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Department of Applied Mathematics and Statistics, University of California, Santa
Cruz, U.S.A.
bruno@ams.ucsc.edu, www.ams.ucsc.edu/∼bruno

Summary. Posterior distributions for the joint projections of future temperature
and precipitation trends and changes are derived by applying a Bayesian hierachi-
cal model to a rich dataset of simulated climate from General Circulation Models.
The simulations here analysed constitute the future projections on which the In-
tergovernmental Panel of Climate Change based its recent summary report on
the future of our planet’s climate, albeit without any sophisticated statistical han-
dling of the data. Here we quantify the uncertainty represented by the variable
results of the different models and their limited ability to represent the observed
climate both at global and regional scales. We do so in a Bayesian framework, by
estimating posterior distributions of the climate change signals in terms of trends
or differences between future and current periods, while we fully characterize the
uncertain nature of a suite of other parameters, like biases, correlation terms and
model-specific precisions. Besides presenting our results in terms of posterior
distributions of the climate signals, we offer as an alternative representation of
the uncertainties in climate change projections the use of the posterior-predictive
distribution of a new model’s projections. The results from our analysis can find
straightforward applications in impact studies, which necessitate not only best
guesses but a full representation of the uncertainty in climate change projections.
For water resource and crop models, for example, it is vital to use joint projections
of temperature and precipitation in order to best represent the characteristics of
future climate, and our statistical analysis delivers just that.
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1. Introduction

The latest estimates based on observed records indicate that the global average
annual temperature of the Earth’s surface has increased by as much as 0.7 de-
grees Celsius since the late 19th century, with most of the warming observed in
the last 50 years. The scientific consensus, recently summarized by the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-
AR4) (IPCC, 2007) is that a significant portion of this increase, and most of
the warming in the last 50 years, is very likely attributable to human activities,
most importantly the burning of fossil fuels, cause of a steady increase in the
concentrations of greenhouse gases (GHGs) in the atmosphere. The same scien-
tific consensus, made of hundreds of climate scientists from around the world,
has vetted an ever-increasing body of peer-reviewed literature based mainly on
climate model experiments. These studies unequivocally predict even larger fu-
ture warming, in the absence of significant curbing of GHG emissions, with 2
degrees Celsius of additional warming being generally viewed as a lower bound
estimate of the expected global change at the end of the 21st century, under so
called “business as usual” emission scenarios. Global average increases in tem-
perature are however just projections from a marginal aspect of multi-faceted
regional climatic changes that are very likely to affect societies and ecosystems
in adverse more than beneficial ways. If high latitude regions may see warmer
temperatures as benefitial, enjoying longer growing seasons and lower heating
costs, most of the world will see less positive changes, in all likelihood: cli-
mate models and scientific understanding of climate processes project changes
in variables other than average temperature, like precipitation and wind, their
patterns and intensities. More frequent and intense extreme events are antici-
pated, and the possibility is not ruled out of exceeding systemic thresholds for
climate variables causing abrupt changes, with potentially much more danger-
ous consequences than simple gradual shifts. Associated with climatic changes,
economic, biological and health-related impacts are then to be expected, ranging
from changes in agricultural yields and forced abandonment and geographical
shifts of crops, to disruption of ecosystems, from depletion of water resources
to easier spread of vector-borne diseases.

The recent scientific and political debates have generally settled over the
qualitative nature of the problem, but a quantification of the risks associated
with it is far from straightforward. There exist considerable uncertainties, in
terms of limits to predicting future changes in the drivers of GHG emissions
(population, economic growth, technology, international collaboration, etc.), of
incomplete scientific understanding of the response of the climate system to
those emissions, and of intrinsic randomness, or unpredictability, of the pro-
cesses involved. From the size of the changes to be expected to their timing;
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from the significance of their impacts to the costs of adaptation and mitigation
strategies; every link of the chain from GHG emissions to impacts to the effects
of response strategies is affected by uncertainties.

In this paper we tackle a particular aspect of these uncertainties, namely the
modeling uncertainties affecting, under a specified scenario of future GHG emis-
sions, the size of expected regional changes in temperature and precipitation.
Our goal is to characterize these uncertainties through a formal statistical treat-
ment of the observed data and the ensemble of model output on which future
projections are based, and produce bivariate probability distribution functions
of future regional climate changes with respect to a climatological baseline, as,
for example, contours of area-averaged temperature and percent precipitation
change at a given time in the course of the 21st Century, for a specific region and
season. Probabilistic projections of climate change at global and regional scales
are a developing area of research, of late (Collins and Knight, 2007). Within
it, one particular approach seeks to take advantage of ensembles of global cli-
mate model experiments, in particular those that have been occasioned and
facilitated by the international activities of the IPCC. The same approach we
take here, building on the already published work in Tebaldi et al. (2004, 2005);
Smith et al. (2008). In those analyses univariate PDFs of average temperature
or precipitation change at regional and seasonal scales were produced, based on
multidecadal averages of the two climate variables for current conditions (usu-
ally 1961-1990 or 1980-1999 averages of observed and model simulated data) and
future (2080-2099 averages of model output). Here we further that approach in
two main directions. We choose to model temperature and precipitation jointly,
and we model the entire length of the observed and simulated time series, thus
explicitly quantifying trends in the data. Besides the interest in a more com-
plete representation of the uncertainty for the entire time horizon at hand, we
strive to provide this type of results for the sake of impact studies (e.g., fu-
ture changes in crop yields or water resource management modeling), which
usually need future climate scenarios involving both variables jointly and for
which trends over time, rather than static snapshots of change may be of value.
Section 2 introduces the statistical approaches that constitute a background for
our analysis, and describes our data. Section 3 presents the statistical model
for joint temperature and precipitation trends. Section 4 applies the method
to a specific set of observations and simulations by general circulation models
(GCMs) archived by the Program in Climate Model Diagnosis and Intercompar-
ison (PCMDI; http://www-pcmdi.llnl.gov) and used in the IPCC-AR4. In
Section 5 we summarize the most important aspects of our method and its ap-
plications and highlight some general issues that will require further treatment,
if an improved approach to this problem is to be pursued.
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2. Combining multi-model ensembles

2.1. Relevant published methods

It has been less than ten years since concerted efforts among climate modeling
centers started to make available results from standardized, and thus compara-
ble, experiments. With the IPCC activities, such multi-model data repositories
have grown in size both as the number of modeling centers developing GCMs
increased and as the range of variables they submit to the common archive
becomes larger. There are two main approaches at combining multi-model en-
semble output. One that simply considers each model as equal, and produces
simple ensemble averages and measures of inter-model variability like standard
deviations and ranges. The other, formalized by several published methods in
different ways (Greene et al., 2006; Furrer et al., 2007), stems from the be-
lief that not all models are to be trusted equally, but some are better than
others and should receive more weight in the combination of the results. The
REA (Reliability Ensemble Average) approach in Giorgi and Mearns (2002)
was the first published method that tried to quantify this belief by designing
– albeit rather arbitrarily – weights so that models characterized by small bias
and projections that agree with the ensemble “consensus” were rewarded while
models that perform poorly in replicating observed climate and that appear as
outliers were discounted. The REA approach motivated the work in Tebaldi
et al. (2004, 2005) and Smith et al. (2008). Here we give a brief overview of
the statistical modeling in these papers, since we consider our present proposal
a natural extension of their fundamental paradigm. The Bayesian analysis,
summarized and discussed for a statisticians’ audience in Smith et al. (2008),
treats the unknown quantities of interest (current and future climate signals,
model precisions) as random variables, for which reference prior distributions
are chosen. The likelihood assumptions cause the form of the final posterior
estimates of temperature change (or, separately, precipitation change) to be
weighted average of the individual models’ projections. Differently from the
heuristic approach in Giorgi and Mearns (2002), however, the weights’ formula
is a direct result of the probabilistic assumptions made explicit in the likelihood
– and prior – choices. Gaussian distributions are stipulated for the current
(Xi’s) and future (Yi’s) projections from model i in a given region and season,
centered around the true climate signals, µ and ν respectively, with model-
specific variances, λ−1

i , and a multiplicative parameter for the future precision
that accounts for the extra uncertainty of future projections. Thus,

Xi ∼ N(µ, λ−1
i )

Yi ∼ N(ν, (θλi)−1).
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Similarly, the observed current climate, X0 is modelled as a realization from a
Gaussian distribution centered around the current climate signal µ, and whose
variance is estimated through the observed record, yielding

X0 ∼ N(µ, λ−1
0 ). (1)

Through Bayes theorem, evaluated numerically by Markov Chain Monte
Carlo (MCMC) methods, a posterior distribution for the true climate signals
is derived, and straightforwardly translated into a probability distribution for
climate change, defined as ν − µ. As a consequence of the distributional as-
sumptions the criteria of bias and convergence, in an analytical form similar to
the form of the REA weights in Giorgi and Mearns (2002), shape the posterior
distributions. In fact, conditionally on λ1, . . . , λM , the posterior means for µ
and ν are

µ̃ =

(∑
i

λiXi

)
/

(∑
i

λi

)
and

ν̃ =

(∑
i

λiYi

)
/

(∑
i

λi

)
,

where the posterior mean of the model-specific λi’s is approximately

λ̃i ≈
a + 1

b + 1
2 [(Xi − µ̃)2 + θ(Yi − ν̃)2]

. (2)

The first term in the denominator in equation (2) is a measure of bias, being the
distance of the present climate average as simulated by model i from the optimal
estimate, µ̃, of current climate. The second term is a measure of convergence,
computing a distance between the model’s future projection and the future
climate’s posterior mean (ν̃). The terms a and b in (2) are the parameters of the
common prior for all λi’s, a modeling choice that ensures a balanced assignment
of weight across GCMs. They are in turn modeled as random variables with
their own (hyper-) prior distributions.

2.2. Data
In Tebaldi et al. (2004, 2005) and Smith et al. (2008) the data consist of ob-
served and modeled quantities, averaged over regions and seasons. An estimate
of the natural variability of the observed averages is used to fix the value of
the precision component λ0 in the likelihood of the observed data (1). Modeled
multi-decadal averages of current and future temperature or precipitation, as
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simulated by a number of GCMs, are then considered. Current climate sim-
ulations are usually labeled “all-forcings” runs, because modelers impose the
best approximation to the historic external forcings, like solar cycle estimates,
volcano eruptions (known to have a short-lived cooling effect on the global tem-
perature) and anthropogenic emissions of GHGs and sulfate aerosols leading to
the observed concentrations in the atmosphere. When future climate modeling
is concerned, standard scenarios of future emissions are adopted in concert and
run by the different modeling centers. The scenarios vary in their assumptions
of GHGs production and they usually span a range from low to mid to high
emissions. Our analysis will be conducted conditional on a specific scenario, so
we are not concerned with the uncertainty pertaining to future economic growth
and social development that may lead to the alternative scenarios.

Differently from Tebaldi et al. (2004, 2005) and Smith et al. (2008), we work
with time series of decadal averages, i.e., τ0 = 6 decades of observed temperature
and precipitation records, and τ∗ = 15 decades of simulated temperature and
precipitation model output. The number of models contributing output to the
archive varies between 15, for the high-emissions scenario, and 18, for low and
mid emissions. Their output has been registered to a common grid, whose
horizontal resolution is on the order of 250 Km. along the longitude and latitude
directions. For our analysis we average the grid point output within the regions
of interest. We then analyse one region and one season at a time.

Let Ot, t = 1, . . . 6 a two-component vector of observed temperature and log-
precipitation averaged over a given region and a given season for all the years
of a given decade. The time index, t, corresponds to the decades centered at
1955, 1965, . . . , 2005. Let Xjt, t = 1, . . . , 15 be the vector similar temperature
and log-precipitation averages (to handle the positive domain and the skewed
distribution of precipitation) derived from the j-th GCM output. Here the time
index corresponds to the decades centered at 1955, 1965, . . . , 2005, 2015, . . . , 2095,
so that both historical and future periods are considered.

3. A joint model for temperature and precipitation

Our fundamental approach is that of Bayesian hierarchical models. The basic
assumptions are the following:

• The vector of observed values Ot is a noisy version of the underlying
temperature and precipiatation process, with correlated Gaussian noise.

• The true process is piecewise linear, for both temperature and precipita-
tion. We hypothesize an “elbow” at year 2000, which accomodates our
expectation that future trends will be steeper than the observed ones. This
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expectation is informed by the behavior of model simulations of, where
the increasing future GHG concentrations enhance the rate of change in
the computer-generated time series. A more sophisticated model could
use a random change point approach, but given the coarse resolution of
our time dimension and the limited amount of data at our disposal we
choose to fix the position of the elbow here.

• The model output Xjt is a biased and noisy version of the truth. We
assume an additive bias and a bivariate Gaussian noise.

• We expect the model biases to be related across the population of models
Our approach provides an estimate of the overall bias for the ensemble of
model simulations.

To formulate a statistical model we use superscripts T and P to refer to the
temperature and precipitation components of the different vectors. Thus,

OT
t ∼ N [µT

t ; ηT ] for t = 1, . . . , τ0

OP
t ∼ N [µP

t + βxo(OT
t − µT

t ); ηP ] for t = 1, . . . , τ0 (3)
where βxo ∼ N [β0, λo],

XT
jt ∼ N [µT

t + dT
j ; ξT

j ] for t = 1, . . . , τ∗ and j = 1, . . . ,M

XP
jt ∼ N [µP

t + βxj(XT
jt − µT

t − dT
j ) + dP

j ; ξP
j ]

for t = 1, . . . , τ∗ and j = 1, . . . ,M.

Here all distributional assumptions for the data are conditional on the quantities
appearing in the right-hand side of the ∼ symbol. In Equations (3) we specify
bivariate normal distributions for Ot and Xjt using conditionality. After ac-
counting for the underlying trends and biases terms, βxo, βx1, . . . , βxM are used
to model the correlation between temperature and precipitation. We assume
that all the parameters are random with the exception of βxo, η

T abd ηP , which
we estimate on the basis of the observed records.

We assume that the time evolution of true climate process µ′
t = (µT

t , µP
t ),

consists of a piecewise linear trend in both components, so(
µT

t

µP
t

)
≡

(
αT + βT t + γT (t− τ0)I{t≥τ0}
αP + βP t + γP (t− τ0)I{t≥τ0}

)
. (4)

In Equation (4) we account for the fact that we expect the future trend over the
period 2000–2100 to change slope. Since we expect the trend for temperature
to be steeper in the future, one could go as far as to hypothesize that γT > 0.
This could be incorporated in the prior for this parameter. In this paper we
adopt a non-informative prior.
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The priors for the parameters in Model (3) are specified hierarchically by
assuming that βxj ∼ N [β0, λB ], dT

j ∼ N [aT ;λT
D], dP

j ∼ N [aP ;λP
D] for j =

1, . . . ,M ξT
j ∼ G[aξT , bξT ] and ξP

j ∼ G[aξP , bξP ]. λo is fixed to a value es-
timated on the basis of the observed record. All the other quantities in this
priors are assigned vaguely informative priors β0, a

T , aP ∼ U [−∞,+∞] and
λB , λT

D, λP
D, aξT , bξT , aξP , bξP ∼ G[g, h], where g = h = 0.01. Similarly, for the

parameters in (4), we assume αT , βT , γT , αP , βP , γP ∼ U [−∞,+∞].
Notice that the correlation coefficients, βxo and βxj , have a common mean,

β0, and the biases, dT
j and dP

j , have prior means, aT and aP possibly different
from zero. The likelihood and priors form a conjugate model, and a Gibbs
sampler can be programmed to explore the posterior and predictive distributions
for this model, with the only complication of a Metropolis-Hastings step which is
used to generate sample values for aξT , bξT , aξP , bξP . In an appendix we describe
the full conditional distributions of all the random quantities in our model, and
thus the implementation of the Markov Chain Monte Carlo algorithm.

We are assuming that each model has its own precision in simulating the
true temperature and precipitation time series, but we impose common priors
to ξT

j and ξP
j ∀j, whose parameters are in turn estimated by the data. This has

been shown in Smith et al. (2008) to produce robust estimates of the relative
precisions of the different GCMs, not overly sensitive to small perturbations in
the GCM’s trajectories. It also provides a data-driven sampling distribution for
a new GCM, allowing us to perform cross-validatory exercises and to offer the
predictive distribution of a new bivariate time series {X∗t} as a probabilistic
quantification of the uncertainty in future projections. We will discuss this in
detail in Section 4.

The model-specific bias terms dT
j , dP

j are assumed constant over the length of
the simulation. They model systematic errors in each GCM simulated variables.
All the GCM biases for temperature, like all GCM biases for precipitation, are
realization from a common Gaussian distribution, whose mean (aT , or aP ) may
be different from zero, when the set of model trajectories is distributed around
the truth non-symmetrically. We do not expect a systematic behavior across
models when it comes to precipitation versus temperature biases, that is, we
do not expect that models having relatively larger temperature biases would
show relatively larger precipitation biases, so we do not model a correlation
structure between dT

j , dP
j . In fact, this correlation structure, if there at all,

would not to be identifiable/separable from the correlation modeled through
βxo, βx1, . . . , βxM , given the configuration of the present dataset.

All the remaining parameters of the model have non-informative, conjugate
distributions. Notice that we use improper priors for the location parameters
of the Gaussian distributions and linear regression parameters in the correla-
tion structure and in the trend structure, and proper but diffuse priors for the
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precision parameters and as hyper-priors of the ξ. parameters.

4. Current and future climate trends: a regionally aggregated perspec-
tive under a mid-range emission scenario

We apply the statistical model described in Section 3 to a set of climate model
simulations prepared for the IPCC-AR4. We present results at the global av-
erage scale (land only, from now on indicated as GLOB) and at two different
regional scales. Starting with the work in Giorgi and Mearns (2002) regional
assessment of climate change has been presented on standard subcontinental
regions, that have become known as “Giorgi regions”. These regions are very
large, on the order of 107Km2 and the usefulness of treating jointly temperature
and precipitation at this level of aggregation is questionable. Nevertheless, for
consistency with the main strain of analyses already published, we adopt one of
them here, the region of Western North America (WNA), defined as the land
area in the large solid box in Figure 1. But since nothing prevents us from
applying the same statistical model to smaller or larger regions, and in par-
ticular to region tailored to specific impact analysis, where projections of joint
temperature and precipitation change could be used to drive impacts models
(e.g., crop models, as in Lobell and Field (2007) or water resource management
models, as in Groves et al. (2008)), we are also going to define a subset of this
region over California (CAL) shown as the smaller dashed box in Figure 1, and
run the same analysis at this finer scale.

We will produce two kinds of probabilistic projections. One consists of the
bivariate posterior distribution of the joint change in temperature and precip-
itation signal, which will be derived as a marginal projection from the joint
posterior distribution of µt by computing the difference between time averages
from two periods. We choose the last 20 years of the 20th century as represen-
tative of current climate, and the last 20 years of the 21st century as our future,
and we indicate the two-dimensional random vector by (∆T,∆P ). We expect
the posterior distribution of temperature and precipitation change to have a
much smaller width than the range of the individual GCM projections, since
it represents the estimate of the models’ central tendency, and its uncertainty.
The width of the posterior distributions is an inverse function of the number
of GCMs used to estimate it, consistently with the assumption of independence
among the individual GCMs. However, it is a widespread belief in the climate
change community, as we discuss in Section 5, that the individual model pro-
jections are to be regarded as spanning the actual range of uncertainty of what
is expected as future climate. In a way, such perspective invites us to present
the posterior-predictive distribution of a new GCM projection as an alternative
representation of this uncertainty. The width of the predictive distribution of
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Fig. 1. The two regional areas chosen to exemplify the results our statistical model.
The larger box delimits the WNA region while the smaller box delimits the CAL. Note
that only land points within this geographical areas are averaged. We estimate the
parameters of our model separately for the regions WNA, CAL and GLOB, repeating the
analysis for Boreal winter (DJF) seasonal averages and Boreal summer (JJA) seasonal
averages.
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the quantity (∆XT
∗ ,∆XP

∗ ), if the statistical model is consistent with the data,
will be similar to the range of GCM projections and will not depend on the
number of GCMs included in the analysis.

Other aspects that will be explored for this dataset are: the significance of
the trend in the temperature and precipitation, established by analyzing the
posterior distribution of βT and βP ; the significance of the change in the trend
at 2000, which can be assessed by considering the posterior distributions of
γT and γP ; comparison of the posterior distribution of the correlation coeffi-
cient β0 to the observed value βxo, in order to gauge the overall consistency of
the ensemble in simulating the joint behavior of temperature and precipitation;
evaluation of the posterior distribution of the parameters aT and aP to assess
the value of the systematic bias common to the GCMs; evaluation of the poste-
rior distributions of the individual parameters dT

j , dP
j to quantify model-specific

biases. Finally, we should be concerned with testing the goodness of fit of our
model. We do so by leave-one-out cross validation, thereby fitting the model
on all but one GCM’s projections, calculating the predictive distribution of the
left-out (∆XT

∗ = ∆xT
∗ ,∆XP

∗ = ∆xP
∗ ), and validating the bivariate distribution

by testing that P (∆XP
∗ <= ∆xP |∆XT

∗ = ∆xT ) is distributed as a uniform
distribution, independent of P (∆XT

∗ = ∆xT ) (Rosenblatt, 1952).
Figures 2 through 7 represent examples of the results of our estimates for

GLOB, WNA and CAL and two seasons, December-January-February (DJF)
and June-July-August (JJA). The six panels of each figure show bivariate and
univariate distributions and trends estimates for average temperature and pre-
cipitation in a region/season combination. Let us focus at first on the wide
contour lines of each figure, and the corresponding univariate PDFs, represent-
ing marginals of the predictive distribution for a new GCM projection. The two
sets of contours in the first panel describe the predictive distribution of average
current and future climate. In all cases, the contours shift unambiguously to the
right because of a significant increase of the average temperatures. In some of
the six examples the contours also shift upward, signaling a significant increase
in precipitation. In the second panel the difference in current and future climate
is described by a single set of contours. The shape of these contours are suggest-
ing a negative correlation only in the case of WNA and CAL in JJA, otherwise
the shape is not appreciably different from spherical, indicating absence of a
significant correlation at this level of regional and seasonal aggregation. The
dots on these pictures show the individual GCMs’ projections contributing to
the estimation (18 of them). They are consistent with the large contours and
the marginal PDFs by eye-inspection.

Our model is fitting the entire length of the GCM trajectories as they simu-
late temperature and precipitation along the 15 decades centered at 1955, 1965,
and so on up to 2095. The two panels in the center row show in thin lines the
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Fig. 2. Global average (GLOB) temperature and precipitation projections in DJF. Top
left: distributions of current and future temperature and precipitation, and models’ pro-
jections for the same periods (one color per model). Wide contours correspond to the
predictive distributions of a new GCM’s projections, the much tighter small contours cor-
respond to the posterior distributions of the climate signal. Top right: Analogous plot for
temperature and percent precipitation changes. Center left: Trajectories of average pre-
cipitation from the models (thin lines) and observations (thick line with marks), 95% pos-
terior probability intervals (tight pair of dashed lines) and 95% predictive intervals (wider
dashed lines). Center right: Same for temperature. Bottom left: Marginal predictive of
percent precipitation change and model projections (dots). Thick segment at bottom
indicates the 95% posterior probability interval. Bottom right: Same for temperature.
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GCM trajectories for precipitation (left panel) and temperature (right panel)
together with the observed time series in a thick line joining 6 dots (correspond-
ing to the six decades centered at 1955, 1965 and so on up to 2005, the last being
estimated only on the basis of data up to 2006). Two sets of dashed lines draw
the 95% probability intervals of the posterior and the predictive distribution for
– respectively – the trends and a new GCM’s trajectories. One can appreciate
how the posterior distribution heavily weights the observations to position the
absolute values of the climate signals’ trajectories, and uses the models only
to estimate the slopes of the piecewise linear process. This helps explaining
the position of the two small contours in the first panel of the figures They are
the contours of the posterior distributions of the bivariate climate signal, for
current and future periods, which in some cases results significantly misaligned
with the consensus of the models’ projections, and thus the mode of the pre-
dictive distribution. In these instances, the statistical model has estimated a
large systematic bias in the ensemble. Notice though that even in the cases
when that is true, the misalignment of the modes of posterior and predictive
disappears in the contours of the climate change distribution. This result gives
support to the practice, popular among climate researcher, to always consider
the difference projected by each model, not the absolute value of their current
and future projections, according to the belief that the systematic bias would
thus cancel out.

Figure 8 answers the questions about the significance of the trends in the
climate signal time series. Recall that we model the trends as piecewise linear,
i.e., simplifying the notation of Section 3, as βt + γ(t − τ0)I{t≥τ0}. The three
panels in the left column show posterior distributions (as boxplots) of the co-
efficients of temperature trends in the three regions. Three boxplots for each
season are shown side by side. The first three boxplots in each panel describe
distributions of β, γ and their sum, for DJF temperature, thus representing
the current period trend, its increment (or decrement) at the beginning of the
future period, and the future trend. In all cases the boxplots are significantly
above the zero line, leading to the conclusion that all the trends are positive,
significant and they increase significantly in the future.

In the case of precipitation trends the conclusions are mixed. For the GLOB
region in DJF all three coefficients are positive and significantly different from
zero, suggesting increasing trends in the historic global averages, and increasing
trend, significantly larger, in the future. In JJA the trend becomes significantly
positive only in the future. For WNA there is a positive and significant increase
in precipitation in store for future winters, while current DJF trends and JJA
trends, both current and future, are estimated as not significantly different from
zero. For CAL in DJF the trends are all constant, while in current and future
JJA the trends appear significantly negative, but with no significant change in
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Fig. 3. As in Figure 2, for global averages (GLOB) in summer (JJA).



Projections of Temperature and Precipitation Change 15

Fig. 4. As in Figure 2, for Western North America (WNA) in winter (DJF).
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Fig. 5. As in Figure 2, for Western North America (WNA) in summer (JJA).
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Fig. 6. As in Figure 2, for California (CAL) in winter (DJF).
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Fig. 7. As in Figure 2, for California (CAL) in summer (JJA).
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Fig. 8. Posterior distributions of the coefficients modeling the trend in the time series of
the signal of temperature and precipitation. Each panel shows for one of the regions,
and either temperature (left column) or precipitation (right column), three trend coeffi-
cients. The first three boxplots in each panel show trends in DJF, the last three show
trends in JJA. For each triplet, the first boxplot represents the posterior distribution of
the baseline trend β, the second boxplot reproduces the distribution of the incremen-
tal value starting at 2000, γ, the last boxplot shows the quantity β + γ, representing
the future trend during the period 2000 to 2100. The boxes delimit the 25th and 75th

percentiles of the distribution, a thick line within each box marks the median, and the
whiskers extend up to 1.5 times the interquartile range from the box
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slope along the length of the time series. These results are also reflected in
the position of the posterior distributions of the climate signals in the contour
plots of Figures 2 through 7. There, the x-axis always shows only positive
values, confirming a significant trend for temperature in all cases. The y-axis
is instead always including zero, since the predictive contours are in all cases
but one (GLOB, JJA) straddling the zero line in the vertical dimension. The
red contours of the posterior distributions are however contained in the positive
region of the y-axis for GLOB DJF and JJA, and WNA DJF; they are contained
in the negative region for CAL JJA, and only for WNA JJA and CAL DJF the
signal of change for precipitation is symmetrically distributed around the zero
line.

In Figure 9 we show results regarding the estimate of correlation between
temperature and precipitation. In our model the current climate correlation
and a measure of its uncertainty are estimated through the observed record,
and the corresponding parameters are held fixed. The posterior distribution is
then obtained for all the correlation parameters that are model specific, βxj ,
and for the mean parameter of the prior distribution, β0, and its precision,
that is hypothesized to be common to both modeled and observed climate.
By doing so we let the observed value of the correlation drive the posterior
estimates, whenever the observed record has enough information to provide a
firm estimate of the correlation, with small uncertainty. Figure 9 presents the
posterior density of the parameter β0, as the first boxplot to the left, and those
of the suite of model-specific parameters βxj , together with the observed value
that we indicate by a solid horizontal line. The band delimited by the dashed
lines corresponds to two standard deviations around the estimate of βxo. In all
but two cases the posterior distribution of β0 lies within the dashed lines, an
indication that the observed value of the coefficient was effective in guiding the
overall estimate. There are two region/season combinations, however, where all
posterior distributions lie outside of the dashed band, at least for a significant
part of their domain. We interpret these results by noticing how in both cases
the model specific estimates are in overall agreement with one another, and
fairly tight (i.e. precise) as suggested by the relatively narrow extent of the
whiskers. In this cases the one fixed parameter is not enough to overcome the
consensus estimate of the models, which pulls the posterior distribution of the
overall correlation coefficient β0 towards itself. Sensitivity analysis results –
not shown here – indicate that this behavior can be overcome by increasing the
apriori precision of the observed correlation coefficient, as should be expected.

Our model delivers many other marginal posterior distributions of param-
eters that may be of interest, in isolation or jointly, or of any deterministic
function of theirs. For example one may be interested in analyzing the poste-
rior distribution of climate changes at a closer time in the future, or we could
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Fig. 9. Posterior distributions of the coefficients introducing correlation between the
(detrended) means of temperature and precipitation, for the six regional/seasonal anal-
yses. The first boxplot in each panel represents the posterior of the mean parameter
in the prior distribution, β0, from which we hypothesize that both the observed (indi-
cated by the horizontal solid line, together with its two-standard deviations bounds by
dashed lines) and the GCM-specific coefficients are drawn. The GCM-specific coeffi-
cients’ posterior distributions are shown by the suite of colored boxplots to the right of
the observed.
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ask about model-specific, or overall biases, and model-specific precisions in sim-
ulating temperature or precipitation, or both.

Hindcasting of observed temperature trends could be used to assess the
reliability of the ”projections” (in this case aimed to the past) derived from
the GCMs by our method. The small numbers of observed decadal means,
however, and the fact that we are estimating trends makes us look for a different
approach at model validation. In fact, we are not aware of any study that has
used hindcast from GCM for the oberved record of the last few decades as an
independent test of reliability, probably due to the fact that GCM development
uses observed data in many fashions and makes comparison with recent past
trends less of a rigorous test than we would like. Obviously, we do not have a
straightforward way to validate our probabilistic projections of future climate,
either, but we have a natural way to confirm that our modeling assumptions
are consistent with the data at hand, namely, that our predictive distributions
are consistent with our suite of GCM projections. Thus, separately for each
of the six analyses, we left one GCM out in turn, computed three bivariate
predictive distributions, for current climate, future climate and climate change
(corresponding to the three kinds of large contours we presented in Figures 2
through 7). We then computed the two sets of pairs (Z1 = FT (XT

∗ = xT
∗ ), Z2 =

FP |T (XP
∗ = xP

∗ )) for both current and future time windows, and the pair (Z1 =
FT (∆XT

∗ = ∆xT
∗ ), Z2 = FP |T (∆XP

∗ = ∆xP
∗ )) where the first univariate CDF

is simply the marginal predictive distribution of temperature change, while the
second CDF is the predictive distribution of precipitation change, conditional
on the corresponding simulated temperature change. We do this in turn for all
18 models and we test the null hypothesis that the pairs of (z1j , z2j) for j =
1, . . . , 18 are independent and identically distributed random variates, sampled
from uniform distributions on the (0, 1) interval. For all tests (we have 36 of
them, since we test the uniform distribution assumption for two samples of 18
values, for three different bivariate distributions and 6 different region/season
combination) the null hypothesis was rejected only three times out of 36, a
result not surprising in the context of multiple testing. The correlation between
the two variables of the pair (Z1, Z2) resulted significant (above 0.46) only in
one case out of 18, again not enough to raise concern on the validity of the
independence assumption.

5. Standing issues and conclusions

We have modelled in a Bayesian hierarchical framework a complex dataset com-
posed of decadal means of temperature and precipitation for specific regions and
seasons, as observed and as simulated by a suite of state-of-the-art GCMs run-
ning experiments under specified GHG emission scenarios. Our model jointly
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estimates a suite of uncertain parameters giving a full characterization of the
climate evolution over the recent past and the future decades. The statistical
model also provides a measure of the uncertainty that resides in the observed
trends, confounded by natural variability, in the observed relation between tem-
perature and precipitation anomalies, and in the limited ability of GCMs to sim-
ulate the evolution of our climate. The latter are due to necessary approxima-
tions of the fundamental climate processes that cannot be explicitly represented
at this time in the evolution of climate modelling and computational resources,
and thus require a full characterization if the results of the GCMs are to be used
to inform adaptation and mitigation decisions and policy. Our statistical treat-
ment produces a wealth of information, but perhaps most importantly delivers
joint PDFs of temperature and precipitation change that can be naturally ap-
plicable to impact studies, overcoming the usual empasse experienced by other
methods that provide only separate (marginal) projections of the two variable,
while for most applications it is their joint behavior to be eminently relevant.
From the statistical point of view we had to impose a number of simplifying as-
sumption, by modeling the trend as a piecewise linear function, by allowing only
an additive bias for the model simulations and by hypothesizing that it remains
constant over the length of the simulation. We are also letting the observed
trends and correlation heavily inform the final posterior estimates, choosing
to overlook the problems inherent to observational uncertainties. These would
be most compelling for climate change projections in under-developed regions
of the world where data sparsity challenges robust estimates of historic trends
and other parameters, and model validation is difficult to perform as a conse-
quence. Another issue worth highlighting resides in the choice of treating the
GCMs as independent pieces of information, while one could argue that there
exist “families” of GCMs sharing modules and solutions to the representation
of some of the processes at play. Modeling the dependence among GCMs would
probably make the posterior distribution of the parameters less precise, since
in our model each GCM contributes an independent piece of information to
the estimation. Last but not least, we will not stress enough the limitations in
the representation of the uncertainty based on this specific ensemble of models
(Tebaldi and Knutti (2007)). Climate models use parameters to describe sub-
grid processes, and the parameter values are not exactly known, they are not
derivable by physics law, but they are approximated by observational studies
and modelers’ expert judgment, and thus are rather uncertain. The proper way
to deal with such uncertainties would be to introduce simulation loops where
for each loop (i.e., climate model run) those parameter values would be varied.
At present such many climate model runs (in the order of several thousands
because many unknown parameters are involved) are computationally not fea-
sible, even if experiments in so called perturbed physics ensembles are being
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conducted for at least one climate model, at the Hadley center of the MetOffice
in the UK (Murphy et al. (2007)) and we await the time when this approach will
be shared by all climate model development centers. In the meantime, we see
this approach as intuitive in the modeling assumptions, and easily modifiable
in the presence of richer datasets, that may permit to model more sophisticated
biases and GCM interdependencies and uncertainties. Thus, for the time being,
we are confident in the results of the cross-validation exercise, which does not
suggest any obvious shortcoming in the statistical assumptions.

Appendix: Full conditionals for MCMC sampling

Considering each random variable in turn, conditionally on the remaining vari-
ables, we can derive the full conditional distributions to implement the MCMC
sampling algorithm. Note that in the following, the “prime” symbol denotes the
operation of centering a variable (Ot or Xjt) by the respective climate signal
µt = α + βt + γtI{t>=τ0}.

Coefficients of the piecewise linear model:
Define

A = τ0η
T + τ0η

P β2
xo + τ∗

∑
j

ξT
j + τ∗

∑
j

ξP
j β2

xj

and

B = ηT
∑
t≤τ0

(OT
t − βT t) + ηP

∑
t≤τ0

β2
xo(O

T
t − βT t− βxoO

P ′

t ) +
∑

j

ξT
j

∑
t≤τ0

(XT
jt − βT t− dT

j ) +

∑
j

ξT
j

∑
t>τ0

(XT
jt − βT t− γT (t− τ0)− dT

j ) +
∑

j

ξP
j β2

xj

∑
t≤τ0

(XT
jt − βT t− dT

j − βxj(XP ′

jt − dP
j )) +

∑
j

ξP
j β2

xj

∑
t>τ0

(XT
jt − βT t− γT (t− τ0)− dT

j − βxj(XP ′

jt − dP
j )).

Then
αT ∼ N (

B

A
, (A)−1).

Define
A = τ0η

P + τ∗
∑

j

ξP
j

and

B = ηP
∑
t≤τ0

(OP
t − βP t− βxoO

T ′

t ) +
∑

j

ξP
j

∑
t≤τ0

(XP
jt − βP t− dP

j − βxj(XT ′

jt − dT
j )) +

∑
j

ξP
j

∑
t>τ0

(XP
jt − βP t− γP (t− τ0)− dP

j − βxj(XT ′

jt − dT
j )).
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Then
αP ∼ N (

B

A
, (A)−1).

Define

A = ηT
∑
t≤τ0

t2 + ηP β2
xo

∑
t≤τ0

t2 +
∑

j

ξT
j

∑
t≤τ∗

t2 +
∑

j

ξP
j β2

xj

∑
t≤τ∗

t2

and

B = ηT
∑
t≤τ0

t(OT
t − αT ) + ηP

∑
t≤τ0

β2
xot(O

T
t − αT )− βxotO

P ′

t ) +
∑

j

ξT
j

∑
t≤τ0

t(XT
jt − αT − dT

j ) +

∑
j

ξT
j

∑
t>τ0

t(XT
jt − αT − γT (t− τ0)− dT

j ) +
∑

j

ξP
j

∑
t≤τ0

t(β2
xj(X

T
jt − αT − dT

j )− βxj(XP ′

jt − dP
j )) +

∑
j

ξP
j

∑
t>τ0

t(β2
xj(X

T
jt − αT − γT (t− τ0)− dT

j )− βxj(XP ′

jt − dP
j )).

Then
βT ∼ N (

B

A
, (A)−1).

Define
A = ηP

∑
t≤τ0

t2 +
∑

j

ξP
j

∑
t≤τ∗

t2

and

B = ηP
∑
t≤τ0

t(OP
t − αP − βxoO

T ′

t ) +
∑

j

ξP
j

∑
t≤τ0

t(XP
jt − αP − dP

j − βxj(XT ′

jt − dT
j )) +

∑
j

ξP
j

∑
t>τ0

t(XP
jt − αP − γP (t− τ0)− dP

j − βxj(XT ′

jt − dT
j )).

Then
βP ∼ N (

B

A
, (A)−1).

Define
A =

∑
j

ξT
j

∑
t>τ0

(t− τ0)2 +
∑

j

ξP
j β2

xj

∑
t>τ0

(t− τ0)2

and

B =
∑

j

ξT
j

∑
t>τ0

(t−τ0)(XT
jt−αT−βT t−dT

j )+
∑

j

ξP
j

∑
t>τ0

(t−τ0)(β2
xj(X

T
jt−αT−βT t−dT

j )−βxj(XP ′

jt −dP
j )).

Then
γT ∼ N (

B

A
, (A)−1).
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Define
A =

∑
j

ξP
j

∑
t>τ0

(t− τ0)2

and

B =
∑

j

ξP
j

∑
t>τ0

(t− τ0)(XP
jt − αP − βP t− dP

j − βxj(XT ′

jt − dT
j )).

Then
γP ∼ N (

B

A
, (A)−1).

Bias terms and their priors’ parameters:
Define

A = τ∗ξT
j + τ∗ξP

j β2
xj + λT

D

and
B = ξT

j

∑
t≤τ∗

XT ′

jt + ξP
j

∑
t≤τ∗

(β2
xjX

T ′

jt − βxj(XP ′

jt − dP
j )) + λT

DaT .

Then
dT

j ∼ N (
B

A
, (A)−1).

Define
A = τ∗ξP

j + λP
D

and
B = ξP

j

∑
t≤τ∗

(XP ′

jt − βxj(XT ′

jt − dT
j )) + λP

DaP .

Then
dP

j ∼ N (
B

A
, (A)−1).

Define A = MλT
D and B = λT

D

∑
j dT

j , then

aT ∼ N (
B

A
, (A)−1).

Define A = MλP
D and B = λP

D

∑
j dP

j , then

aP ∼ N (
B

A
, (A)−1).

λT
D ∼ G(1 +

M

2
; 1 +

∑
j(d

T
j − aT )2

2
).
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λP
D ∼ G(1 +

M

2
; 1 +

∑
j(d

P
j − aP )2

2
).

The correlation coefficients between temperature and precipitation in the
models, and their prior parameters:
Define A = ξP

j

∑
t(X

T ′

jt −dT
j )2+λB and B = ξP

j

∑
t(X

T ′

jt −dT
j )(XP ′

jt −dP
j )+λBβ0,

then
βxj ∼ N (

B

A
, (A)−1).

Define A = MλB + λo and B = λB

∑
j>0 βxj + λoβxo, then

β0 ∼ N (
B

A
, (A)−1).

λB ∼ G(0.01 +
M

2
; 0.01 +

∑
j(βxj − β0)2

2
).

Precision terms for the models:

ξT
j ∼ G(aξT +

τ∗

2
; bξT +

∑
t(X

T ′

jt − dT
j )2

2
).

ξP
j ∼ G(aξP +

τ∗

2
; bξP +

∑
t(X

P ′

jt − dP
j − βxj(XT ′

jt − dT
j ))2

2
).

Only the full conditionals of the hyperparameters aξT , bξT , aξP , bξP cannot
be sampled directly, and a Metropolis step is needed. We follow the solution
described in Smith et al. (2008). The algorithm works identically for the two
pairs, and we describe it for aξT and bξT (the sampling is done jointly for the
pair). We define U1, U2 as independent random variables, uniformly distributed
over the interval (0, 1), and we compute two proposal values a′ξT = aξT e(δ(u1− 1

2 ))

and b′ξT = bξT e(δ(u2− 1
2 )), where δ is an arbitrary increment, that we choose as

δ = 1. We then compute

`1 = MaξT log bξT −M log Γ(aξT ) + (aξT − 1)
∑

j

log ξT
j − bξT

∑
j

ξT
j +

0.01 log(aξT bξT )− 0.01(aξT + bξT ),
(5)

`2 = Ma′ξT log b′ξT −M log Γ(a′ξT ) + (a′ξT − 1)
∑

j

log ξT
j − b′ξT

∑
j

ξT
j +

a log(a′ξT b′ξT )− b(a′ξT + b′ξT ).
(6)
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In (5) and (6) we are computing the log likelihoods of (aξT , bξT ) and (a′ξT , b′ξT ).
Then, within each iteration of the Gibbs/Metropolis algorithm, the proposed
values (a′ξT , b′ξT ) are accepted with probability e`2−`1 if `2 < `1, or 1 if `2 ≥ `1.
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