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Abstract This study assesses the detectability of external

influences in changes of precipitation extremes in the

twentieth century, which is explored through a perfect

model analysis with an ensemble of coupled global climate

model (GCM) simulations. Three indices of precipitation

extremes are defined from the generalized extreme value

(GEV) distribution: the 20-year return value (P20), the

median (Pm), and the cumulative probability density as a

probability-based index (PI). Time variations of area-

averages of these three extreme indices are analyzed over

different spatial domains from the globe to continental

regions. Treating all forcing simulations (ALL; natural plus

anthropogenic) of the twentieth century as observations and

using a preindustrial control run (CTL) to estimate the

internal variability, the amplitudes of response patterns to

anthropogenic (ANT), natural (NAT), greenhouse-gases

(GHG), and sulfate aerosols (SUL) forcings are estimated

using a Bayesian decision method. Results show that there

are decisively detectable ANT signals in global, hemi-

spheric, and zonal band areas. When only land is

considered, the global and hemispheric detection results are

unchanged, but detectable ANT signals in the zonal bands

are limited to low latitudes. The ANT signals are also

detectable in the Pm and PI but not in P20 at continental

scales over Asia, South America, Africa, and Australia.

This indicates that indices located near the center of the

GEV distribution (Pm and PI) may give better signal-to-

noise ratio than indices representing the tail of the distri-

bution (P20). GHG and NAT signals are also detectable, but

less robustly for more limited extreme indices and regions.

These results are largely insensitive when model data are

masked to mimic the availability of the observed data. An

imperfect model analysis in which fingerprints are obtained

from simulations with a different GCM suggests that ANT

is robustly detectable only at global and hemispheric scales,

with high uncertainty in the zonal and continental results.

1 Introduction

Detection of anthropogenic influences in the observed cli-

mate extremes is very important. This is because extreme

events have potentially devastating effects on human

society and the economy, and because the detection of

human influence in observations will enhance our confi-

dence in projected changes in extremes. One of the major

obstacles to the detection of external influence in the

extremes, especially precipitation extremes, is the limited

availability of daily observations.

Anthropogenic influence has recently been detected in

some temperature extreme indices. Using a gridded data set

(Caesar et al. 2006) that includes a large part of the

Northern Hemisphere land area and Australia, Christidis

et al. (2005) and Shiogama et al. (2006) have detected an

anthropogenic influence on extreme indices for warm

nights, cold nights, and cold days during the second half of

the twentieth century. These results from single model

analyses are consistent with earlier detectability analysis

results for temperature extremes (Hegerl et al. 2004).

Meehl et al. (2007b) compared the observed and multi-

model simulated changes in the temperature extremes
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averaged over the continental United States. They showed

that the observed trends (decreases in frost days; increases

in growing season length, warm nights, and heat wave

intensity) over 1975–1999 are accounted for by anthropo-

genic forcing, but not by natural forcing.

Using an atmospheric general circulation model forced

by observed sea surface temperatures (SST), Kiktev et al.

(2003) found that the inclusion of anthropogenic forcing

significantly improved the model performance in simulat-

ing observed trends in temperature extremes for 1950–

1995. Kiktev et al. (2007) provided an updated analysis

using five coupled climate models that included anthro-

pogenic forcing. They confirmed moderate skill of the

models in simulating trends of temperature extremes dur-

ing the second half of the twentieth century. Hegerl et al.

(2004) carried out a model-to-model detection study in

which the fingerprint from one model is compared to

observations from the same model (perfect) or from

another model (imperfect). They found that anthropogenic

influence in temperature extremes is robustly detectable

with a signal-to-noise ratio comparable to that in mean

temperature changes.

Precipitation extremes are expected to increase globally

as the climate warms constrained by moisture availability

or the Clausius-Clapeyron relationship, and the increases

are likely to be larger than those in mean precipitation

(Allen and Ingram 2002; Trenberth et al. 2003; Held and

Soden 2006; Pall et al. 2007; Kharin et al. 2007). Most

coupled climate model simulations project an increase of

extreme precipitation over large parts of the globe under

the greenhouse warming (Kharin and Zwiers 2000; Meehl

et al. 2000; Cubasch et al. 2001 and references therein;

Semenov and Bengtsson 2002; Allen and Ingram 2002;

Watterson and Dix 2003; Hegerl et al. 2004; Wehner 2004;

Kharin and Zwiers 2005; Emori and Brown 2005; Tebaldi

et al. 2006; Kharin et al. 2007). Observed changes in pre-

cipitation extremes are qualitatively consistent with model

projections, (e.g., Groisman et al. 2005; Alexander et al.

2006, Hegerl et al. 2007), but detecting anthropogenic

influence in precipitation extremes has not yet been

achieved for a number of reasons.

Daily precipitation observations are very limited both

spatially and temporally. Observed extreme precipitation at

sparsely located stations represents point estimates. This

hinders a direct comparison with model simulated precip-

itation considered to be area estimates (Osborn and Hulme

1997). Furthermore, disagreements in simulated extreme

precipitation between GCMs are large, especially in the

tropics where uncertainty in the parameterization of con-

vection affects the simulated precipitation (Hegerl et al.

2004; Kharin et al. 2005, 2007).

Consequently, there has been little success in detecting

anthropogenic signals in precipitation extremes. Kiktev et al.

(2003, 2007) found that anthropogenic forcing contributed

little to the simulation of trends in precipitation extremes,

unlike in temperature extremes. Hegerl et al. (2004) com-

pared the observed and model simulated trends of

precipitation extremes represented by annual maximum

daily or 5-day precipitation amount over land and found that

changes in heavy precipitation might be more detectable than

changes in annual mean precipitation. Both studies seem to

provide some evidence that detection of an anthropogenic

signal in precipitation extremes in the instrumental period

may not yet be possible, but a more comprehensive analysis

is needed to draw such a conclusion.

In this paper, we present a further study of the detect-

ability of the precipitation extremes response to external

forcing. We follow the perfect model approach of Hegerl

et al. (2004), but undertake a more comprehensive analysis.

We consider decadal-scale changes of extremes, rather than

the long-term trends used in previous studies, and we take

the availability of observational data into account in our

analysis. We also consider various combinations of exter-

nal forcing including greenhouse-gases, sulfate aerosols,

natural, and anthropogenic (greenhouse-gases and sulfate

aerosols combined). Our analyses are conducted over var-

ious spatial domains ranging from the globe including the

oceans to individual continents. In addition, we also con-

sider a probability-based extremes index that gives equal

weight at all locations after normalizing precipitation

variability.

The remainder of this paper is organized as follows.

Section 2 describes the model simulations. Indices for

precipitation extremes, a Bayesian method for signal

analysis, and calculation details are explained in Sect. 3.

Spatial patterns of simulated precipitation extremes under

different forcings are qualitatively compared in Sect. 4.

The results of our detectability analyses are described in

Sect. 5. Robustness of detection results to the availability

of observational data and to the use of fingerprints obtained

from another GCM is examined in Sect. 6. Conclusions are

presented in Sect. 7.

2 Model simulations

We use an ensemble of climate simulations performed with

the ECHO-G coupled climate model (Legutke and Voss

1999; Min et al. 2005a, b, 2006). The atmospheric com-

ponent, ECHAM4, has T30 (*3.75�) horizontal resolution

with 19 pressure levels in the vertical. Its oceanic com-

ponent, HOPE-G, has horizontal resolution equivalent to

approximately T42 (*2.8�) with meridional refinement

toward the equator up to 0.5�. HOPE-G has 20 vertical

layers. ECHO-G applies an adjustment to the annual mean

fluxes of heat and fresh water, but momentum is not
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adjusted. The use of heat and moisture flux adjustments

may have some implications for the model’s responses to

external forcing, although flux adjusted and non-adjusted

models appear to respond similarly at large scales (Cuba-

sch et al. 2001). CO2, CH4, N2O, and 16 minor industrial

gases are treated as greenhouse-gases (Roeckner et al.

1999). The direct and first-indirect effects of sulfate aero-

sols are considered using an interactive sulfur cycle model

(Feichter et al. 1997). The large-scale precipitation is

parameterized based on relative humidity following

Sundqvist (1978) and Sundqvist et al. (1989). The con-

vective precipitation is parameterized using the mass flux

scheme of Tiedtke (1989) with an adjustment closure by

Nordeng (1994).

This study uses the annual maximum daily precipitation

from several ensembles of forced simulations performed

with the ECHO-G model under different external forcing

factors (Table 1). Natural (NAT), greenhouse-gas (GHG),

sulfate aerosol (SUL), anthropogenic (ANT, GHG and

SUL combined), and all forcing (ALL, ANT and NAT

combined) simulations were produced for the period 1860–

2000. The simulations use three different initial conditions

selected at 100-year intervals from a long preindustrial

control simulation. GHG concentrations are provided by

the ENSEMBLES project (Jean-Francois Royer, personal

communication 2006). Sulfate aerosols emissions and tro-

pospheric ozone concentrations are obtained from

Roeckner et al (1999). The solar and volcanic forcing is

introduced by varying the solar constant following Crowley

(2000). Min et al. (2006) provide more details on the

external forcing. A 341-year long preindustrial control

simulation (CTL) provides data for estimation of the

internal variability.

We also use a three-member ensemble simulation per-

formed with the Third Generation of the Canadian Centre

for Climate Modelling and Analysis (CCCma) Coupled

Global Climate Model (CGCM3, Flato 2005) for the

imperfect model analysis. The CGCM3 has an atmospheric

horizontal resolution of T47 (*3.75�) with 31 vertical

levels and oceanic resolution of about 1.85� with 29 levels

in the vertical. The simulations were forced with ANT-only

forcing for 1860–2000. We shall refer those simulations as

ANT*. A 500-year preindustrial control simulation (CTL*)

was also used to define a reference set necessary to esti-

mate a probability-based index (PI) (Table 1; see below).

3 Methodology

3.1 Indices for extreme precipitations

We assume that annual maximum daily precipitation fol-

lows the generalized extreme value (GEV) distribution that

incorporates Gumbel, Frechet, and Weibull distributions.

The GEV has a cumulative distribution function (CDF)

given by

F x; lt;rt; ntð Þ

¼
exp � exp � x�lt

rt

n oh i
; nt = 0

exp � 1þ nt
x�lt

rt

n o�n�1
t

� �
; nt 6¼ 0, 1þ nt

x�lt

rt
[ 0:

8>><
>>:

ð1Þ

Here l, r, and n are the location, scale, and shape

parameters, respectively. By inverting the CDF for a given

probability p, quantiles of the GEV distribution can be

obtained as

Xp tð Þ ¼
lt � rt ln � ln pð Þ½ �, nt = 0,

lt � rt

nt
ln 1� � ln pð Þð Þ�nt

h i
; nt 6¼ 0.

(
ð2Þ

We assume that the GEV parameters are time-dependent as

denoted by subscript t, so that the GEV distribution and its

quantiles can vary with time (see below).

Table 1 Coupled climate model simulations used in this study

Model Abbreviation Forcing Period (ensemble member) Role in perfect model analysis

ECHO-G CTL Preindustrial control run with no external

forcing

1860–2200 (1) Scenario 1 (internal variability)

ALL Natural plus anthropogenic forcing 1860–2000 (3) observations

NAT Natural forcing (solar and volcanic) 1860–2000 (3) Scenario 2

ANT Anthropogenic forcing (greenhouse-gases

and sulfate aerosols)

1860–2000 (3) Scenario 3

GHG Greenhouse-gas forcing 1860–2000 (3) Scenario 4

SUL Sulfate aerosol forcing 1860–2000 (3) Scenario 5

CGCM3.1

(T47)

CTL* Preindustrial control run with no external forcing 1850–2350 (1) Used to define a reference set for PI
(for imperfect model analysis)

ANT* Anthropogenic forcing (greenhouse-gases and

sulfate aerosols)

1860–2000 (3) Scenario 3 (for imperfect model

analysis)
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Using the GEV distribution, we select two distribution-

based indices for analyses. One is the median Pm located

near the center of the GEV distribution and the other is the

20-year return value P20 positioned in the tail. Pm is the

quantile that corresponds to p = 0.5 while P20 is the

quantile for p = 0.95. From Eq. (2), Pm and P20 are defined

as

Pm tð Þ ¼ X0:5 tð Þ;
P20 tð Þ ¼ X0:95 tð Þ:

ð3Þ

Zhang et al. (2004) and Kharin and Zwiers (2005) con-

sidered trends in location and scale parameters for long-

term changes because they found that treating shape

parameter as a constant was useful. Here, dealing with

140 years (1861–2000), we allow for the decadal fluctua-

tions in all three parameters rather than linear trends. To

reduce the dimensionality of the time series to be analyzed,

the GEV parameters are estimated for non-overlapping

20-year periods of the model simulations separately,

assuming a fixed distribution within each 20-year period.

This is appropriate since the non-stationary component

should be sufficiently small when compared to internal

climate variability within such short time periods, given that

the twentieth century forcing is also small relative to that

used in the twenty-first century scenarios (Kharin and

Zwiers 2005, Kharin et al. 2007). We combine the three

ensemble members for each forced experiment to produce

samples of size 60 for each 20-year period, thereby reducing

the uncertainty in parameter estimates. Additionally, 100

samples of 60 annual maxima are constructed from the CTL

simulation by repeatedly choosing three 20-year periods at

random from the 17 available non-overlapping 20-year

chunks (340 years). The GEV distribution is fitted to each

sample of 60 annual extremes. Possible underestimation of

internal variability resulting from the use of a relatively

short control simulation is taken into account by manually

inflating covariance matrices (see below).

Variation of regional average extreme precipitation

tends to be dominated by subareas of higher extreme values

because of the long-tailed nature of extreme precipitation.

One way to improve the representativeness of areas with

smaller extreme values would be to introduce a normali-

zation of extreme values at the grid-point scale before

calculating regional averages. Here we utilize the CDF in

Eq. (1) for normalizing extreme precipitation, which ranges

from 0 to 1. Then a normalized index PI for each 20-year

period is defined as:

PI tð Þ ¼ F Pa; lr; rr; nrð Þ½ �; ð4Þ

where [ ] denotes a 20-year time mean, Pa is the annual

extreme of precipitation in year a, and the subscript r

represents a reference data set. Because PI is based on the

probability integral transform, it also has the advantage of

having similar amplitudes across different GCMs even if

the GCMs have different extreme precipitation climatolo-

gies. In contrast to P20 and Pm, we do not vary the GEV

parameters for PI with time, but rather estimate the

parameters from a reference data set. Otherwise, long-term

changes would be difficult to identify in PI due to the

normalization between 20-year periods. In the perfect

model analysis we utilize 956 samples as a reference data

set, where samples consist of annual maxima collected

from all forced runs for the period 1860–1920 (ALL, NAT,

ANT, GHG and SUL, 615 annual extremes in total) as well

as CTL (341 years). For the imperfect model analyses, 683

reference samples are collected from the three member

ANT* ensemble for 1860–1920 (183 years) and a 500-year

CTL* simulation (Table 1). The main results reported

below are insensitive to the use of the control run only or

forced runs only for the estimation of parameters. The

larger sample that is obtained by combining both types of

runs allows us to avoid possible biases and discontinuities

at the boundaries of the reference period (Zhang et al.

2005).

The method of maximum likelihood (ML) is employed

for fitting the GEV distribution to the samples from the

model simulations. Following Kharin and Zwiers (2005), a

simplex function minimization procedure is applied after

taking L-moment estimates as the initial values for the

maximization. We did not encounter difficulties in fitting

the GEV distribution to annual maximum daily precipita-

tion at any grid point.

3.2 Bayesian decision method

We use a Bayesian decision method (Min et al. 2004) to

detect external influence. Given the observational data

vector d (here area-averaged extreme indices P20, Pm, and

PI) and the possible forcing scenarios mi (i = 1, …, 5)

CTL, NAT, ANT, GHG, and SUL, the Bayesian process

classifies the observed changes into the most likely sce-

nario defined as the one with the maximum posterior

P(mi|d) likelihood. If all scenarios are considered to be

equally likely a priori, which we assume here for sim-

plicity, the Bayesian decision depends only on the Bayes

factors defined as the likelihood ratios:

Bi1 ¼
l djmið Þ
l djm1ð Þ ; i ¼ 2; :::; 5; ð5Þ

where m1 is a reference scenario which we take to be CTL.

The Bayes factor Bi1 represents the observational evidence in

favor of the scenario mi against m1. The evidence is said to be

substantial, strong, or decisive when the logarithm of the

Bayes factor is larger than 1, 2.5, or 5 respectively, that is to

say, when the assessed scenario mi is 3, 12, or 150 times more
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probable than m1 (Kass and Raftery 1995). Several recent

Bayesian detection analyses have used this approach for the

assessment of evidence of anthropogenic influence on cli-

mate (e.g., Min et al. 2004; Schnur and Hasselmann 2005;

Lee et al. 2005; Min and Hense 2006, 2007).

Assuming multivariate Gaussian distributions (see

below for discussion of the validity of this assumption), the

likelihood function has a simple form:

lðdjmiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pð Þq

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det A�1
i

det Ri det R0

s
exp � 1

2
Ki

� �
ð6Þ

where q is the dimension of the data vector, R0 and Ri are

the covariance matrices of the observation and scenario

respectively, Ai = Ri
-1 + R0

-1, and Ki = (d - li)
T (Ri +

R0)-1 (d - li) where li is mean of the scenario mi (see Min

et al. 2004 for more details). The covariance matrices can

be spatial, temporal, or spatio-temporal depending on the

analyzed variable. In this study, they are temporal covari-

ance matrices obtained from area averaged time series.

Note that the likelihood is an exponential function of a

generalized distance measure Ki. This means that the

Bayesian decision is equivalent to measuring a distance

between observational and scenario mean vectors (d and

li) taking the relevant covariance structures into account

and then searching for the scenario that is closest to the

observations. The scenario mean is obtained from forced

simulations while the covariance matrices are estimated

using CTL data (see below for detailed methods).

Even though we are dealing with extreme precipitation

indices, the Gaussian assumption can be applied with little

concern. This is because the variables analyzed are the

spatial averages of the extreme indices over large regions,

i.e., the mean of a large number of samples. As discussed

by Hegerl et al. (2004, 2006), and supported by the central

limit theorem, the distribution of those mean values should

be very close to Gaussian. We also conducted the Shapiro-

Wilk normality test on CTL samples, and found that the

null hypothesis of normality can not be rejected at the 5%

significance level for the large scale area-averaged extreme

precipitation indices used in this paper.

3.3 Detailed method for a perfect and an imperfect

model analysis

For a perfect model analysis, we take time series of extreme

indices from the ALL experiment as the observational vector

d and evaluate Bayes factors for the other forced scenarios

Bi1 (i = 2, 3, 4, 5) using Eqs. (5) and (6). This corresponds to

calculating signal amplitudes for NAT, ANT, GHG, and

SUL with respect to CTL (Table 1). The detection variables

are anomaly time series of P20, Pm, or PI for 1861–2000

(seven 20-year intervals) relative to the 1861–1920 mean

(the first three intervals) of the forced experiments. Taking

different reference periods does not affect the main results

given below because we assess detectability by measuring a

generalized distance between two anomaly time series vec-

tors of observation and scenarios (see above) and this

distance is not much affected by the selected reference per-

iod. In other words, the main signals from the external

forcing factors are generally associated with long-term

components; selecting different reference periods only

affects the time mean but does not alter the temporal fluc-

tuations that are of interest. For CTL, a sample of 140-year

(seven interval) time series of extreme indices are obtained

as follows. This sample is used to estimate the CTL covari-

ance matrix R1 in Eq. (6). First, we manually construct one

time series consisting of 100 GEV parameters which have

been estimated above using 100 samples of 60 (three

20 years) annual maxima. This corresponds to a 2,000-year

time series. In order to obtain 140-year time series samples,

we apply moving windows with a shift of 40 years. This

produces 47 CTL samples for which anomalies are subse-

quently constructed as for other data vectors.

In order to consider the possibility of underestimation of

the internal variability due to the use of a short control run

or structural error, we test the sensitivity of the Bayes

factors by inflating the covariance matrix by a factor a for

different a’s. We further assume that the covariance matrix

of the observations R0 (ALL here) and those of the other

forced scenarios Ri (i = 2, 3, 4, 5 for NAT, ANT, GHG,

and SUL) are identical to that of CTL (aR1). That is, we

assume that external forcing has not substantially affected

the internal variability of precipitation extremes over the

twentieth century. Applying this assumption under stronger

external forcings can lead to overestimated detectability

due to underestimation of noise (Min et al. 2004). In this

special case, one can easily see from Eqs. (5) and (6) that

increasing the internal variability results in decreased

Bayes factors (Bi1)1/a when there is an evidence for

detection (i.e., when the Bayes factor is greater than one).

This is equivalent to reducing the logarithm of the Bayes

factor (i.e. signal amplitude) by a factor of a or to enlarging

the decision criterion by the same amount. Consequently,

doubling the internal variability effectively increases the

thresholds for declaring Bayes factors as indicating strong

or decisive evidence to 5 and 10 respectively (see above).

The Bayes factors are calculated using anomaly time

series for the whole twentieth century changes (five 20-

year intervals). Including 1861–1900 does not change the

main results. This Bayesian analysis is repeated over dif-

ferent spatial scales ranging from the global mean to

hemispheric, zonal, and continental regional means.

An imperfect model analysis is carried out by replacing

the fingerprint in the perfect model analysis with that from
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the CGCM3 ensembles (ANT*, see Table 1). Here we

restrict our analysis to PI because it is a standardized index

that enables a more reasonable intercomparison between

models and regions.

4 Simulated patterns of extreme precipitation

4.1 Control experiment

Figure 1 shows the spatial distribution of averaged values

of the Pm, P20, the scale and the location parameters of

GEV distribution, computed from the CTL run. The spatial

patterns of Pm and location parameter (Fig. 1a, b) strongly

resemble the spatial distribution of annual mean precipi-

tation (not shown) characterized by stronger precipitation

over the tropical western Pacific, Indian, and equatorial

Atlantic Oceans, and a well-organized intertropical con-

vergence zone (ITCZ) and South Pacific convergence zone

(SPCZ). Pm less than 10 mm is found over the eastern

subtropical South Pacific and South Atlantic, Sahara Des-

ert, Arctic, and Antarctica.

P20 exhibits a spatial pattern similar to that of Pm, but

stronger values ([60 mm) are broadly evident over the

tropical Pacific and Indian Oceans (Fig. 1d)—note that P20

is always larger than Pm by definition. This can be

explained in part by larger scale parameters over these

regions (Fig. 1c) because P20 is more affected by the scale

parameter than Pm. For example, in the case of a Gumbel

distribution, the contribution of the scale parameter to P20

is about eight times larger than that to Pm (second term of

the right hand side of Eq. (2)). A maximum of the scale

parameter is visible over the central equatorial Pacific

which seems to be related to the strong and frequent El

Niño and Southern Oscillation (ENSO) simulated by the

model (Min et al. 2005b).

4.2 Forced experiments

Simulated changes in extreme precipitation are compared

among the different external forcing factors. Figure 2 dis-

plays differences in P20, Pm, and PI between the recent 20-

year (1981–2000) period and the reference period (1861–

1920). The ALL pattern is characterized by an overall

increase of daily precipitation extremes over the western

Pacific and Indian Ocean and a weak decrease over the

eastern subtropical South Pacific and South Atlantic. When

compared with model climate patterns (Fig. 1), areas of

increasing extreme precipitation coincide well with those

of larger mean amounts, and vice versa, although there are

some exceptions e.g., over high latitudes and the Sahara

Desert.

The spatial pattern of the difference in the location

parameter resembles that of Pm, but changes in the scale

parameter are not well-structured (not shown). This means,

c)

a)

d)

b)
Fig. 1 Climate patterns of Pm,

location and scale parameters,

and P20 obtained from ECHO-G

CTL experiments
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in general, that most of the response to external forcing is

explained by a shift of the GEV distribution. However,

scale parameter change cannot be neglected regionally. For

example, in the ALL simulations P20 has a positive pattern

over the central equatorial Pacific in contrast with the

negative anomalies in Pm and PI over this region. This

seems to be related to an increase in the scale parameter

arising from an intensified ENSO-like GHG warming

pattern as well as enhanced interannual variation through

two major volcanic eruptions during 1981–2000 (see

below; cf. Gillett et al. 2004). Another difference in the

pattern of precipitation extremes is that PI is strengthened

over higher latitudes and land areas. This is because PI

represents relative change at each grid point based on the

probability by which one can measure the changes in the

risk of extremes. The effect of this standardization on the

detectability will be explored below.

GHG response patterns are characterized by more

dominant areas of increasing extremes with larger ampli-

tudes than for ALL forcing. Other characteristics of change

are similar. The broad increase in precipitation extremes is

in accord with many previous studies of coupled model

simulations cited above which indicate a spatially consis-

tent increase of precipitation extremes across different

regions under CO2 warming. This is in contrast with

changes in the annual mean precipitation that are charac-

terized by a mixed pattern of increase and decrease over

different regions (e.g., Cubasch et al. 2001; Douville et al.

2006; Meehl et al. 2007a; Zhang et al. 2007). The SUL

response pattern resembles that of GHG except with

opposite sign, indicating that sulfate aerosol in this model

offsets the effect of GHG forcing in extreme precipitation

(cf. Shiogama et al. 2006).

Considering that the GHG response pattern for P20 and

Pm is most pronounced over the tropical Pacific and the

Indian Ocean, one might think of a possible impact of the

ENSO-like mean state change in the ECHO-G model (cf.

Meehl et al. 2007a). Figure 3 shows patterns of change in

total precipitation and SST over the tropics in the different

forced simulations. Note that each pattern is expressed as a

deviation from the corresponding zonal mean change in

order to identify the ENSO-like pattern more clearly. Note

also that the corresponding zonal mean change pattern is

plotted at the right side of each panel. An El Niño-like

pattern is seen in the SST changes that occur under sulfate

aerosol forcing while GHG forcing produces a more La

Niña-like response pattern in this model. This is different

from multi-model patterns that show a more El Niño-like

response to GHG forcing (Yamaguchi and Noda 2006).

Corresponding precipitation changes in the GHG simula-

tions are characterized by increases over the western Pacific

and Indian Ocean and a reduction over the central Pacific.

The SUL experiment exhibits a pattern of precipitation

change that is opposite to the GHG result. The similarity of

patterns between Figs. 2 and 3 indicates the important role

of this model’s ENSO-like SST change in determining

changes of mean and extreme precipitation in the low lati-

tudes. However, it should be noted that the ENSO-like base

state changes are still uncertain due to large inter-model

differences (Collins and the CMIP modelling group 2005;

van Oldenborgh et al. 2005; Paeth et al. 2008).

The ANT pattern of change in extreme precipitation in

Fig. 2 has almost the same structure as the corresponding

GHG response pattern, but the amplitude is smaller as

might be expected from the offsetting effect of sulfate

aerosol forcing. The ANT response is similar to the ALL

response in pattern and amplitude. In the NAT experiment,

extreme precipitation decreases over central equatorial

Pacific except for P20, which is different from the

decreasing pattern for SUL. Interestingly, the NAT SST

and precipitation response patterns are closer to the GHG

response pattern than that for SUL over the equatorial

Pacific (Fig. 3). This appears to be a specific feature of the

ECHO-G response to volcanic forcing which was imple-

mented by varying solar constant rather than volcanic

aerosols. During 1981–2000 there were two pronounced

volcanic events (El Chichón in 1982 and Pinatubo in 1991)

resulting in a reduction of solar constant that might give

rise to a cooling. This cooling is enhanced over the tropics,

particularly the cloud-free eastern equatorial Pacific (cf.

Cubasch et al. 1997). The different NAT response pattern

in P20 over this region is explained by an increase in the

scale parameter (not shown) arising from the two pro-

nounced volcanic eruptions. An in-depth analysis would be

required to isolate the localized volcanic effect, but this is

beyond the scope of this paper.

5 Signal detectability at different spatial scales

5.1 Global and hemispheric scales

Time series of area averaged extreme indices over seven

hemispheric domains are shown in Fig. 4. Grey bands

represent internal variability as obtained from CTL. The

indices for the ALL simulation (black lines) are charac-

terized by an early increase from 1910 to 1950 and a recent

increase since 1970. The GHG simulations have a mono-

tonic increasing trend in the indices while the SUL

simulations have a decreasing trend. In the NAT simula-

tions, there is a maximum near 1950, but the variations in

the other periods are within the range of internal variabi-

lity. ANT results capture the ALL response pattern

especially in the latter half of the twentieth century.

As a simple test of the extent to which the Clausius-

Clapeyron relationship holds in the twentieth century under
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the different external forcings, we present in Table 2 the

ratios of global mean changes in the indices (DP20, DPm,

and DPI, %) to global mean surface air temperature changes

(D �T , K) in the late twentieth century (1981–2000). Changes

are ensemble averages relative to the 1861–1920 mean. The

NAT runs are excluded here since the temperature change

in 1981–2000 due to NAT forcing is too small (-0.08 K) to

provide a reasonable estimate of the sensitivity. Overall the

sensitivities of precipitation extremes to global warming are

stable within 5.8–8.3% K-1 across the extreme indices and

the different external forcings. This is close to the sensi-

tivity predicted by the Clausius-Clapeyron relationship

(about 7%). This is also in concert with estimates of 6.3–

7.5% K-1 obtained from twenty-first century simulations

performed with the same model (Kharin et al. 2007), indi-

cating the robustness of the moisture availability constraint

to the magnitude of GHG forcing. In contrast, global mean

precipitation changes (D �P) with respect to global warming

range from 0.1 to 2.4% K-1, which is much smaller than the

Clausius-Clapeyron constraint, again in agreement with

previous studies (e.g., Allen and Ingram 2002; Pall et al.

2007; Kharin et al. 2007). The SUL results seem somewhat

different from the GHG, ANT, and ALL results. This might

be associated with higher sensitivity of global mean pre-

cipitation response to shortwave forcing rather than to GHG

longwave forcing (Hegerl et al. 2007).

Fig. 2 Change patterns of P20,

Pm, and PI for 1981–2000

relative to 1861–1920 mean

from ECHO-G ALL, NAT,

GHG, ANT, and SUL

experiments
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Some differences are recognizable between the extreme

indices shown in Fig. 4. The range of the internal vari-

ability relative to signals is smaller in PI compared to P20

and Pm. Use of the same interval and correspondingly

different spatial weighting in PI appears to be responsible

for the reduced variability. Another difference is found

during 1981–2000 in the NAT simulations where PI has

smaller (even negative) values than P20 and Pm. This

appears to be related to the use of a fixed GEV distribution

in the definition of PI, unlike temporally varying parame-

ters as in P20 and Pm.

Figure 5 shows the results of signal detectability (loga-

rithm of the Bayes factors) for ANT, NAT, GHG and SUL

over different hemispheric domains. These results are from

a five-dimensional analysis using a time vector of the

twentieth century, i.e. q = 5 in Eq. (6). It is clearly shown

that the ANT signal is decisively detectable over all

hemispheric domains and all extreme indices. PI has a

stronger signal than P20 and Pm which originates from the

reduced internal variability as discussed above. ANT

detectability is stronger in the Northern Hemisphere (NH)

than in the Southern Hemisphere (SH). One possible

explanation for the hemispheric asymmetry is that the

change in extremes has less spatial uniformity in the SH

(drying subtropical regions are larger) which would

weaken the signal in the hemispheric mean (Fig. 2). The

Fig. 3 Change patterns of total

precipitation (PCP) and sea

surface temperature (SST) over

low latitudes for 1981–2000

relative to 1861–1920 from

ECHO-G ALL, NAT, ANT,

GHG, and SUL experiments.

Each panel is the mean of three

ensemble members. Note that

values are expressed as a

deviation from zonal mean

which is plotted on the right side

of each panel. Contour lines
represent climate patterns

obtained from the reference

period of 1861–1920
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detectability becomes weaker when considering land only,

due to relatively greater internal variability. Overall, these

ANT detectability results are found to be robust even when

internal variability is doubled.

GHG signals are detectable over most regions, but with

reduced amplitude compared to ANT. This means that the

generalized distance (K in Eq. (6)) between ALL (the

observation) and GHG remains large compared to the

distance between ALL and CTL, but is less than the dis-

tance between ALL and ANT. The NAT signal is also

detectable in P20 and Pm over most hemispheric domains

and in PI over land, the NH, and NH land (NHL) only. This

discrepancy in PI seems to be associated with a relative

decrease of extreme precipitation for 1981–2000, more

dominantly over ocean areas, due to applying the fixed

GEV parameters (see above). The GHG and NAT signals

Fig. 4 Time series of area

averaged extreme values (P20,

Pm, PI) over the globe, land,

ocean, NH, SH, NH land

(NHL), and SH land (SHL)

from ECHO-G CTL, ALL,

ANT, GHG, and SUL

experiments. ANT* represents

CGCM3 results for PI. Note that

CTL ranges are whole spread

from 47 samples

Table 2 Simulated changes of global mean surface air temperatures

ðD �T ; KÞ and the ratios of globally averaged extreme precipitation

(DP20, DPm, and DPI, %) to D �T from the ECHO-G twentieth century

forced experiments described in Table 1

Forcing D �T DP20=D �T DPm=D �T DPI=D �T D �P=D �T

ALL 0.48 8.19 6.05 7.12 0.12

ANT 0.50 7.84 6.16 7.21 0.30

GHG 0.77 8.03 6.23 7.50 1.13

SUL -0.52 5.81 5.91 8.31 2.38

All changes are ensemble means for 1981–2000 with respect to 1861–

1920 means. Global mean total precipitation changes ðD �P; %Þ are

also given for comparison

Fig. 5 Signal detectability as assessed by means of Bayes factors for

area-averaged extreme precipitation indices P20, Pm, and PI over

global and hemispheric areas for the twentieth century (see Fig. 4)

which are obtained from a perfect model analysis with ECHO-G

regarding ALL simulations as observations and ANT, NAT, GHG,

and SUL simulations as fingerprints. ANT* represents an imperfect

model analysis with using CGCM3 data as ANT fingerprint. Bayes

factors within the grey shaded bands indicate less than decisive (red)

evidence for the forced scenario if larger than 5 and for CTL if

smaller than -5. Dashed lines indicate the same threshold when

internal variability is doubled. Assessments of strong (blue) and

substantial (green) evidence similarly require log Bayes factors

greater than 2.5 and 1 respectively. Grey mark represents log Bayes

factors less than -50

S.-K. Min et al.: Signal detectability in extreme precipitation

123



remain detectable even if internal variability is doubled.

Overall, the SUL results are characterized by strong neg-

ative values of the log Bayes factors, representing very low

detectability. For simplicity we omit the SUL results in the

detectability plots given below.

5.2 Zonal bands

We divided the globe into six 30� latitudinal bands and

examined detectability in time variations of the extreme

indices averaged over those zonal bands. ALL forcing runs

show an overall increase in the extreme indices in all zonal

bands whereas GHG and SUL runs exhibit clear increases

and decreases respectively (not shown) as in the hemi-

spheric result. The amplitudes of these changes are larger

over low latitudes and are reduced over high latitudes in

P20 and Pm as would be expected given the latitudinal

variation in precipitation variability. Maxima in the NAT

runs that occur around 1950 are more pronounced over low

latitudes than mid to high latitudes. These features are

commonly found in all of the extreme indices examined.

Internal variability is weaker in PI as in the hemispheric

result.

Figure 6 shows the time series of zonal averages when

only land data is included. As a whole, the effects of

internal variability are more apparent in these smaller

areas, particularly over the southern mid- and high-latitude

lands (SMIL and SHIL) where the land area is relatively

small. Consequently, extreme precipitation changes fall

within the range of internal variability in SMIL and SHIL.

On the other hand, compared to the southern tropics (STR),

the signal-to-noise ratio in the southern tropical land area

(STRL) is larger as the forced responses are stronger. This

seems to be caused by removing the areas of decreasing

precipitation extremes over the southern tropical ocean

(Fig. 2).

The Bayesian decision method was also applied for the

zonal bands with and without ocean areas. Results in Fig. 7

show that, when including ocean areas, the ANT signal can

be detected over all zonal bands for all three indices, except

for P20 over the southern mid- and high-latitudes (SMI and

SHI). Note that PI and Pm have larger detectability, which

is related to their location near the center of the GEV

distribution. This suggests there is potential merit in using

PI and Pm for detection with real observations. In contrast,

P20 has larger uncertainty because it represents the tail of

the distribution and therefore produces a smaller signal-to-

noise ratio. GHG signals are detectable over many regions,

but their amplitudes are smaller than for the ANT signal.

NAT signals are detectable only over lower latitudes,

consistent with the stronger solar influence on the tropical

climate (Cubasch et al. 1997; Meehl et al. 2003; Min and

Hense 2007). When the internal variability is doubled,

decisive evidence for ANT remains over the northern tro-

pics and mid-latitude (NTR and NMI) for all three indices.

The land-only result is characterized by reduced signal

detectability that is caused mainly by the relatively larger

internal variability in smaller area averages. The stronger

detection power of PI and Pm over P20 still holds. ANT

Fig. 6 Same as Fig. 4 but for

precipitation extremes averaged

over six zonal bands with land

only: northern high-latitude

(NHI, 60–90�N), northern mid-

latitude (NMI, 30–60�N),

northern tropics (NTR, 0–

30�N), southern tropics (STR,

0–30�S), southern mid-latitude

(SMI, 30–60�S), and southern

high-latitude (SHI, 60–90�S).

Land area is named by attaching

‘‘L’’ to the corresponding

acronym of zonal bands
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signals are detectable in some zonal bands, specifically the

northern and southern tropical land areas (NTRL and

STRL) and the northern high-latitude land (NHIL). Two

tropical bands exhibit particularly strong ANT detectability

even when the internal variability is doubled, suggesting

that tropical land areas might be good candidates for

detection if adequate daily observations of precipitation

were available (cf. Goswami et al. 2006). The detectability

of GHG and NAT signals is not robust in the smaller land

areas although they also indicate greater potential

detectability in the tropics. Damping of the NAT signals in

the PI results (due to the fixed GEV distribution) remains

in the latitudinal detection, but not as strongly as in the

hemispheric results.

5.3 Continental regions

We also extended our analysis to smaller scales over land.

Figure 8 defines several continental scale domains

Fig. 7 Same as Fig. 5 but for

zonal bands with land plus

ocean (left) and with land only

(right). See time series and

regional domains in Fig. 6

Fig. 8 Continental domains

used in this study and

observational availability

inferred from Alexander et al.

(2006) data set of maximum 5-

day consecutive precipitation

amounts. The shaded area
represents grid points where

observations are available for

longer than 40 years during

1951–1999
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following Stott (2003) and Min and Hense (2007). Note

that the continental analyses here include all grid points,

not just the red shaded points in Fig. 8 indicating the

availability of observations in the latter half of the twen-

tieth century. Extreme precipitation indices averaged over

six continental regions are displayed in Fig. 9. Compared

with hemispheric and northern latitudinal areas examined

above, there are larger differences in the temporal distri-

butions across these regions. The ALL simulations are

characterized by two periods of increasing extreme pre-

cipitation, from 1910 to 1950 and after 1970, which are

common over all regions. This pattern of change in

extreme precipitation indices resembles the behavior of

surface temperature changes in the same continental areas

(Min and Hense 2007), suggesting higher detectability in

extreme precipitation changes than in total precipitation

changes. Europe (EUR) is an exception where extreme

indices are characterized by a slight decrease in 1981–

2000. We speculate that this results from the stronger

internal variability related to the North Atlantic Oscillation

(NAO) that is reasonably simulated by ECHO-G (Min et al.

2005b). Overall the internal variability (CTL ranges)

becomes larger relative to the response to forcing as the

size of regions becomes smaller. Clearer increases and

decreases appear in the indices from GHG and SUL sim-

ulations, respectively. Pronounced NAT forcing responses

around 1950 can be found over North America (NAM),

Asia (ASI), and South America (SAM) but their structures

are a bit different among variables and the period of a

maximum changes across regions.

Figure 10 represents Bayesian analysis results for the

continental regions. It shows that ANT signals are

Fig. 9 Same as Fig. 4 but for

six continental regions: North

America (NAM), Asia (ASI),

South America (SAM), Africa

(AFR), Australia (AUS), and

Europe (EUR)

Fig. 10 Same as Fig. 5 but for continental regions using time series

shown in Fig. 9
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decisively detectable over Asia, South America, Africa

(AFR), and Australia (AUS) when using Pm and PI. ANT

signals are also detectable in P20 over the same regions,

although less convincingly. Stronger detectability appears

over Asia and Africa where the internal variability is

smaller and simulated response is larger compared to the

other regions (Fig. 9). GHG signals are at least strongly

detectable over South America and Africa only with Pm

and PI. NAT signals are detectable over many regions with

Pm, but only over Asia with P20. The decisive ANT signals

over Asia and Africa remain detectable when internal

variability is doubled.

6 Sensitivity test

6.1 Availability of observational data

In the real world, detection can only be conducted over

areas where observational data are available. In order to

examine how applicable the results above will be in real

world detection studies, we repeated our analyses using

only GCM data at grid points where we judge that adequate

observational data are available. For this purpose, we used

the criterion applied by Alexander et al. (2006) in their

analyses of maximum consecutive 5-day precipitation

amounts. Grid boxes with at least 40-year of data during

1951–1999 are marked with red squares in Fig. 8. Before

masking model fields and calculating spatial averages of

extreme indices from them, both models and observations

were interpolated to the same 5� 9 5� grid. Analysis is

confined to five regions where observations are available

over reasonably large areas representing at least 30% of

fraction of land grid boxes—NH land (NHL), northern

mid-latitude land (NMIL), southern mid-latitude land

(SMIL), Asia (ASI), and Europe (EUR).

Results are shown in Fig. 11. It indicates that detectability

can change substantially if detection is conducted on the

regions with available observations. Although signal

amplitudes are usually reduced, ANT is decisively detectable

over the NH land and Asia and strongly over the northern

mid-latitude land. This suggests that the ANT signal is

potentially detectable in the observations in these regions.

6.2 Fingerprint from another model

To examine the sensitivity of detectability to the uncer-

tainty in the structure of fingerprint, we repeated the

Bayesian analysis using ANT*, a fingerprint computed

from simulations of another GCM, the CGCM3. This

analysis is restricted to PI which is free of the influence of

climatological differences between different models (e.g.,

Hegerl et al. 2004; Kharin et al. 2007). Results from this

imperfect model analysis are also given in Figs. 5, 7, 10,

and 11 (denoted as ANT*). For global and hemispheric

mean PI, ANT* detectability from the imperfect model

analysis is very similar to that from the perfect model

analysis (Fig. 5). This is very consistent with temporal

behavior seen in Fig. 4.

However, results for smaller domains are different. For

the zonal bands, imperfect model analysis (Fig. 7) suggests

that ANT* is decisively detectable only over the northern

mid-latitude (NMI) and the southern tropics (STR) if data

over both land and ocean is used. If only land data is

included, ANT* is still detected over the two zonal bands

but detectability for the northern mid-latitude land (NMIL)

becomes weaker. In addition, the PI time series in Fig. 6

for ANT and ANT* exhibit a pronounced difference over

the northern tropical land area (NTRL). Continental-scale

results present larger inter-model differences and Asia

(ASI) is the only region showing consistent ANT/ANT*

detectability (Fig. 10). Detectability results from the

imperfect model analysis are not affected by the avail-

ability of the observed data (Fig. 11).

Overall, the large inter-model differences suggest that

single-model results may not be robust over smaller spatial

domains and that one needs to consider large scale patterns

so as to detect ANT signals in extreme precipitation

changes (Hegerl et al. 2004; Tebaldi et al. 2006; Kharin

et al. 2007; Kiktev et al. 2007).

Fig. 11 Upper Detectability of ANT, NAT, and GHG signals when

observational mask is applied to model data for which analysis is

confined to the five regions of NHL, NMIL, SMIL, ASI, and EUR

according to the observational availability (at least 30% fraction of

land grids) as shown in Fig. 8. (lower) Non-masked results for the

same regions are repeated for a better comparison. See text for details
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7 Conclusions and discussion

This study examines the extent to which anthropogenic

and/or natural influences may be detectable in precipitation

extreme indices through a perfect and an imperfect model

analysis. Three extreme precipitation indices are defined

based on the GEV distribution. They are the 20-year return

value (P20), the median (Pm), and the cumulative proba-

bility (PI). The P20 events are much rarer and more

extreme than Pm events. The PI provides relative values

based on the probability at each grid point. Regional

averages of P20 and Pm give higher weight to areas of

higher extreme values, while that of PI gives the same

weight everywhere. The results from the three indices were

compared with each other to explore whether the signal is

more readily detectable in any particular index. Finger-

prints were obtained from five three-member ensemble

experiments with the ECHO-G model under different

external forcings: ALL, NAT, ANT, GHG, and SUL. Using

the ALL simulations as pseudo observations, we compared

signal amplitudes of other experiments individually with

the range of internal variability determined from the con-

trol simulations. A Bayesian decision method was used to

quantify the differences. We analyzed signal detectability

for different spatial domains ranging from the globe to

individual continents. We also examined the applicability

of our results under realistic conditions by conducting our

analysis over the regions where there is substantial data

coverage from the observations, and by using fingerprints

obtained from simulations of another GCM.

As a whole, our analyses suggest that ANT signals

should be detectable in extreme precipitation during the

twentieth century. The potential becomes weaker as the

size of the spatial domain decreases. The ANT signal is

consistently detectable in our experiments (with decisive

evidence) on global to hemispheric scales with all indices,

regardless of whether we use the data for the whole domain

or for land only. It is also robustly detected in the

30 degree zonal bands, although the detectability is only

retained in low latitudes if only land data are used, sug-

gesting that early detection might now be possible over

tropical land areas if enough observations were available.

ANT signals are also decisively detectable over indi-

vidual continents in our experiments except for North

America and Europe where the larger internal variability

associated with the NAO might have weakened the signal-

to-noise ratio. Nevertheless, signals remain detectable in

Pm and PI. The greater detectability of the ANT signal in

Pm and PI is mostly due to the relatively lower internal

variability, which is a characteristic of variables located

near center of the GEV distribution. In contrast, externally

forced signals were less detectable in P20, which is situated

in the tail of the distribution. This suggests there is a better

chance to detect ANT signal if Pm or PI is used. GHG and

NAT signals are also detectable but less robustly. Note

however, that NAT signals were more easily detected in

the low latitudes, as in surface air temperatures (e.g.,

Cubasch et al. 1997; Meehl et al. 2003; Min and Hense 2007).

It is found that the ENSO-like change of mean state

under external forcing in the ECHO-G model plays a

crucial role in determining extreme precipitation change,

especially over the tropical ocean. Since an ENSO-like

mean state change in response to ANT forcing is model-

dependent (Meehl et al. 2007a), there may be an increased

chance for early detection in precipitation extremes if one

focuses on the areas and seasons that are less affected by

such a response. Furthermore, it is also necessary to con-

sider the effects of atmospheric circulation change on

precipitation (Emori and Brown 2005; Meehl et al. 2005;

Pall et al. 2007).

Detectability was not much affected when we repeated the

analyses on the data grid where there is good observational

coverage during the latter half of the twentieth century.

However, we found that signal detectability is highly sen-

sitive to inter-model uncertainty. When simulations from

another GCM were used to construct the fingerprint, the

ANT signal was only detectable on global and hemispheric

scales, and results for smaller regions were not very robust,

suggesting that the goal of early detection is more realistic at

the global and hemispheric scales.

We found that globally averaged extreme precipitation

responses in the simulated twentieth century climate under

different forcing factors (ALL, ANT, GHG, and SUL) are

in overall concert with the Clausius-Clapeyron constraints.

This is in agreement with previous studies using future

scenario simulations (Allen and Ingram 2002; Trenberth

et al. 2003; Pall et al. 2007; Kharin et al. 2007). This

robustness of moisture availability constraints on the

extreme precipitation changes supports the higher detect-

ability in extreme precipitation than in the mean

precipitation (Hegerl et al. 2004).

This study has a few methodological distinctions from

previous studies. First, detectability is assessed using tran-

sient climate simulations of the entire twentieth century

rather than of the latter half of the twentieth century (Kiktev

et al. 2003, 2007) or future simulations (Hegerl et al. 2004).

Second, we consider temporal variations of precipitation

extremes rather than just the long-term trends (Kiktev et al.

2003, 2007; Hegerl et al. 2004). This has the potential to

improve the detectability of external signals, especially if

decadal variation is substantial. Third, different spatial

domains ranging from the globe to individual continents

were considered. Fourth, our perfect model analysis is con-

structed more realistically by considering ALL simulations

as observations and the other experiments as possible

explanations.
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It should be noted that the annual maxima used here

may be drawn from particular seasons over the large parts

of regions, such as monsoonal areas, where strong seasonal

signatures in precipitations exist. Therefore the use of

seasonal maxima may not substantially increase detect-

ability. On the other hand, incorporating seasonality could

be beneficial on regional scales by separating mechanisms

of extreme precipitations into convection versus large-scale

process.

It should also be noted that this study is more a res-

ampleable model experiment as we use three realizations to

define the observations. That is, the data set used as

observations is three times as large as would be realizable

in the real world. The major aim of utilizing the three

member ensemble is to obtain more reliable estimates of

extreme precipitation indices from larger number of sam-

ples, but this might reduce noise related to sampling error

on the observations and affect detectability. In this regard,

we conducted a simple test by comparing GEV parameters

estimated from a single realization to those from three

realizations. The L-moment method (Hosking 1990) was

applied for GEV parameter estimation with the single

realization of observations due to a small number of

samples, i.e. 20 annual maxima, because the ML method

can occasionally produce unreliable estimates when sample

size is too small (Martins and Stedinger 2000, Kharin et al.

2005). We found very similar spatial and temporal patterns

of the two GEV parameters obtained from single and three

realizations, suggesting that the internal (or intraensemble)

variability is relatively weak compared to the mean

response in the ALL experiment with the ECHO-G model.

Finally, it should be pointed out that the results pre-

sented here probably represent the upper limit of

detectability in extreme precipitation. Comparison between

model grid data with station-based observations (e.g.,

Osborn and Hulme 1997) remains a challenge. Reanalyses

are also not of sufficient quality in this respect (Kharin

et al. 2005). More importantly, multimodel analyses using

historical simulations should be carried out to consider the

uncertainty arising from different model responses

(Tebaldi et al. 2006; Kharin et al. 2007). Also, it would be

imperative to include high resolution models that could

better resolve regional climate features associated with

precipitation extremes and to test the sensitivity of

detectability to model resolution: Can the lower detect-

ability at smaller regional scales be improved by increasing

model resolutions?
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