies conducted with terrestrial/oceanic carbon cycle models or coupled GCM–carbon

models suggest that the climate change and changes in CO2 levels may have had substantial

effects on ecosystems (Prentice et al., 2001). For example, one model simulated that C4

grassland will partially replace the Amazon rain forest (Prentice et al., 2001). It is of interest

to estimate the possible future changes in climate and hence determine the potential ecosystem

evolution in response to this climate change.

Future climate change is usually assessed through the use of complicated Atmosphere-

Ocean General Circulation Models that include a range of future scenarios for greenhouse gas

concentrations and sulphate aerosol loadings (Cubasch et al., 2001). Although uncertainties
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exist and different models may produce different results under various scenarios (Weaver and

Zwiers, 2000; Zwiers, 2002), there is still great similarity between the projections of a global

warming for the near term. The climate of this period “results from the climate’s adjustment

to changes in the greenhouse-gas content of the atmosphere that have already occurred, due

to the large thermal inertia of the oceans” and indicates that the influences of greenhouse

gases and sulphate aerosols partially offset each other (Zwiers, 2002). In the long run, the

uncertainty range of the warming trend is large. In 2100, relative to 1990, projected surface

air temperature increases could range from 1.4 to 5.8
�

(Cubasch et al., 2001).

The IPCC TAR concluded, based on global studies, that “most of the warming observed

over the last 50 years is attributable to human activities” (Mitchell et al., 2001). As mentioned

at the start of this section, if the substantial observed changes in ecosystems under observed

historical climate change can be linked to human activities, further changes in ecosystems

can be expected under continued anthropogenic global warming in the future. What’s more,

we may still expect anthropogenic impacts on future ecosystems regardless of whether these

impacts have already been documented.

The observed temperature changes can result from temperature variation arising from cli-

mate variability caused by the natural interactions between the major components of the

climate system. They can also be the consequence of climate changes driven by external mech-

anisms that influence one or more of the climate system components (Hasselmann, 1997).

External forcings have both natural and anthropogenic sources. Natural forcings include fluc-

tuations of the solar constant and aerosol emissions from volcanic activities. Anthropogenic

forcing indicates human-activity-driven concentration changes in atmospheric components such

as greenhouse gases and sulphate aerosols as well as changes in underlying surface conditions

of the atmosphere due to land-use and deforestation.

In the IPCC TAR, climate change detection and attribution studies mainly concentrated

on the global scale, with the issue of regional-scale detection still in its infancy (Mitchell et al.,

2001). Global climate change detection and attribution studies discussed in the TAR, such as

Tett et al. (1999), Stott et al. (2001) and Mitchell et al. (2001), found that the anthropogenic

greenhouse gases and tropospheric sulphate aerosols have had a detectable effect on surface air

3



temperatures in the latter half of the 20th century. Similar results can also be found in Hegerl

et al. (1997), Hegerl et al. (2003) and Hegerl et al. (2004). The research of Barnett et al. (2001),

Reichert et al. (2002), Levitus et al. (2001) and Barnett et al. (2005) suggests a consistency

between the observed ocean heat-content changes of the past half century and those that

are simulated by coupled climate models in response to anthropogenic forcing. Gillett et al.

(2003) found that anthropogenic greenhouse gases and sulphate aerosols have had a detectable

influence on sea-level pressure over the second half the 20th century.

Regional-scale detection remains difficult because signal to noise ratios diminish with scale

(Stott and Tett , 1998). Recently, however, a number of studies concerning the potential im-

pact of climate change on smaller scales have appeared. Through the analysis of indices of

several continental patterns, Karoly et al. (2003) found that the observed 1950-1999 North

American surface temperature trend is consistent with the modelled response associated with

anthropogenic changes in greenhouse gases and sulphate aerosols. In addition, the combined

influence of anthropogenic greenhouse gas and sulfate aerosol forcing on surface temperature

changes was found to be detectable on the continental scale for the second half of 20th century

(Zwiers and Zhang , 2003). Stott (2003) also found that an increasing surface temperature

trend due to greenhouse gases could be detected in six continental regions. Zhang et al. (2005)

found clear detectable anthropogenic forcing effects in nine spatial regions ranging from global

scale to country-wide (such as southern Canada and China). Finally, Gillett et al. (2004a)

demonstrated that anthropogenic greenhouse gases and sulphate aerosols have had a detectable

influence on fire-season warming of the Canadian forest region, while Karoly and Wu (2005)

detected anthropogenic warming trends over many parts of the globe at scales of 500 km. The

purpose of this paper is to quantitatively understand the anthropogenic influence on recent

surface temperature changes at regional scales through a detection and attribution study. The

regions used here are defined on the basis of biome features of the surface types of the region.

It is well known that different land surface types can affect climate in a variety of ways,

perhaps the most important being their effects on surface albedo, evapotranspiration, and the

terrestrial carbon cycle. The regional biomass distribution is known to respond to, as well

as feed back upon, climate change. Paleo-proxy records and paleoclimate modelling studies

4



have been particularly helpful in assessing such vegetation responses and feedbacks (McAvaney

et al., 2001; Meissner et al., 2003). Over long periods, climate change can cause important

changes in the geographic distribution and abundance of major land cover types and animal

habitats (Melillo, 1999; Parmesan and Yohe, 2003; Thomas et al., 2004). Hughen et al. (2004),

for example, found a rapid shift between arid grassland and wet forest in the Cariaco region

during deglacial high-latitude North Atlantic climate oscillations. Meta-analysis conducted by

Root et al. (2003) and Root et al. (2005) has also revealed a discernible trend in the population of

both animals and plants as a consequence of climate warming over the past century. O’Reilly

et al. (2003) provided further evidence that climate warming has the potential to modify

aquatic biota and ecosystems through its influence on the stability of the water column and

hence nutrient transport.

Temperature changes over different biotic regions play an important role in climate impacts

and feedbacks within the climate system. For example, the atmospheric methane concentration

has a close relationship to the atmospheric temperature record (Wuebbles and Hayhoe, 2001),

and the emission of methane from melting tundra increases in association with surface warming

of this region. Different biota also respond to surface temperature changes through different

mechanisms. As such, the analysis of simulated and observed changes over these separate

regions may enhance our understanding of biotic feedbacks operating within the climate system.

Since temperature changes over specific biome regions have not been systematically studied, it

is useful to evaluate how the surface temperature has changed over such regions. In addition,

it is important to identify, if possible, the causes of these changes, and in particular to consider

whether there are links with anthropogenic forcing of the climate system.

The outline of the rest of this paper is as follows: In Section 2, temperature conditions

over specific biome regions will first be systematically examined and assessed for significant

warming or cooling trends. To understand whether these observed temperature changes are a

result of natural internal variability of the climate system, or due to external forcings, Section

3 is dedicated to an investigation of the influence of anthropogenic emitted greenhouse gases

and sulphate aerosols on regional temperature changes. A detection and attribution study is

conducted to examine if the anthropogenic emission of the combined greenhouse gases and
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sulphate aerosols or the greenhouse gases alone have had a detectable influence on the regional

temperature changes of the second half of the 20th century. A discussion and conclusion are

presented in Section 4.
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2 Climate Change over Different Land Surface Vegetation Classes

2.1 Partitioning of surface types

We use the National Aeronautics and Space Administration (NASA), International Satellite

Land Surface Climatology Project (ISLSCP), and Global Data Sets for Land-Atmosphere

Models (GDSLAM) vegetation class data set (DeFries and Townshend , 1994) to define the

biotic regions. This dataset describes the geographic distribution of 15 major land cover

types on a 1 � ×1 � (latitude × longitude) grid, based on data collected in 1987 (upper panel of

Figure 1). In order to obtain scales sufficiently large to allow regional scale climate change

detection, the original 15 surface types are re-grouped into seven surface types (Table 1): (1)

water (including oceans, lakes, seas and sea ice), (2) tropical forest (including subtropical

forest), (3) temperate forest,(4) bare ground (including desert, bare ground, and grassland),

(5) tundra, (6) cultivated land, and (7) continental ice (bottom panel of Figure 1). As the

purpose of this paper is to analyze regional temperature changes, when defining the subregions,

a major consideration is the latitude and spatial continuity of the candidate smaller surface

classes. Some other features are also considered, but generally it is not possible to consider

all influencing factors. For example, when grouping shrubs, desert, bare ground, C3 wooded

grassland and C3 grassland together, both spatial continuity and their similar albedos are

considered, while the surface roughness and evapotranspiration have been ignored.

2.2 Analysis of regional surface air temperature changes

The surface air temperature trends over the seven broad classes defined in Section 2.1 were

analyzed using variance-adjusted 1870 – 2004 monthly mean surface temperature anomalies

(HadCRUT2v – Jones et al. (2001)) with a spatial resolution of 5 � ×5 � (latitude × longitude).

This monthly dataset provides temperature anomalies relative to 1961 – 1990. Since the value

of the temperature anomaly at each point represents the average temperature anomaly of the

whole 5 � ×5 � area represented by this point, all 25 of the 1 � ×1 � vegetation grid boxes in this

area were assigned the same temperature anomaly as the centre point. In this way there was

a corresponding temperature anomaly record for each vegetation box.
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Area-weighted, annual-mean temperature anomalies were calculated for each of the seven

biotic regions. The annual temperature anomaly for a specific grid box was treated as missing if

even one month within the year was missing. An ordinary least squares fit regression analysis

was used to estimate the linear trends of temperature over these regions from the start of

the 20th century and from the mid-20th century. A student’s t-test, with degrees of freedom

adjusted to account for serial correlation, was used to test the null hypothesis that no trend is

present (von Storch and Zwiers, 1999).

The estimated trends, given in Table 2, reflect a general warming from 1900 to 2004 over

all regions, with warming trends being even greater over the period from 1950 to 2004. No

significant warming trend was observed over the continental ice sheet region during either time

period. The warming trends in the other six surface classes were found to be statistically

significant at the 5% significance level. The warming trends increased in the second half of

the 20th century (Figure 2). The greatest warming happened over tundra and the temperate

forest region and these trends are more apparent from 1950 onward. This is consistent with

Giorgi et al. (2001) whose results suggest that nearly all land areas warm more rapidly than

the global average, especially at high latitudes. The warming over water is smaller than over

the land areas during this period, as expected from the high heat capacity of water relative to

land.

There is a period of cooling from 1946 to 1975 in all regions except bare ground. These

regional coolings are generally consistent with the global changes of the same period. The

global cooling of this period can be reproduced in climate model simulations of the 20th

century when natural forcing mechanisms are included in addition to the greenhouse gas and

sulphate aerosol concentration changes. The inclusion of natural volcanic aerosol forcing is

particularly important in this regard.
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3 Detection and Attribution Analysis of Regional Climate Change

Using Optimal Fingerprinting

In this section, a detection and attribution analysis using optimal fingerprinting is carried out to

examine the temperature response to increasing anthropogenic greenhouse gases and sulphate

aerosols. The task of a detection and attribution study is to determine whether an observed

climate change is internally generated by the climate system itself or forced by one of several

external factors that might have affected the climate, such as greenhouse gas forcing. For

this purpose, we assume internal climate variability and the responses to the various external

forcings contribute linearly to observed climate change, as suggested by previous studies (Santer

et al., 1995; Gillett et al., 2004b; Hasselmann, 1993, 1997, 1998; Hegerl et al., 1997; Allen and

Tett , 1999; Allen and Stott , 2003).

In this analysis we use the optimal detection approach detailed in Allen and Stott (2003).

This approach explicitly quantifies the relationship between the model simulated signal and

the observed signal by assuming that the observations y can be expressed as a linear sum of

the scaled simulated responses to external forcings x, and residual variability u:

y = xβ + u. (1)

The simulated response x is obtained from an ensemble of transient climate simulations of the

20th century involving greenhouse gases, aerosols, and in some cases other external forcing

changes (based on estimates of historical forcing changes over the 20th century). The best

guess of β is calculated by minimizing the estimated total least squares residual from the true

signals, while the significance (for example, 90% confidence limits) of β is estimated based on

the assumed distribution of the internal variability.

Conclusions about signal detection and signal attribution can be drawn based on the ampli-

tude of the regression coefficient β. The externally forced signal pattern is said to be detected

in the observed data if the estimate of β is significantly greater than zero. Otherwise, the

observed changes might be caused by other mechanisms such as natural internal climate vari-

9



ability or forcings that are not included in the simulations. The analysis contributes to the

attribution of a detected climate change signal to a particular forcing agent if the amplitude of

β is consistent with unity, that is, the observed signal is consistent with the model-simulated

response to the specified external forcing, after accounting for all plausible forcing agents.

“The scaling factor β adjusts the signal amplitude so that the scaled signal best matches the

observations” (Zwiers and Zhang , 2003). The forced simulation underestimates the amplitude

of the observed signal if β >1 while it overestimates the observed signal if β <1 (Mitchell

et al., 2001).

In this paper, a five-decade sequence of decadal mean regionally-averaged surface air tem-

peratures (from 1946 to 1996) are used as the detection variable. Simulations from three

climate models: PCM (Washington et al., 2000), HadCM2 (Johns et al., 1997), and CGCM2

(Flato and Boer , 2001), are used to estimate the internal variability. These climate models

include control integrations of 1009 years with PCM, 1700 years with HadCM2, and 1000 years

with CGCM2. The long control simulations of each model are used to estimate the covariance

matrix of the internal climate variability. The entire lengths of the model control runs are also

used to estimate the uncertainty range of the regression coefficient β.

Each of these three models also has several transient integrations with either greenhouse

gas (G) forcing, or combined GS (greenhouse gases and and sulfate aerosols) forcing, which

are available for estimating optimal fingerprints of temperature changes for the second half of

the 20th century. In the case of the PCM, the GS runs used also contain stratospheric ozone

forcing. The effect of stratospheric ozone depletion on surface temperature is small over most

of the globe, although it has more profound effects on circulation and temperature in the free

atmosphere (Gillett et al., 2003).

The fields of each model are masked in the same manner as the observations so that

places without adequate observations are masked out of the model output. Then, as in Gillett

et al. (2002), this study regresses five optimized observed decadal-mean surface temperature

anomalies (1946 – 1956, 1956 – 1966, 1966 – 1976, 1976 – 1986, 1986 – 1996) onto the G

or GS simulated anomaly patterns of surface temperatures over the same period. A mean

temperature anomaly over each region is taken and a total least squares fit is used to estimate
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β (Allen and Tett , 1999). The best guess of β is calculated by minimizing the estimated least

squares residual from the true signals, while the 90% confidence limits for β are estimated from

the simulated internal variability (Hegerl et al., 1997). We use a total least squares fit in this

study for reasons of simplicity, however all single pattern results were found to be robust to our

use of an ordinary least squares fit (Allen and Tett , 1999) to account for sampling variability

in the simulated response patterns.

3.1 Results

The regression coefficients of the GS forcing experiments for the seven biotic regions are shown

in Figure 3. The regression coefficients are significantly different from zero except for the

tropical forest regions (in the HadCM2 case), the tundra regions (in the PCM case), and the

ice region (in all three models). This implies that the observed temperature changes are not

likely to be explained by natural internal climate variability alone. The significant positive

values of β over these regions indicate that an anthropogenic influence is detected in these

cases. Both PCM and CGCM2 significantly overestimate the amplitude of the temperature

anomaly response to the combined influence of increased greenhouse gases and sulphate aerosols

in the water and tropical forest regions. An overestimation is also found in cultivated land

regions by PCM. For the temperate forest and bare ground regions, the regression coefficients

are consistent with unity in all three models.

In Figure 3 we can also see that the uncertainty in the scaling factors varies between

models. This follows since the simulated internal climate variability and forced responses

also vary between the models. The width of the uncertainty bars also tends to increase with

a decrease in effective spatial scale of the land surface class (IDAG - International ad hoc

Detection and Attribution Group, 2005). This is further amplified in regions where there is a

lack of observational data. Nevertheless, estimates of the regression coefficients using different

models are similar to each other in all regions. This consistency provides enhanced confidence

in the detection of an anthropogenic influence on regional warming.

We can further search for the detection of a greenhouse gas signal in the observed tempera-

ture record over the different vegetation classes (Figure 4). With the exception of the tropical
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forest in HadCM2, tundra in PCM, and continental ice in all three models, a greenhouse gas

influence on surface temperatures is found to be detectable. G alone forced climate models

generate an overestimation of surface temperatures. In this study, in regions where the G alone

signal has been detected, the upper limits of β are generally less than one. The three models

typically overestimate the warming signal and provide results that are remarkably consistent

with each other as before. Still for these regions, the amplitudes of the estimates of β from

the combined GS forcing detection are generally closer to unity. This phenomenon can be

explained by the compensation of the cooling effect of sulphate aerosols to the greenhouse gas

warming effect on surface temperatures. External forcing that includes both G and S is closer

to the real forcing in the atmosphere than G-forcing alone.

A two-way detection analysis using outputs from G simulations along with outputs from GS

simulations relaxes the assumption that the relative magnitude of the G and S response in the

GS simulation is correctly simulated by the climate model (Gillett et al., 2002). In this case,

Equation 1 has the form y = βGxG +βSxS +u and a total least squares regression is used here.

According to Gillett et al. (2002), the estimated response to S forcing in each model is often

computed as the difference between its GS simulation and G simulation, as a linear assumption

is generally appropriate. Here both the integrations from the three individual models and a

multi-model approach are used to separately estimate the amplitudes of the G and S regression

coefficients, through a two-way regression approach. In the multi-model approach, GS and G

simulations from all the three individual models are used to estimate the scaling factors. In

addition, 800-year control segments from the three individual models (CGCM2, HadCM2 and

PCM) are concatenated to derive an estimate of internal variability. In this way, both the

signal and internal variability estimates account for the “structural” (i.e., model) uncertainty,

at least to the extent that such uncertainty is represented by the difference between the three

models.

G or S are listed in Table 3 if either pattern has been detected. The signal from greenhouse

gases G has been separately detected in at least two individual models over every vegetation

type except continental ice. G has also been detected over all regions but the continental ice

by the multi-model approach. For G, the multi-model results provide a consensus between the
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individual model results. The S signal is separately detectable by PCM for all land regions

except continental ice. The detection of S over water may have failed because the influence of

S is mainly over land.

4 Conclusions

The evolution of local biota as well as the influences of local climate are closely related to local

surface temperature changes. Since surface temperatures in regions smaller than continental

scale display both warming and cooling trends in the past century, and this divergence has

been found over regularly divided regions of the globe (Giorgi , 2002), the surface temperature

trends over biotic regions are also expected to vary. The subsequent influences of these climatic

changes on bio-systems may be very different from region to region. It is therefore necessary to

examine how the instrumental surface temperature changes over major biome regions, as this

examination has not been systematically conducted. It is also necessary to determine if there

have been detectable signals of anthropogenic activities in these regions showing temperature

changes as this is a necessary, but not sufficient, condition for concluding that the substantial

changes in ecosystems over the corresponding period may be due to anthropogenic influences.

This study is also valuable for studies on climatic effects on future ecosystem evolution such

as shifts of plant distribution and wild animal habitat.

The detection of warming or cooling trends and the extent to which the trends are controlled

by the anthropogenic emission of greenhouse gases and sulphate aerosols was examined here.

The analysis of instrumental records of surface temperatures revealed pronounced warming

trends over the major biotic regions on Earth, starting from the beginning of the 20th century.

Superimposed upon this overall global warming trend were some periods of regional cooling.

Using three different climate models we found a detectable combined anthropogenic green-

house gas and sulphate aerosol signal over water, tropical forest, temperate forest, bare ground,

tundra and cultivated land regions. The warming effect of greenhouse gases alone on surface

temperatures is also detectable over different regions by all climate models. Over every veg-

etation type except continental ice, at least two climate models have separately detected the
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influence of greenhouse gases. The G signals in six regions (except continental ice) have also

been detected through a multi-model approach. S signal is separately detectable by PCM for

all land regions except tundra and continental ice. The observed temperature changes in all

the seven regions cannot be explained by natural forcing alone.

Observed regional climate change signals are consistent with combined G and S forcing

over temperate forest, bare ground, and tundra both in three separate climate models and in

the multi-model analysis. The same consistency has been found over cultivated land regions

by both HadCM2 and CGCM2, while over global water, a consistency between climate change

signal and GS forcing can only be found in HadCM2. We found that over temperate forest

regions, the observed warming trend during the latter half century is also consistent with

a greenhouse gas forcing mechanism alone in all three models through both the one-signal

detection and two-signal detection. Although regional scale climate features simulated by

climate models are not as reliable as those at a global scale (Hasselmann, 1993), the rather

remarkable inter-model consistency of our detection results increases our overall confidence in

the detectability of the anthropogenic signals at surface-type-based regional scales.
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Table 1: Partitioning of 16 land surface classes, as identified by NASA-ISLSCP-GDSLAM-
Vegetation class dataset, into 7 re-grouped classes

Original surface Original surface Re-grouped surface Re-grouped
class number class type class type number

0 Water Water 1

1 Broadleaf forest Tropical forest 2
2 Broadleaf deciduous
6 Forest and woodland
7 Wooded C4 grassland

3 Mixed coniferous Temperate forest 3
&broadleaf deciduous

4 Coniferous forest
&woodland

5 High latitude deciduous

9 Shrubs and bare ground Bare ground 4
11 Desert and bare ground
14 C3 wooded grassland
15 C3 grassland

10 Tundra Tundra 5

12 Cultivated land Cultivated land 6

13 Ice Continental ice 7

8 C4 grassland — —

Table 2: Estimated trends of regional surface temperature over two 20th century time periods
in

�
/100yr; their 95% confidence intervals and estimated significance.

Surface class Surface class 1900 – 2004 Significance 1950 – 2004 Significance
number type (

�
/100yr) (

�
/100yr)

1 Water 0.67±0.16 <0.05 0.77±0.38 <0.05

2 Tropical forest 0.61±0.19 <0.05 1.12±0.43 <0.05

3 Temperate forest 1.07±0.29 <0.05 2.26±0.64 <0.05

4 Bare ground 0.87±0.26 <0.05 1.86±0.50 <0.05

5 Tundra 0.95±0.41 <0.05 1.98±0.84 <0.05

6 Cultivated land 0.72±0.21 <0.05 1.37±0.57 <0.05

7 Continental ice 0.15±0.97 0.75 0.33±0.77 0.39
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Table 3: Separately detected G and S signals in surface class based warming by three climate
models and the multiple model

Surface class Surface class HadCM2 CGCM2 PCM Multi-
number type model

1 Water G G G G

2 Tropical forest – G,S G,S –

3 Temperate forest G,S G G,S G,S

4 Bare ground G G G,S G

5 Tundra G G – G

6 Cultivated land G – G,S G

7 Continental ice – – – –

Figure 1: Upper: Distribution of original 15 surface types in the NASA-ISLSCP-GDSLAM-
Vegetation class dataset. Bottom: Re-grouped seven subregions based on different vegeta-
tion/surface types.
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Figure 2: Surface warming trends in 6 of 7 biotic regions, as shown by temperature anomaly
data and linear trends lines for two 20th century time periods.
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Figure 3: Best estimate of the regression coefficients β and their 5-95% uncertainty ranges,
of observed surface temperature changes against simulated changes in three climate models
forced by external forcings. External forcings are combined GS in HadCM2 and CGCM2, and
combined GSO in PCM.

Figure 4: Best estimate of the regression coefficients β and their 5-95% uncertainty ranges,
of observed surface temperature changes against simulated changes in three climate models
forced by external forcings. External forcings are greenhouse gas alone.
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