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Previous research has identified links between changes in sea
surface temperature (SST) and hurricane intensity. We use climate
models to study the possible causes of SST changes in Atlantic and
Pacific tropical cyclogenesis regions. The observed SST increases in
these regions range from 0.32°C to 0.67°C over the 20th century.
The 22 climate models examined here suggest that century-time-
scale SST changes of this magnitude cannot be explained solely by
unforced variability of the climate system. We employ model
simulations of natural internal variability to make probabilistic
estimates of the contribution of external forcing to observed SST
changes. For the period 1906–2005, we find an 84% chance that
external forcing explains at least 67% of observed SST increases in
the two tropical cyclogenesis regions. Model ‘‘20th-century’’ sim-
ulations, with external forcing by combined anthropogenic and
natural factors, are generally capable of replicating observed SST
increases. In experiments in which forcing factors are varied
individually rather than jointly, human-caused changes in green-
house gases are the main driver of the 20th-century SST increases
in both tropical cyclogenesis regions.

Hurricane activity is influenced by a variety of physical factors,
such as sea surface temperatures (SSTs), wind shear, moisture

availability, and atmospheric stability (1). Theory, observations,
and modeling provide evidence of a direct link between changes in
SSTs and hurricane intensity (2–6). One recent investigation found
that secular SST changes in the Atlantic and Pacific tropical
cyclogenesis regions (ACR and PCR) were highly correlated with
a measure of hurricane intensity based on maximum wind speeds
(6). This research raises an important question: What are the causes
of past SST changes in areas where hurricanes develop?

This question is timely in view of the unprecedented level of
activity during the 2005 Atlantic hurricane season (7) and evidence
that a recent increase in the number of category 4 and 5 hurricanes
is largely SST-driven (8, 9). There are, however, conflicting esti-
mates of the relative contributions of internal climate variability and
external forcing to observed SST changes. Some analyses suggest
that 20th century SST changes in the ACR can be fully explained
by internal variability of the climate system (10). In contrast,
detection and attribution studies find a substantial anthropogenic
component in observed increases in upper ocean heat content
(11–13). Such work has examined the behavior of ocean heat
content averaged over large ocean basins, while our investigation
focuses on elucidating the causes of SST changes in the much
smaller ACR and PCR.l

Previous research has relied on observational data to assess the
relative contributions of internal noise and external forcing to SST
changes in tropical cyclogenesis regions (7, 14). Partitioning of
signal and noise components is difficult to achieve with observa-
tions alone. In the real world, human-induced changes in external
climate forcings are superimposed on (and may even modulate)
natural internal climate variability. We do not have a control

experiment without anthropogenic forcings, which could be used to
isolate and quantify climate noise. Such systematic experimentation
can be performed only with numerical models of the climate system.

Model and Observational Data
Here, we use 22 different climate models to estimate the magnitude
of SST changes arising from internally generated variability and
external forcing. Our focus is on SST changes in the ACR and PCR
on timescales of the last 20–100 years. We analyze both control
simulations with no forcing changes and 20th-century (20CEN)
experiments with estimated historical changes in external forcings
(15). 20CEN forcings were not standardized across different mod-
eling groups (see Supporting Text, which is published as supporting
information on the PNAS web site). The 20CEN results therefore
reflect differences and uncertainties in the applied forcings and in
the physics and parameterizations of the models themselves. The
most comprehensive experiments include changes in combined
natural external forcings (solar irradiance and volcanic dust load-
ings in the atmosphere) and in a wide variety of anthropogenic
influences (such as well mixed greenhouse gases, ozone, sulfate and
black carbon aerosols, and land surface properties). All simulations
were performed with coupled atmosphere–ocean General Circu-
lation Models, in which SST changes are predicted.

Model SSTs are compared with the Extended Reconstructed
SST data set (ERSST) of the National Oceanic and Atmospheric
Administration (NOAA) (16) and the Hadley Centre Sea Ice and
SST data set (HadISST) (17). The aim of these comparisons is to
determine whether observed SST changes in the ACR and PCR can
be explained by internally generated variability estimated from
control simulations, and to evaluate how successfully the 20CEN
runs capture important features of the observed SST behavior in
these two tropical cyclogenesis regions. Use of both ERSST and
HadISST data provides information on the sensitivity of our results
to structural uncertainties in the observations (15, 18).

Observed and Modeled SST Time Series
We consider the observations first. In the smoothed ERSST and
HadISST data (19), SSTs in the ACR were at record levels during
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the 2005 Atlantic hurricane season (Fig. 1A and Fig. 6, which is
published as supporting information on the PNAS web site).m The
2005 SST anomaly was smaller in the PCR and not unprecedented
(Figs. 1B and 6B). Observed SSTs in both tropical cyclogenesis
regions have increased over the 20th century, with total linear
changes in HadISST and ERSST data of 0.41°C and 0.67°C in the
ACR (respectively) and 0.32°C and 0.38°C in the PCR. Differences

between observational data sets primarily reflect the different
procedures used by the NOAA and Hadley Centre groups to infill
missing SST data (16, 17).

Variability on sub- to multidecadal timescales is superimposed
on these overall increases in observed SSTs (Fig. 1). Commonly
discussed sources of this variability are the El Niño�Southern
Oscillation and the Atlantic Multidecadal Oscillation (7, 20). In
the ERSST and HadISST data, part of this variability is in phase
with fluctuations in the optical depth of stratospheric aerosols
produced by massive volcanic eruptions (21) (Figs. 1 and 6). This
result is consistent with the identification of volcanic effects
(albeit at much larger spatial scales) in many different climate
variables (22–24). The relationship between SST variability and
stratospheric aerosol optical depth is clearer in the PCR than in
the ACR, particularly for the eruption of Mt. Pinatubo in June

mFor visual display, the modeled and observed SST data in Figs. 1 and 6 were smoothed by
using a digital filter (19) with a window width W of 21 months, corresponding to a
half-power point of 25 months. This smoothing damps variability on interannual and El
Niño�Southern Oscillation timescales, while information on the SST response to volcanic
forcing is largely preserved. The overall linear trend was subtracted before filtering and
was reinserted after filtering. Data loss was avoided by ‘‘reflecting’’ (W � 1)�2 points at
the beginning and end of the time series. To estimate modeled and observed variability
on decadal and longer timescales (Fig. 4C), we applied the same digital filter to the
detrended SST anomaly data and set W � 145 months, yielding a half-power point at 119
months. The response functions for both choices of W are shown in Fig. 7.
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Fig. 1. Modeled and observed SST changes in tropical cyclogenesis regions and
observed changes in stratospheric aerosol optical depth (SAOD). Time series of
monthly mean, spatially averaged SST anomalies are for the ACR (A) and PCR (B).
Observational results are from the NOAA ERSST data set (16). Results for a second
observational data set (17) are very similar (see Fig. 6). Model data from simula-
tions of 20CEN climate change are partitioned into two groups, with and without
volcanic forcing (V and No-V). All model data were low-pass filtered (with
window width W � 21 months; see Fig. 7, which is published as supporting
informationonthePNASwebsite)before formationofVandNo-Vaverages (19).
ERSST data were smoothed with the same filter. The yellow and gray envelopes
are the 1� and 2� confidence intervals for the V averages, calculated with the
smootheddataateachtime t.Becausemost20CENexperimentsend inDecember
1999, V and No-V averages are calculated only until that month. ERSST data are
shown through December 2005. All SST anomalies were defined relative to
climatologicalmonthlymeansover1900through1909.This referenceperiodwas
chosen for visual display purposes only, and it has no impact on subsequent trend
analyses or variability estimates. The amplitudes of the observed and simulated
SST variability are not directly comparable, because the latter was damped by
averaging over different realizations and models. (C) Estimate of the SAOD (21).
Dotted vertical lines denote the times of maximum SAOD during major volcanic
eruptions.
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Fig. 2. Comparison between observed and simulated SST changes in the ACR
(A, C, E, and G) and PCR (B, D, F, and H). Results are expressed as the total linear
change, b � n, where b is the slope parameter of the least-squares linear trend (in
°C�month) and n is the total number of months. Trend comparisons are made on
fourdifferent timescales:100years (AandB), 50years (CandD), 30years (EandF),
and20years (GandH).ObservedACRandPCRSSTtrendsfromHadISSTandERSST
were calculated over the periods 1906–2005, 1956–2005, 1976–2005, and 1986–
2005. Sampling distributions of unforced SST trends on 100-, 50-, 30-, and 20-year
timescales were computed as described in the main text. For visual display
purposes, unforced SST trends were fitted to segments of the ACR and PCR
anomaly time series that overlapped by all but 10 years. For the century-timescale
results, this procedure yields 698 unforced SST trends for each tropical cyclogen-
esis region. Unforced trends are plotted in the form of histograms. Very similar
(but less smooth) histograms are obtained if trends are fitted to nonoverlapping
segmentsofcontrol runSSTdata.Redandbluevertical lines indicateobservedSST
trends in the HadISST and ERSST data, respectively.
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1991 (Figs. 1 and 6). Regional differences in the observed SST
changes after volcanic eruptions are expected, partly because of
spatial differences in climate noise (25).

Eleven of the 22 historical forcing experiments included some
representation of volcanic effects on climate (see Supporting Text
and Tables 2 and 3, which are published as supporting information
on the PNAS web site). We therefore partitioned the 20CEN results
in Fig. 1 into two sets, with and without volcanic forcing (V and
No-V, respectively).n The pronounced differences between the V
and No-V averages during major eruptions support the observa-
tional evidence of volcanically induced cooling of SSTs in both
tropical cyclogenesis regions.

Comparison of Observed and Unforced SST Trends
To assess whether observed ACR and PCR trends could be due to
climate noise alone, we used information from 22 model control
runs to generate sampling distributions of the unforced SST trends
in these regions (Fig. 2). For each control run, least-squares linear
trends were fitted to successive nonoverlapping segments of the
ACR and PCR anomaly time series (Figs. 8 and 9, which are
published as supporting information on the PNAS web site).
Results from the 22 models were combined to obtain ‘‘multimodel’’
sampling distributions of unforced SST trends. This was done for
timescales of 100, 50, 30, and 20 years, yielding trend sample sizes
of Nt � 84, 175, 287, and 444, respectively (see Supporting Text).
Observed SST trends in both tropical cyclogenesis regions were
calculated with the last 100, 50, 30, and 20 years of the HadISST and
ERSST data sets.

We then estimated p values by comparing the observed SST
trend, bOBS, with both actual and absolute values of bCTL(i), i � 1,

Nt, the unforced SST trends from the multimodel sampling distri-
butions. In 29 of 32 cases (2 cyclogenesis regions � 2 observational
data sets � 4 trend lengths � 2 different methods of estimating p
values), the null hypothesis that observed SST trends could be
explained by natural internal variability (as simulated in current
climate models) is rejected at the 10% level or better (Table 1). Our
finding that observed SST trends in the ACR and PCR are
significantly larger than model-based estimates of unforced SST
variability is therefore relatively insensitive to observational uncer-
tainty, the timescale over which trends are calculated, and the
details of our significance testing strategy.

The p values partly obscure the expected relationship between
the timescale of SST changes and the relative sizes of observed and
unforced trends (Fig. 2). Because the amplitude of unforced
variability decreases with an increase in the temporal averaging
period, a slowly evolving greenhouse-gas-induced warming signal
should be more easily discernible at longer than at shorter time-
scales (26). Such relationships are more clearly revealed by using the
signal-to-noise ratio bOBS�sCTL, where sCTL is the standard deviation
of the sampling distribution of unforced SST trends (Table 1).
While bOBS trends over the past 100 years are at least 3.2–5.1 times
larger than sCTL, observed SST changes over the past 20 to 30 years
typically have smaller ratios of bOBS�sCTL, particularly in the PCR,
where they vary from 1.0 to 2.3. In the ACR, however, partly
because of the unusual warmth of 2005 in the observational record
(Fig. 1), even bOBS trends over the past 20–30 years are 2.7–3.3 times
larger than values of sCTL.

Contribution of External Forcing to Observed SST Trends
The results from Figs. 1 and 2 can be used to estimate the
contribution of external forcing to observed SST trends in the ACR
and PCR. We do this in two different ways: (i) by comparing
observed trends with model-based estimates of unforced trends,
and (ii) by comparing the forced SST changes in the 20CEN
experiments with observations. The first approach has the advan-
tage that the ‘‘spread’’ of model-based noise estimates arises solely
from structural differences in the models (e.g., in terms of physics,
parameterizations, resolution, and spin-up procedures), whereas
the second approach uses experiments that convolve differences in
model structure and the applied external forcings.

nEnsembles of the 20CEN simulations were performed with 13 of the 22 models analyzed
here (see Supporting Text). Each ensemble contains multiple realizations of the same
experiment, differing only in their initial conditions, but with identical changes in external
forcings. This procedure yields many different realizations of the noise that is superim-
posed on the climate ‘‘signal’’ (the response to the imposed forcing changes). Averaging
over multiple realizations reduces noise and facilitates signal estimation. Here, we calcu-
lated averages over V and No-V 20CEN runs. In each case, X is the arithmetic mean of the
ensemble means (for the models for which ensembles are available) and of individual
realizations, i.e., X � (1�Nm)�j�1

Nm Xj, where Nm is the total number of V or No-V models (11
here), and Xj is the ensemble mean signal (or individual realization) of the jth model. This
weighting avoids undue emphasis on results from a single model with a large number of
realizations.

Table 1. Statistics for observed and simulated SST trends in the ACR and PCR

Region Dataset Length, yr Period bOBS sCTL bOBS�sCTL p1 p2

ACR HadISST 100 1906–2005 0.046 0.015 3.158 0.000*** 0.024**
ACR HadISST 50 1956–2005 0.042 0.035 1.204 0.074* 0.177
ACR HadISST 30 1976–2005 0.182 0.064 2.838 0.010*** 0.014**
ACR HadISST 20 1986–2005 0.386 0.117 3.291 0.002*** 0.005***
ACR ERSST 100 1906–2005 0.075 0.015 5.125 0.000*** 0.000***
ACR ERSST 50 1956–2005 0.084 0.035 2.414 0.006*** 0.029**
ACR ERSST 30 1976–2005 0.193 0.064 3.014 0.007*** 0.010***
ACR ERSST 20 1986–2005 0.318 0.117 2.710 0.005*** 0.014**
PCR HadISST 100 1906–2005 0.036 0.012 3.061 0.000*** 0.012**
PCR HadISST 50 1956–2005 0.063 0.030 2.124 0.011** 0.034**
PCR HadISST 30 1976–2005 0.147 0.065 2.243 0.010*** 0.028**
PCR HadISST 20 1986–2005 0.104 0.105 0.987 0.140 0.255
PCR ERSST 100 1906–2005 0.047 0.012 3.959 0.000*** 0.012**
PCR ERSST 50 1956–2005 0.059 0.030 2.004 0.017** 0.046**
PCR ERSST 30 1976–2005 0.148 0.065 2.261 0.010*** 0.028**
PCR ERSST 20 1986–2005 0.195 0.105 1.855 0.038*** 0.063*

The observed SST trends in the ACR and PCR (bOBS; °C�decade) are given for the last 100, 50, 30, and 20 years of the HadISST and ERSST
data sets. The standard deviation of the model-based sampling distribution of unforced SST trends (sCTL; °C�decade) was calculated from
nonoverlapping segments of the control run SST time series (see Fig. 2 and main text). The ratio bOBS�sCTL is a simple measure of signal
to noise. The p values are estimates of the probability that bOBS could be caused by (model-simulated) natural internal variability alone.
Probabilities are based on tests against actual and absolute values of unforced SST trends (p1 and p2, respectively). All trends were
calculated with monthly mean, spatially averaged anomaly data. Trend significance at the 10%, 5%, and 1% levels is indicated by one,
two, or three asterisks, respectively.
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In the first approach, we assume that an observed SST trend,
bOBS, can be decomposed into bEXT, the true (but unknown) slope
of the SST trend in response to external forcing, and bINT, the slope
of the SST trend arising from a (random) realization of natural
internal variability. The percentage contribution of external forcing
to the observed trend can be estimated by F1 � 100[(bOBS �
bINT)�bOBS]. In the real world, bINT may be either positive (con-
tributing to the observed warming) or negative (offsetting some
portion of externally forced warming). Assuming that the model-
based estimates of internal variability are reasonable estimates of
the true amplitude of internal noise, and that the sampling distri-
bution of this unforced trend component (derived from control run
data) is Gaussian with zero mean and standard deviation sCTL, the
68% confidence interval for bINT is (�sCTL, �sCTL), which can be
easily transformed into a corresponding confidence interval for F1.
This procedure yields F1 values in the range 100 � D to 100 � D,
where D � 100 (sCTL�bOBS). There is therefore a 16% chance that
the signal percentage is less than 100 � D, and a 16% chance that
the signal percentage exceeds 100 � D.

In the second approach, we assume that the 20CEN runs provide
reliable estimates of bEXT. As in the case of bINT, a 68% confidence
interval can be specified for bEXT, i.e., (bV � sV, bV� sV), where bV
is the model-average SST trend in the subset of 20CEN runs with
volcanic forcing, and sV is the intermodel standard deviation of SST
trends in the V models. Under this assumption, the percentage
contribution of external forcing to bOBS is estimated by F2 � 100
(bV�bOBS), and the �1� range of bV yields the error bars on the F2
results in Fig. 3.o

Consider the results for the century-timescale observed trends.
Values of F1 are symmetrical around 100% (Fig. 3). Based on the
multimodel sampling distributions of unforced SST trends (and on
one-tailed tests), there is an 84% chance that the externally forced
component of observed SST increases in the ACR and PCR is at
least 67%, and an 84% chance that this component is no greater
than 133%. For central values of bV, F2 yields a larger range
(55–184%) for this externally forced component. The F2 error bars
overlap with the F1 ranges, demonstrating consistency in the
signal-to-noise partitioning obtained with the two methods. This
implies that our finding of bV � bOBS in the PCR is not inconsistent
with an ‘‘offsetting’’ of an externally forced warming by a century-
timescale natural cooling trend. Clearly, model error (in both the
applied 20CEN forcings and the model responses) may also be
important in explaining why bV � bOBS.

Model Performance in Simulating Means, Variability,
and Trends
The p values and F1 results in the previous sections are only as
reliable as the model-based estimates of climate noise on which they
are based. The p values in Table 1 could be spuriously low (and the
F1 values in Fig. 3 spuriously high) if there were a systematic
underestimate of internally generated variability in the models used
here. We tried to guard against this possibility by using a large
number of models to estimate sCTL.

Although we lack sufficiently long observational records to
evaluate model estimates of century-timescale variability, the
data are of adequate length for assessing simulated SST vari-
ability on subdecadal to decadal timescales. We use the 20CEN
simulations to compare modeled and observed means, variability
and trends. A discussion of model performance in simulating the
climatological seasonal cycles of ACR and PCR SSTs is given in
the Supporting Text (see Fig. 10, which is published as supporting
information on the PNAS web site).

Most models systematically underestimate the climatological
annual-mean SST in the ACR and PCR (Fig. 4A). There is no
evidence of such a systematic underestimate in the temporal
standard deviation of unfiltered SST anomalies, which is dom-
inated by variability on interannual and El Niño�Southern
Oscillation timescales (Fig. 4B). In the ACR (PCR), roughly
one-third (two-thirds) of the 60 20CEN realizations overestimate
observed SST variability. These variance differences are not
statistically significant.

The model results in Fig. 4 A and B show apparent relation-
ships between SST behavior in the ACR and PCR. SST biases in
one tropical cyclogenesis region tend to be correlated with biases
in the other region (Fig. 4A). There is an even stronger linear
relationship (across models) between the amplitude of the
high-frequency variability in the ACR and PCR (Fig. 4B). The
apparent correlation of biases in geographically disparate re-
gions may reflect common underlying causes, such as model
errors in the large-scale mean state and in the amplitude of
tropically coherent modes of variability.

Model performance in simulating variability on decadal and
longer timescales is of most interest here, because this constitutes
the background noise against which any slowly evolving forced
signal must be detected (Fig. 4C). SST data were low-pass filtered
to isolate variability on these timescales (see Supporting Text). In the

oF1 is calculated with observed trends over 1906–2005, 1956–2005, etc., whereas F2 is based
on bOBS and bV trends over 1900–1999 only. This is because most of the 20CEN experiments
end in 1999, thus hampering direct comparisons with the full observational record.
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Fig. 3. Estimates of the percentage contribution of external forcing to
observed SST changes in the ACR (A) and PCR (B). Results are for F1 (solid bars)
and F2 (circles and thin error bars). For definitions of F1 and F2, refer to main
text. In computing F1, model estimates of sCTL were obtained from histograms
similar to those shown in Fig. 2, but based on trends fitted to nonoverlapping
rather than overlapping segments of SST time series.
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ACR, the standard deviations of the filtered SST data are system-
atically lower in models than in observations, pointing to possible
biases in model low-frequency variability.p Only 5 of the 22 models
have 20CEN realizations with standard deviations close to or
exceeding observed values. In the PCR, 21 of 22 models produce
20CEN realizations with greater than observed low-frequency SST
variability. The implications of these results are discussed below.

Compared with Fig. 4 A and B, Fig. 4C displays much larger
differences between the individual realizations of any given model’s
results. For example, the Parallel Climate Model (PCM) of the
National Center for Atmospheric Research (27) has one 20CEN
realization with low-frequency SST variability that is very similar to
observed values (in both the ACR and PCR), whereas two other
realizations have substantially lower ACR variability than either
HadISST or ERSST. This difference illustrates that a large ensem-
ble size (or long control run) is necessary to obtain reliable model
estimates of low-frequency SST variability. It also suggests that it
may be difficult to obtain a reliable observational estimate of
internally generated low-frequency SST variability from the rela-
tively short data records available.

These large differences between the temporal variance of
individual realizations are also relevant to comparisons of mod-
eled and observed trends (Fig. 4D). In the ACR and PCR, 20 and
13 (respectively) of the 22 models have at least one realization
of the 20th century SST trend that lies within the statistical
confidence intervals of the observed results. There is no evi-
dence of a systematic model deficiency in simulating the mag-
nitude of 20CEN SST trends in the ACR. In the PCR, nearly half

of the simulated SST trends exceed the 2� confidence interval
for the observed trends.

Single-Forcing Experiments
Although our work points toward a pronounced influence of
external forcing on SST changes in ACR and PCR, it does not
separate and quantify the relative contributions of anthropo-
genic factors and natural external forcing. Separation is difficult
without ‘‘single-forcing’’ experiments, in which key climate forc-
ings are varied individually (rather than jointly, as in the 20CEN
experiments).

Single-forcing experiments performed with PCM (27) indicate
that increases in well mixed greenhouse gases are the main driver
of century-timescale increases in ACR and PCR SSTs (Fig. 5).
PCM’s greenhouse-gas induced warming is partly offset by the
cooling effects of anthropogenic sulfate aerosol particles, thus
supporting observational findings in ref. 14, while solar, volcanic,
and ozone forcing make much smaller contributions to the simu-
lated SST changes over the 20th century.

Conclusions
Current model estimates of internal climate variability cannot
explain observed SST increases in either the ACR or the PCR. This
conclusion is insensitive to existing uncertainties in model physics
and parameterizations, to observational uncertainty, and to the
details of the procedure used to compare SST trends in observa-
tions and model control runs. It is also reasonably robust to the
choice of time period used to estimate historical SST trends.

Our confidence in this conclusion would be undermined if
models substantially underestimated the amplitude of natural in-
ternal climate variability. On decadal timescales, most current
models underestimate SST variability in the ACR and overestimate
variability in the PCR. It is possible that biases of similar magnitude
may also apply on the multidecadal and century timescales consid-

pMissing or incorrectly specified forcings also influence the model-versus-observed vari-
ability differences shown in Fig. 4C. For example, the observed decadal variability in ACR
and PCR SSTs receives a contribution from volcanic forcing (see Figs. 1 and 6), which is
neglected in the No-V group of models. This missing forcing must contribute to the No-V
models’ underestimate of observed SST variability in the ACR.

Fig. 4. Comparison of basic statis-
tical properties of simulated and ob-
served SSTs in the ACR and PCR. Re-
sults are for climatological annual
means (A), temporal standard devia-
tions of unfiltered (B) and filtered (C)
anomaly data, and least-squares lin-
ear trends over 1900–1999 (D). For
each statistic, ACR and PCR results
are displayed in the form of scatter
plots. Model results are individual
20CEN realizations and are parti-
tioned into V and No-V models (col-
ored circles and triangles, respec-
tively). Observations are from ERSST
and HadISST. All calculations involve
monthly mean, spatially averaged
anomaly data for the period January
1900 through December 1999. For
anomaly definition and sources of
data, refer to Fig. 1. The dashed hor-
izontal and vertical lines in A–C are
at the locations of the ERSST and
HadISST values, and they facilitate
visual comparison of the modeled
and observed results. The black
crosses centered on the observed
trends in D are the 2� trend confi-
dence intervals, adjusted for tempo-
ral autocorrelation effects (see Sup-
porting Text). The dashed lines in D
denote the upper and lower limits of
these confidence intervals.
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ered in Fig. 2. Even if they did, however, it is unlikely that climate
noise could fully explain the large observed SST trend in the ACR
over the last 100 years. This trend is at least 3–5 times larger
(depending on the choice of observational data set) than sCTL, the
standard deviation of the model-based sampling distribution of
unforced SST trends (see Table 1). Our estimates of sCTL are
conservative because they incorporate residual (and unphysical)
climate drift. To achieve nonsignificant results (based on one-tailed
tests and a 5% significance level) for the observed ACR trends over
1906–2005, the models used here would on average have to
underestimate century-timescale SST variability in the ACR by a
factor 2 (for the HadISST data) or a factor of �3 (for the ERSST
data). Model average errors in decadal-timescale SST variability are
of order 50%, not a factor of 2 or 3.q

In the PCR, the evidence against an internal variability expla-
nation is even stronger. The model overestimate of the PCR
low-frequency SST variability implies that the observed PCR trends
(which are already highly significant over 1906–2005) are even less
likely to be due to internal variability.

These results, together with other observational and modeling
studies (7, 14, 28) contradict claims that internal climate noise
accounts for all of the observed variability in tropical Atlantic SSTs
(10). We find a large externally forced component of SST change
in the ACR and PCR. On the basis of our F1 results for the period
1906–2005, there is an 84% chance that external forcing explains at
least 67% of observed SST increases in the ACR and PCR. In both
regions, model simulations with external forcing by combined
natural and anthropogenic effects are broadly consistent with
observed SST increases. The PCM experiments suggest that forcing
by well mixed greenhouse gases has been the dominant influence
on century-timescale SST increases. We also find clear evidence of
a volcanic influence on observed SST variability in the ACR
and PCR.

Hurricanes are complex phenomena. Although changes in ocean
surface temperatures may be a key influence on hurricane intensity
(6, 8, 9), SSTs are only one of a variety of factors that control
hurricane formation and evolution (1, 9, 29). Detailed analyses of
changes in other large-scale conditions that affect tropical cyclo-
genesis (such as wind shear and vertical stability) are required to
obtain a more complete understanding of how hurricane activity
has changed and may continue to change in a warming world. Our
research illustrates that models can be of considerable benefit in
understanding the causes of such changes.

qThe temporal standard deviation of the observed low-pass filtered ACR SST data, sfilt(OBS),
is �0.18°C for both the HadISST and ERSST data (see Fig. 4C). Model-average values of this
quantity, sfilt(MOD), are 0.12°C and 0.13°C for the V and No-V 20CEN runs.
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Fig. 5. Contribution of different external forcings to SST changes in tropical
cyclogenesis regions. (A and B) Results are for the ACR (A) and PCR (B) and are
from a 20CEN run and single-forcing experiments performed with the PCM
(27). Each result is the low-pass filtered average of a four-member ensemble,
with window width W � 145 months. For anomaly definition, refer to Fig. 1.
Stratospheric aerosol optical depth (21) is also shown (C).
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