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Projections of future climate change caused by increasing greenhouse gases depend critically on numerical climate models coupling the

ocean and atmosphere (global climate models [GCMs]). However, different models differ substantially in their projections, which raises the

question of how the different models can best be combined into a probability distribution of future climate change. For this analysis, we have

collected both current and future projected mean temperatures produced by nine climate models for 22 regions of the earth. We also have

estimates of current mean temperatures from actual observations, together with standard errors, that can be used to calibrate the climate

models. We propose a Bayesian analysis that allows us to combine the different climate models into a posterior distribution of future

temperature increase, for each of the 22 regions, while allowing for the different climate models to have different variances. Two versions of

the analysis are proposed: a univariate analysis in which each region is analyzed separately, and a multivariate analysis in which the

22 regions are combined into an overall statistical model. A cross-validation approach is proposed to confirm the reasonableness of our

Bayesian predictive distributions. The results of this analysis allow for a quantification of the uncertainty of climate model projections as a

Bayesian posterior distribution, substantially extending previous approaches to uncertainty in climate models.
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1. INTRODUCTION

Global climate models (GCMs) are complex computer pro-
grams that simulate the physics and chemistry of the atmos-
phere and oceans to obtain projections of temperature and other
meteorological variables under various assumptions about the
composition of the atmosphere and other influences such as
variations in solar energy. They have successfully explained
past variations in the earth’s temperature and are used to sim-
ulate future variations in climate under various assumptions
about emissions of greenhouse gases and other man-made
substances (such as sulfate aerosols) that are known to influ-
ence climate. These future simulations, known as projections,
are an important tool in tracing the influence of human activity
on the Earth System. An excellent reference source for climate
models and climate science more generally are the Assessment
Reports of the Intergovernmental Panel on Climate Change, the
most recent of which is IPCC (2007).

All the major climate models project increases in both global
and regional mean temperatures throughout the 21st century,
under differing assumptions (or scenarios) about future trends
in population growth and economic and technological devel-
opment, among other factors. The consistency of these results
across different climate models has greatly strengthened the
belief that many climate scientists have in global warming, but
there are also considerable variations among climate models,
which raises the question of how different climate models can
best be combined to derive climate projections with appro-
priate measures of uncertainty.

In this article, we explore these issues for several datasets
compiled by Giorgi and Mearns (2002), which consist of current
(1961–1990) and future (2071–2100) projections of the mean
temperature in 22 regions for nine climate models, which form
the suite of models assessed in the IPCC 2001 report (Giorgi et al.
2001). The 22 regions are depicted in Figure 1 and the nine
climate models are summarized in Table 1; more details about the
model calculations were given by Giorgi and Mearns (2002).
Also shown—in the last column of Table 1—is the ‘‘climate sen-
sitivity’’ parameter, which is defined to be the mean warming of
the whole earth, in equilibrium conditions, associated with a dou-
bling of atmospheric carbon dioxide compared with preindustrial
conditions. As can be seen in Table 1, the nine models have quite
different climate sensitivities, the lowest three being for the models
MRI, CSM, and PCM. As will be seen later, these models con-
sistently produce the lowest projections for future warmings.

Also, part of the data are estimates of the true temperature
averages for the 22 regions for 1961–1990, based on observa-
tional data, with associated standard errors. The datasets are
prepared for two seasons of the year, DJF (December, January,
and February) and JJA (June, July, and August) to allow some
contrast between summer and winter conditions. The future
projections are also prepared for two different scenarios of
future emissions of greenhouse gases, the so-called SRES A2
and B2 scenarios. These scenarios, originally prepared as part
of the IPCC Special Report on Emissions Scenarios (Nakiće-
nović et al. 2000; IPCC 2001), represent two (of many) pos-
sible projections of future emissions, with the A2 scenario
representing faster growth and consequently higher emissions.

In this article, we address the issue of constructing a prob-
ability density function (PDF) for the mean temperature dif-
ference between the two time periods in each of the 22 regions.
Our approach is Bayesian and takes into account the fact that
different models have different variances that are a priori
unknown. The approach is directly motivated by the Giorgi–
Mearns (2002) ‘‘reliability ensemble average’’ (REA), which is
reviewed in Section 3.
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The method proposed here has two forms: the ‘‘univariate’’
approach treats each of the 22 regions as a separate variable,
while the ‘‘multivariate’’ approach treats them together, in
particular, by pooling information across regions in estimating
the variances of the models. A version of the univariate ap-
proach has been presented previously (Tebaldi et al. 2004,
2005), but is extended here to allow verification of the model
by cross-validation. The multivariate approach is developed for
the first time in this article.

Before going into details, we set some general context for
this article within the field of climate science research. In IPCC
(2007), a report charged with assessing the state of the science
on climate change, Chapter 11 is dedicated to regional projec-
tions (Christensen et al. 2007). Unlike previous IPCC reports
(e.g., Giorgi et al. 2001), which offered only a qualitative sum-
mary of intermodel agreement about regional mean projections,
this one included discussion of two formal statistical assess-
ments of uncertainty derived from multimodel ensembles for
regional projections, one due to Tebaldi et al. (2004, 2005),
which was a precursor to the present approach, and the other due
to Greene et al. (2006). Both approaches have been criticized for
relying too much on the comparison between observed and
modeled regional trends in the 20th century; for example, the

Tebaldi et al. (2005) approach sometimes produces unrealisti-
cally low estimates of uncertainty in future model projections.
As shown at the end of Section 6, we now believe that to be an
artifact of the method, which the new approaches presented in
this article overcome. In summary, the improved robustness of
our methods and the inclusion of a cross-validation step should
go a long way to resolve criticisms of earlier approaches, and
will facilitate the step from methodological exercise to actual
application in studies of impacts where probabilistic information
is crucial to effective decision making.

The remainder of the article is organized as follows. Sec-
tion 2 summarizes existing approaches to the assessment
of uncertainty in climate models. Section 3 reviews the REA.
Sections 4 and 5 present the details of our Bayesian approach
in both its univariate and multivariate forms. Section 6 dis-
cusses the overall goodness of fit and presents a comparison
between the univariate and multivariate approaches. Finally,
Section 7 summarizes our conclusions and suggestions for
future work.

The Bayesian methods proposed in Sections 4 and 5 have
been programmed in R (R Development Core Team 2008) and
are publicly available, along with the datasets, from the website
http://www.image.ucar.edu/;nychka/REA.

Table 1. Climate models used in this study and their climate sensitivities in Kelvin

Model Full Name Sensitivity

CCC Canadian Center for Climate 3.59
CSIRO Commonwealth Scientific and Industrial Research Organisation (Australia) 3.50
CSM Climate System Model (NCAR, USA) 2.29
DMI Max Planck Institute for Meteorology (Germany) 3.11
GFDL Geophysical Fluid Dynamics Laboratory (USA) 2.87
MRI Meteorological Research Institute (Japan) 1.25
NIES National Institute for Environmental Studies (Japan) 4.53
PCM Parallel Climate Model (several institutions in USA) 2.35
HADCM Hadley Center Coupled Model (U.K. Meteorological Office) 3.38

Figure 1. The 22 regions used in this study.
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2. APPROACHES TO UNCERTAINTY IN
CLIMATE CHANGE

Climate scientists recognize the need to take account of
uncertainty in presenting projections of future climate. A report
such as IPCC (2007) must integrate many individual pieces of
research into an overall assessment, and for this purpose they
recommend assessing the likelihood of a future event using
broad categories, e.g., ‘‘virtually certain’’ (>99% probability of
occurrence), ‘‘very likely’’ (>90%), ‘‘likely’’ (>66%), and so
on, but they emphasize that ‘‘likelihood may be based on a
quantitative analysis or on an elicitation of expert views.’’
However, individual articles within the climate science field
have increasingly used a wide range of rigorous statistical ap-
proaches including both frequentist and Bayesian analyses. In
this section, we summarize a few of the leading developments.

Uncertainties in climate change projections are broadly of
three types (Meehl et al. 2007): (a) natural climate variability;
(b) uncertainties in the responses to climate forcing factors,
such as changes in atmospheric levels of greenhouse gases and
sulfate aerosols; and (c) uncertainties in future emissions of
greenhouse gases and other factors that could influence cli-
mate. The first two types of uncertainty are typically assessed
in ‘‘detection and attribution’’ studies, which calibrate climate
models based on their fit to existing observational data and
which attempt to decompose observed changes into compo-
nents associated with greenhouse gases, aerosols, solar fluc-
tuations, and other known influences on the earth’s climate, as
well as internal variability, which is the inherently stochastic
component of the climate system. The review article by IDAG
(2005) summarized research over several years on these topics.
Further discussion is contained in chapters 9–11 of the 2007
IPCC report (Hegerl et al. 2007; Meehl et al. 2007; Christensen
et al. 2007). As an example of a specific article using this
approach, Allen et al. (2000) used several climate models to
estimate mean climate changes up to 2046, with confidence
intervals that take into account both natural variability and the
uncertainty in the regression coefficients. Their results showed
reasonable agreement across models, but they did not attempt
to combine the results of different models. See also Levine and
Berliner (1999) and Berliner et al. (2000) for a more rigorous
statistical discussion of detection and attribution approaches.

Uncertainties in emissions were assessed by SRES
(Nakićenović et al. 2000), who developed numerous scenarios
representing different assumptions about population growth
and economic and technological developments. However, the
SRES authors declined to assess probabilities associated with
the different scenarios. Subsequent commentators such as
Schneider (2001) and Webster (2003) have argued that a
probabilistic assessment by experts, even if imperfect and
controversial, would be invaluable in generating informed
assessments of climate impacts. A full discussion and assess-
ment of this controversy is in Parson et al. (2007). On the other
hand, Stott and Kettleborough (2002) applied the same method
as Allen et al. (2000) to four SRES scenarios up to 2050 and,
after taking uncertainties of the individual projections into
account, found little discrepancy among the projections asso-
ciated with different scenarios. They argued that this was
because of the smaller divergence among emission scenarios in

the first half of the century and the time lag between changes in
emissions and changes in climate, and one could expect greater
discrepancies among scenarios after 2050.

Wigley and Raper (2001) derived probabilistic projections of
future climate change by running a simplified climate model
under different combinations of model parameters (including
climate sensitivity) and emissions scenarios. They used sub-
jectively determined prior distributions for the physical param-
eters needed to run the GCM, and (controversially) assumed
that all SRES scenarios were equally likely. Their approach
was Bayesian in the sense of using subjectively determined
probabilities, but not in the more formal sense of calculating
posterior distributions based on observational data. Other
authors including Forest and coauthors (2000, 2001, 2002) and
Webster et al. (2003) have taken an approach closer to formal
Bayesian methods, combining detection and attribution meth-
ods with a subjectively determined prior distribution on model
parameters to derive a posterior distribution for future climate
changes. Forest et al. (2002) implicitly criticized the use of
subjective-judgment priors by Wigley and Raper (2001),
highlighting the need for ‘‘an objective means of quantifying
uncertainty in the long-term response.’’ More recent material is
summarized in Meehl et al. (2007), Christensen et al. (2007)
and Tebaldi and Knutti (2007).

Santer et al. (1990) appear to have been the first authors to
suggest explicitly that formal statistical methods, such as
confidence intervals and hypothesis tests, should be applied to
combine the results of different climate models, and their ideas
have been applied in subsequent reports on climate change
such as that of Wigley (1999) and a publicly available com-
puter package (Hulme et al. 2000) for generating and inter-
preting climate models. Räisänen (1997) proposed a test of
significance, which, in each grid cell, computes the deviation
from the global mean climate change, separately for each mod-
el, and then performs a t-test to determine whether the devia-
tion in that grid box is significantly different from 0, assuming
that the model responses are independently distributed about
the true mean. Räisänen and Palmer (2001) used model
ensembles to generate probabilistic projections that could be
assessed according to various decision-theoretical criteria.
However, none of these authors allowed explicitly for the dif-
ferent variances of different climate models.

Apart from the preceding literature on climate change, the
field of ensemble-based weather forecasting has advanced
extensively in recent years, and new statistical approaches have
been developed in that context, especially in a series of articles
by Gneiting, Raftery, and coworkers (Gel et al. 2004; Gneiting
and Raftery 2005; Gneiting et al. 2005; Raftery et al. 2005;
Berrocal et al. 2007; Sloughter et al. 2007; Wilson et al. 2007).
The central concept of their methodology is laid out in Gneiting
et al. (2005) and uses the central formula of Bayesian model
averaging:

pðyÞ ¼
XK

k¼1

pðy jMkÞpðMk j yTÞ

where, in this context, y denotes the quantity to be forecast;
M1, . . ., MK denote K models—here identified with K forecasts
from an ensemble; and p(Mk | yT) denotes the posterior
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probability of model k given training data yT (i.e., past values of
the weather field). Thus, their prediction equation becomes

pðy j f 1; . . . ; f KÞ ¼
XK

k¼1

wkgkðy j f kÞ

where wk is the posterior probability that forecast k is best given
the training data. For the densities gk, they assume normality
with a mean ak þ bkfk and a variance s2, where ak and bk are
interpreted as bias correction terms from the kth model. Based
on a spatial-temporal field of past observations for each model,
they are able to estimate the parameters ak, bk, and s2, and the
weights wk, and hence to complete the probabilistic forecast
based on the ensemble.

This approach is conceptually different from ours, but there
are some similarities. Both approaches use weighted averages
of the ensemble members; however, in the Gneiting–Raftery
approach, these are interpreted as posterior probabilities, while
we, in (1) and subsequently, use weights li that are interpreted
as inverse variances of the individual models. Also, because we
typically do not have multiple replications to use as training
data, we are unable to incorporate a bias correction analogous
to their ak þ bkfk formula. However, in the multivariate version
of our model (Sec. 5), we are able to incorporate a bias term for
each model and also for each variable being predicted.

We should also point out the recent article by Gneiting et al.
(2007), which has addressed more systematically the assess-
ment of probability forecasts. Although we were not aware of
this article when the present research was being done, there are
in fact a number of common elements. Gneiting et al. discuss
the well-known use of probability integral transforms (PITs) as
a means of calibrating forecasters (e.g., Dawid 1984; Seillier-
Moiseiwitsch and Dawid 1993), which we use extensively in
our subsequent development of cross-validation statistics
(Secs. 4.1 and 5.1), though they also point out disadvantages to
the PIT approach. In particular, it seems clear that simply re-
quiring forecasters to be well-calibrated, in the sense that the
PIT of the forecasts closely approximates a uniform distri-
bution, is not a sufficient requirement for a good forecasting
system, and some additional requirement of ‘‘sharpness’’ is
needed. In fact, this requirement in some form has been rec-
ognized for a long time (e.g., Murphy 1972; DeGroot and
Fienberg 1983). Its principal application in the present article is
in Section 6, where we directly use the width of predictive
intervals calculated under the univariate and multivariate ap-
proaches to compare the two approaches.

Summarizing, there is growing acceptance of the need for
statistical, and even Bayesian, approaches to the assessment of
uncertainty in climate change, but methods that rely too heavily
on subjective probability assessments, especially with respect
to emissions scenarios, are viewed with suspicion. Moreover,
Bayesian methods have been developed for turning ensembles
into probabilistic forecasts in the context of numerical weather
prediction, for which there is typically far more extensive data
than we are able to use in our approach. The present article
advances these methodologies by proposing a Bayesian ap-
proach to the combination of projections from different climate
models, but as far as possible, using uninformative prior dis-
tributions. We do not make any attempt to place a prior dis-

tribution on emissions scenarios, instead focusing on two of the
SRES scenarios to compare the results.

3. THE RELIABILITY ENSEMBLE AVERAGE

In this section, we review the approach of Giorgi and Mearns
(2002), which also serves to introduce notation for our Baye-
sian development in Sections 4 and 5.

Suppose there are M climate models, Xj is a projection of
some current climate variable generated by model j, and Yj is a
projection of some future climate variable generated by model
j. We also have an observation X0 of the true current climate,
with some associated measure of variability �. In a typical
application, Xj is the mean temperature or precipitation simu-
lated by the jth GCM in a particular region for the period 1961–
1990, X0 is the corresponding value calculated from the
observational climate record with standard error �, and Yj is
either the corresponding variable calculated for 2071–2100 or
the difference between the 2071–2100 and 1961–1990 values.
(Giorgi and Mearns typically took the latter as their variable of
interest; we generally prefer to define Yj directly as the pre-
dicted 2071–2100 mean, but later will interpret our results in
terms of projected climate change, which is analogous with
Giorgi and Mearns.) We view Xj and Yj as random variables in
the sense that, as the index j ranges over all possible models, we
observe a range of both current and future projections and can
make inferences about their distributions.

If we assume var(Yj) ¼ s2/lj, with s2 unknown but lj (for
the moment) assumed known, then a suitable ensemble esti-
mate of the future climate state is

~Y ¼
PM

j¼1 ljYjPM
j¼1 lj

: ð1Þ

Routine calculations show that an unbiased estimator of the
variance of ~Y is

~d2
Y ¼

PM
j¼1 ljðYj � ~YÞ2

ðM � 1Þ
PM

j¼1 lj

; ð2Þ

so ~dY may be interpreted as a standard error.
Giorgi and Mearns called lj the ‘‘reliability’’ of model i and

(1) the ‘‘reliability ensemble estimator’’ or REA. Their pre-
sentation of (2) omitted the factor M � 1 in the denominator.

To estimate the reliabilities, Giorgi and Mearns proposed

li ¼ ðlm
B;il

n
D;iÞ

1=mn ð3Þ

where

lB;i ¼ min 1;
�

jXi � X0j

� �
; lD;i ¼ min 1;

�

jYi � ~Yj

� �
; ð4Þ

where |Xi � X0| is the ‘‘bias’’ of model i, jYi � ~Y j the ‘‘con-
vergence’’ of model i, and the parameters m and n control the
relative importance given to these two quantities (Giorgi and
Mearns suggested m¼ n¼ 1). The justification for introducing
e is, loosely, to avoid giving a model too much credit when,
purely by chance, either the bias or the convergence is much
smaller than the natural variability e.
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Giorgi and Mearns proposed an iterative procedure to find a
set of weights li satisfying the relations (1)–(4). In most cases,
stability is achieved with a few iterations.

Although this procedure appears to lack formal statistical
justification, Nychka and Tebaldi (2003) showed that it can be
interpreted as a robust estimator, choosing ~Y to minimize a sum
of the form

P
CijYi � ~Yj1�1=n for suitable weights Ci. In the

case n ¼ 1, this reduces to a weighted median.
By using the data directly to assess uncertainty, but avoid-

ing the assumption that all climate models have the same
variability, the Giorgi–Mearns approach potentially improves
on previous attempts to assess uncertainty in climate models.
Nevertheless, it has several seemingly ad hoc features, in
particular, its treatment of bias and convergence. From a
Bayesian viewpoint, we would prefer to express uncertainty via
a posterior density than simply a point estimate and standard
error.

4. UNIVARIATE MODEL

The first version of our analysis is univariate in the sense that
it treats each of the model output variables Xi and Yi as uni-
variate random variables. In practice, we will apply this model
separately to each of the 22 regions. In Section 5, this will be
extended to a multivariate analysis, in which we combine the
22 regions into a single overall model.

A version of the univariate analysis has been presented
previously (Tebaldi et al. 2005), but there are several mod-
ifications in the present approach, which we discuss after
outlining the basic method.

As in Section 3, we assume X0 is the current observed mean
temperature, Xj is the current modeled mean temperature for a
particular region for model j ¼ 1, . . ., M, and Yj is the future
modeled mean temperature for model j ¼ 1, . . ., M. In the fol-
lowing, N[m, s2] will denote the normal distribution with mean

Figure 2. Posterior densities for mean temperature change in six regions, DJF season, A2 scenario. Solid curve: univariate approach. Dashed
curve: multivariate approach. The circles on the bottom represent the individual GCM projections on which the analysis is based.
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m and variance s2, U[a, b] the uniform distribution on the
interval [a, b], and G[a, b] the gamma distribution whose density
is proportional to xa�1e�bx. With these definitions, we assume

X0 ; N½m; l�1
0 �; ðl0 knownÞ ð5Þ

Xj ; N½m; l�1
j �; ð6Þ

YjjXj ; N½n þ bðXj � mÞ; ðuljÞ�1�; ð7Þ

where parameters m, n, b, u, and lj have prior distributions

m; n;b;Uð�‘;‘Þ; ð8Þ
u ; G½a; b�; ð9Þ

Figure 3. Color-coded Uij statistics for the univariate approach.
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l1; . . . ; lM ; G½al; bl�; ð10Þ
al; bl ; G½a�; b��: ð11Þ

Here, the hyperparameters a, b, a*, and b* are chosen so that
each of u, al, and bl has a proper but diffuse prior. In practice,
we set a ¼ b ¼ a* ¼ b* ¼ 0.01.

We discuss briefly the rationale for these assumptions. The
lj’s represent reliabilities for the M models and have the same
interpretation as in Section 3. The parameter u (typically, be-
tween 0 and 1) represents a differential between the reliabilities
of current and future model projections. We could not estimate
a statistical model in which the reliabilities of future observa-
tions were completely arbitrary, but we can estimate a posterior
distribution for u under the assumption that the variances are as
in (6) and (7). We choose l0 so that l

�1=2
0 is the estimated

standard deviation of X0 � m. Since this estimate is based on
plentiful observational data, there is no loss of model accuracy
by treating it as known.

The regression parameter b is a convenient way of intro-
ducing correlation between Xi and Yi. If b¼ 0, this is equivalent
to assuming Xi and Yi are independent. Under this assumption,
the weighted average (1) is directly justifiable as an estimator
for n, assuming lj are known. Alternatively, as already noted in
Sec. 3, Giorgi and Mearns actually defined Yj to be the dif-
ference between future and present climates under model j.
That is equivalent to assuming b ¼ 1 in the present notation.
We take the view that the correlation between Xi and Yi is best
treated as unknown and arbitrary, which is equivalently rep-
resented by (7) with arbitrary unknown b. Tebaldi et al. (2005)
discussed further the role of this parameter and made com-
parisons with cases when b was fixed at 0 or 1.

The parameters m and n are means (respectively, for Xj and
for Yj � b(Xj � m)) that are assumed to be the same for all
models. Our approach therefore makes no explicit allowance
for model bias; in other words, we assume that any deviations
between model projections and the corresponding true climate
values can be characterized by the variance terms in (6) and (7).
However, in the absence of either (informative) prior knowl-
edge about the performance of each model or replications of
either Xj or Yj for a given model, such bias terms would not be
identifiable. In Sec. 5, we do include bias terms as part of our
development of a multivariate model.

The main difference between the present model and the one
given in Tebaldi et al. (2005) is in the prior distribution for l1,
. . ., lM. Here, we assume the distributions are G(al, bl) with al

and bl having a hyperprior distribution of their own, whereas
Tebaldi et al. (2005) simply assumed al ¼ bl ¼ 0.01. Exactly
why this apparently small change to the prior distribution
makes a critical difference in the model interpretation will be
explained in Section 4.1.

Under the model (5)–(11), the joint density of u, m, n, b, al,
bl, X0, and (lj, Xj, Yi, j ¼ 1, . . ., M) is proportional to

uaþM=2�1e�bue�ð1=2Þl0ðX0�mÞ2 aa��1
l e�b�al ba��1

l e�b�bl �

3
YM
j¼1

bal

l lal

j e�bllj

GðalÞ
� e�ð1=2ÞljðXj�mÞ2�ð1=2ÞuljfYj�n�bðXj�mÞg2

" #
:

ð12Þ

Define

~m ¼ l0X0 þ
P

ljXj � ub
P

ljðYj � n � bXjÞ
l0 þ

P
lj þ ub2

P
lj

; ð13Þ

~n ¼
P

ljfYj � bðXj � mÞgP
lj

; ð14Þ

~b ¼
P

ljðYj � nÞðXj � mÞP
ljðXj � mÞ2

: ð15Þ

In a Monte Carlo sampling scheme, all the parameters in
(12), with the exception of al and bl, may be updated through
Gibbs sampling steps, as follows.

m j rest; N ~m;
1

l0 þ
P

lj þ ub2
P

lj

� �
; ð16Þ

n j rest; N ~n;
1

u
P

lj

� �
; ð17Þ

b j rest ; N ~b;
1

u
P

ljðXj � mÞ2

" #
; ð18Þ

lj j rest ; G aþ 1; bþ 1

2
ðXj � mÞ2 þ u

2
fYj � n � bðXj � mÞg2

� �
;

ð19Þ

ujrest; G aþM

2
; bþ 1

2

X
ljfYj � n � bðXj � mÞg2

� �
:

ð20Þ

For the parameters al and bl, the following Metropolis
updating step is proposed instead:

1. Generate U1, U2, and U3, independent uniform on (0, 1).
2. Define new trial values a0l ¼ aledðU1�1=2Þ and b0l ¼

bledðU2�1=2Þ . The value of d (step length) is arbitrary, but
d¼ 1 seems to work well in practice and is therefore used
here.

3. Compute

‘1 ¼ Mal log bl �M log GðalÞ þ al

X
loglj � bl

X
lj

þ a� logðalblÞ � b�ðal þ blÞ;
‘2 ¼ Ma0l log b0l �M log Gða0lÞ þ a0l

X
loglj � b0l

X
lj

þ a� logða0lb0lÞ � b�ða0l þ b0lÞ:
This computes the log-likelihood for both (al, bl) and
ða0l; b0lÞ; allowing for the prior density and including a
Jacobian term to allow for the fact that the updating is on
a logarithmic scale.

4. If log U3 < ‘2 � ‘1, then we accept the new (al, bl);
otherwise, keep the present values for the current iter-
ation, as in a standard Metropolis accept-reject step.

This process is iterated many times to generate a random
sample from the joint posterior distribution. In the case where
al and bl are treated as fixed, the Metropolis steps for these two
parameters are omitted and, in this case, the method is a pure
Gibbs sampler, as in Tebaldi et al. (2005). For the version
presented here, an R program (REA.GM.r) to perform the
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sampling is available for download from http://www.image.
ucar.edu/;nychka/REA.

4.1 Cross-Validation in the Univariate Model

A difficulty with this kind of Bayesian analysis is how to
validate the statistical assumptions. Of course, direct validation
based on future climate is impossible. However, the following
alternative viewpoint is feasible: if we think of the given cli-

mate models as a random sample from the universe of possible
climate models, we can ask ourselves how well the statistical
approach would do in predicting the response of a new climate
model. This leads to a cross-validation approach. In effect, this
makes an assumption of exchangeability among the available
climate models.

In more detail, suppose someone gave us a new climate
model for which the projected current and future temperature

Figure 4. Posterior densities for c under the multivariate approach, together with Metropolis acceptance probabilities, medians, and IQRs.

Figure 5. Posterior densities for al (solid curve) and bl (dashed curve) under the multivariate approach, together with Metropolis acceptance
probabilities, medians, and IQRs.
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means were Xy and Yy. Conditionally, on the hyperparameters
m, n, b, u, al, and bl, the distribution of Yy � Xy is derived from
(1) ly; G[al, bl] and (2) Yy � Xy | ly; N[n � m, {(b � 1)2þ
u�1}/ly]. By mixing this conditional predictive distribution
over the posterior distribution of (m, n, b, u, al, bl), we obtain a
full posterior predictive distribution.

This suggests a cross-validatory approach in which each
climate model j in turn is dropped from the analysis, a pre-
dictive distribution for Yy � Xy is calculated from the remaining
eight climate models, and this is applied to the observed value
of the dropped model Yj � Xj. In practice, we apply a proba-
bility integral transformation to convert this value to a standard
uniform Uj, and then assess the goodness of fit using standard
tests such as Kolmogorov–Smirnov. Details are as follows:

1. For each j 2 {1, . . ., M}, rerun the REA.GM procedure
without model j.
2. The hyperparameter values in the nth row of the REA.
GM output, say, a

ðnÞ
l ; b

ðnÞ
l ; nðnÞ;mðnÞ;bðnÞ; and uðnÞ; corre-

spond to one draw from the posterior distribution. Therefore,
draw a random lj;n; G½aðnÞl ; b

ðnÞ
l � and calculate

U
ðnÞ
j ¼ F

Yj � Xj � nðnÞ þ mðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðbðnÞx � 1Þ2 þ uðnÞ

�1

gðlj;nÞ�1
q

8><
>:

9>=
>;:

3. Let Uj be the mean value of U
ðnÞ
j over all n draws from the

posterior distribution. This is therefore an estimate of the
predictive distribution function, evaluated at the true Yj� Xj.

Figure 6. Trace plots of samples from individual chains of the MCMC algorithms. Three parameters from the univariate model (left-hand-side
panels) are compared with the corresponding parameters from the multivariate model (right-hand-side panels). From top to bottom, left to right:
temperature change (DT [ n� m), future (n), and current temperature (m) from the univariate model; temperature change (DT [ n0þ z9� m0�
z), future (n0 þ z9), and current temperature (m0 þ z) from the multivariate model. Values are in Kelvin. Temperature change is estimated under
scenario A2, in DJF, for region ALA (Alaska).
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If the model is working correctly, Uj should have a uniform
distribution on (0, 1).
4. Recompute steps 1–3 for each region, so we have a set of
test statistics Uij, i ¼ 1, . . ., R, j ¼ 1, . . ., M.
5. Plot the Uij’s to look for systematic discrepancies and
apply standard tests of fit, such as Kolmogorov–Smirnov, for
a formal test that the predictive distribution is consistent with
the data.
This procedure is encoded in the REA.CV function, also
available from http://www.image.ucar.edu/;nychka/REA.
Note that it is essential, for this procedure, that the values of
al and bl define a realistic posterior distribution for the lj’s.
This is a critical difference from the earlier approach of
Tebaldi et al. (2005), where al and bl were simply defined in
such a way as to produce an uninformative prior distribution
(the article actually took al ¼ bl ¼ 0.01). Within that ap-
proach, no cross-validation appears to be possible.

4.2 Example

Some results from applying the univariate analysis just de-
scribed are summarized in Figures 2 and 3. In Figure 2, six
regions (Southern AUstralia, the AMaZons, Central AMerica,
GReenLand, Western Africa, and South ASia) are chosen to
exemplify the quality of the posterior distributions of future
temperature change derived through our analysis. For refer-
ence, the nine individual GCM projections are shown as circles
along the x-axis. The solid curves pertain to the posterior dis-
tributions estimated by the region-specific analysis of the
univariate model presented previously, for winter (DJF) pro-
jected temperature change, under the A2 scenario. (The dashed
curves, to be discussed later, are based on the corresponding
multivariate analysis.) As far as can be assessed, the PDFs are
smooth envelopes of most of the individual projections. How-
ever, in some of the regions (SAU, GRL, and SAS, in this

Figure 7. Same as Figure 6, for region NAS (Northern Asia).
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example), individual GCM values may behave as outliers, as a
result of the statistical assumptions by which the estimate of
each GCM’s reliability parameter, lj, bears a direct relation to
that GCM’s degree of agreement with the remainder of the
ensemble’s projections.

Figure 3 is a graphical representation of the cross-validation
exercise, which we perform for all four combinations of sea-

sons and scenarios in our dataset. Each of the image plots
represents a matrix of Uij values, for the 22 regions (along the
horizontal dimension) and the nine models (along the vertical
dimension). In general, the models with low climate sensitivity
in Table 1 also produce low values of the test statistic (blue end
of the color scale), while those with high sensitivity produce
high values of the test statistic (red end of the color scale);

Figure 8. Color-coded Uij statistics for the multivariate approach.
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however, this effect is not universal (e.g., MRI, which has the
lowest climate sensitivity, is not at the blue end of the scale). It
is obvious that the Uij statistics are not independent from region
to region, but the intent of the cross-validation statistics is that,
within each row, the values of Ui1, . . ., Ui9 are approximately
independent draws from a uniform distribution on (0,1). In
Section 6, we consider formal goodness-of-fit statistics.

5. MULTIVARIATE MODEL

A disadvantage of the approach so far is that each of the 22
regions is treated as an entirely separate data analysis. The data
available for any one region consist solely of the nine climate
model projections Xj and Yj, plus a single observational value
X0, and the analysis is open to the objection that it is trying to
produce rather complicated inferences based on a very limited
set of data. In this section, we propose an extension of the
method in which the data for all climate models and regions are
treated within a single statistical model. The hope is that
we will be able to estimate some of the variance parameters
more precisely and, hence, not have such diffuse predictive
distributions.

We assume we have current and future climate model pro-
jections, Xij and Yij, which, in addition to representing different
models j ¼ 1, . . ., M, also represent different variables i ¼ 1,
. . ., R. In the subsequent discussion, Xij and Yij represent the
current and future projections of model j for the temperature
average over region i. We also assume that Xi0 is the current
observed mean temperature in region i, i ¼ 1, . . ., R, which is
an estimate of the true current mean temperature with known
standard deviation l

�1=2
0i :

Note that in the current application, the index i is associated
with the ith region—the model is ‘‘multivariate’’ in the sense
that the projections of temperature over different regions are
treated as a multivariate response. We could also consider using
the same approach for an analysis that is multivariate in the
sense of jointly modeling different meteorological variables,
but that has not been attempted in the present application.

The assumed model in this case is of the following form:

Xi0 ; N½m0 þ zi; l
�1
0i �; ð21Þ

Xij ; N½m0 þ zi þ aj; ðhijfiljÞ�1�; ð22Þ
YijjXij ; N½n0 þ z9i þ a9j þ biðXij � m0 � zi � ajÞ;

3 ðhijuiljÞ�1�: ð23Þ

With the exception of l0i (which is again treated as a known
constant), these random variables depend on unknown param-
eters whose joint prior densities are assumed to be as follows:

m0; n0; zi; z9i ;bi;b0 ; Uð�‘;‘Þ; ð24Þ
ui;fi;c0; u0; c; al; bl ; G½a; b�; ð25Þ

lj j al; bl ; G½al; bl�; ð26Þ
hij j c ; G½c; c�; ð27Þ

aj jc0 ; N½0;c�1
0 �; ð28Þ

a9j jaj;b0; u0;c0 ; N½b0aj; ðu0c0Þ
�1�; ð29Þ

all mutually independent unless explicitly indicated otherwise.

The following discussion is intended to illuminate our reasons
for making these specific assumptions. The general philosophy
behind our approach is to make the statistical model as general
as possible, subject to being identifiable and estimable, as judged
by our ability to construct predictive distributions. Or to turn
Einstein’s famous quote on its head, we believe the model should
be ‘‘as complicated as possible, but not more so.’’

Regarding the mean terms in (21)–(23), we interpret m0 and
n0 as global mean values and the parameters zi and z9i as region-
specific departures from the global mean for the present and
future time periods. The parameters aj and a9j represent global
biases associated with a particular climate model: we have
already seen that the different climate models have different
climate sensitivities and are therefore expected to differ sys-
tematically in some of their projections (models with large
climate sensitivities tend to project more warming than those
with small climate sensitivities). Note, however, the different
structure for the prior distributions of ðaj;a9j Þ as compared
with those for ðzi; z9i Þ: In the case of zi and z9i ;we take the view
that the prior should be as uninformative as possible and
therefore take a uniform prior density over (�‘, ‘). This also
reflects the fact that the different regions are physically very
different from each other and there is no reason to adopt a
statistical model that assumes that the warming in a polar
region such as Alaska is in any way correlated with the warm-
ing in equatorial regions. For the climate model parameters aj

and a9j ; however, we adopt the same viewpoint as Section 4,
whereby the different climate models in our survey are treated
as a random sample from a supposedly infinite population of
climate models, whose parameters are linked through hyper-
parameters c0, b0, and u0.

Another way of thinking about this distinction is in terms of
the well-known statistical phenomenon of shrinkage. Our
model shows a tendency to shrink the values of aj and a9j
toward a common mean, which is natural if we think of these as
samples from a population of climate models. However, for the
region effects, there is a much less compelling reason to do any
shrinkage. The models consistently project more warming for
polar regions such as Alaska; we have every reason to believe
this is a true physical effect (e.g., it is supported by current data
on the melting of the polar ice caps), and there is no reason to
shrink our projections toward a common mean. In preliminary
studies, we have experimented extensively with variations on
these assumptions; assuming a hyperprior for ðzi; z9i Þ does
indeed produce shrinkage (sometimes projecting polar warm-
ing of 2–3 K less than we obtain with a uniform prior), but we
do not find this physically meaningful. On the other hand, the
hyperprior assumption for aj and a9j makes it possible to
construct a predictive distribution for a new climate model,
which is the basis of our proposed cross-validation technique in
Section 5.1.

Now let us turn to the variance assumptions in (21)–(23).
Consider first the special case hij [ 1, which can also be
achieved by letting c! ‘ in (27). In this case, the variance of
climate model j in region i factorizes as (filj)

�1. We call this
the factorization assumption. In contrast with the model of Sec.
4, where there were 22 3 9¼ 198 separate variance parameters
to estimate, in this model, there are only 22 þ 9 ¼ 31 such
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parameters. Therefore, if this assumption is correct, we should
be able to estimate the individual variance parameters much
more precisely, resulting in tighter posterior distributions for
the quantities we ultimately want to estimate.

However, there is a clear disadvantage to this assumption, in
that it assumes the same pattern of variation among climate
models holds across all regions. For example, if climate model
A has twice the variance of climate model B in one region, it
will have twice the variance in every region. In preliminary
discussions of these analyses, climate modelers have repeat-
edly expressed skepticism that such a simple assumption is
correct.

Therefore, we introduce hij as a multiplicative interaction
term: the value of hij for a specific region 3 climate model
combination reflects the extent to which the variance for that
region 3 climate model differs from what would hold under the
factorization assumption. We assume a common gamma prior
for all the hij, and there is no loss of generality in assuming this
prior distribution has mean 1, so we make the gamma shape and
scale parameters a common value c. We can think of c as a
tuning parameter; the limiting cases c ! ‘ and c ! 0 corre-
spond, respectively, to the factorization model and to the case
where the region 3 climate model variances are completely
unconstrained, which is in effect the assumption of Section 4.
Our hope is that, by taking some intermediate value of c, we
will be able to improve on Section 4 without making the
unrealistic factorization assumption.

In preliminary analyses, we have experimented with differ-
ent approaches to the parameter c, for example, simply fixing c
to be some common-sense value (such as 0.1, 1, or 10) while
finding reasonable consistency across analyses with different
values of c. However, treating c as a hyperparameter with its
own prior distribution, given by (25), seems to be the most
general and flexible approach. In the results to be reported
later, we generally find the median posterior value of c to be
greater than 10, confirming that the factorization assumption is
not too far from reality (and, at the same time, that the present
model likely is an improvement on that of Sec. 4), but still
allowing that there may be some region 3 climate model com-
binations where the variance is very different from the facto-
rization assumption.

We have chosen to give more attention to the assumptions in
(21)–(29) than to the actual analysis, which is similar to Sec. 4.
In particular, we use Gibbs sampling to update most of the
unknown parameters, but a Metropolis update for al, bl, and c.
The method is available as an R program (REAMV.GM.r) from
http://www.image.ucar.edu/;nychka/REA. Details of the updating
steps are in the Appendix.

5.1 Cross-Validation in the Multivariate Model

As with the univariate model, we can calculate cross-vali-
dation statistics by dropping one climate model at a time,
constructing predictive distributions for the dropped climate
model based on the other eight climate models, using this
predictive distribution via a probability integral transformation
to convert the actual data from the dropped climate model to a
uniform distribution on [0, 1], and then performing goodness-
of-fit tests.

In this case, the variable that we use for cross-validation is
Yij� Xij, the projected increase in region i for model j. Note that

Yij � Xijjrest; N

�
n0 � m0 þ z9i � zi þ a9j � aj;

1

hijlj

3

�
ðbi � 1Þ2

fi

þ 1

ui

��
:

For the jth-model cross-validation, we run the Gibbs/Metrop-
olis simulation described in the Appendix for N iterations
leaving out climate model j. For every set of parameters saved
as the nth iteration, we generate corresponding values of
l
ðnÞ
j ;a

ðnÞ
j ;a9

ðnÞ
j ; and h

ðnÞ
ij as

l
ðnÞ
j ; G½aðnÞl ; b

ðnÞ
l �

a
ðnÞ
j ; N 0;

1

c
ðnÞ
0

" #
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From these values, we compute the statistics

Uij ¼

1

N

XN

n¼1

F

"
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ðnÞ
0 Þ�ðz9
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As with the univariate analysis, we then perform various
goodness-of-fit tests on the statistics Uij. If the model is a good
fit, the results within each row should be consistent with inde-
pendent draws from the uniform distribution on [0, 1].

5.2 Results

The dashed lines in Figure 2 are PDFs of posterior densities
for the DJF temperature change under scenario A2 derived
through the multivariate model just described, for the six
regions chosen as examples. As indicated by the six pairs of
curves in Figure 2, the comparison with the univariate model
shows substantial agreement of the two posterior estimates.
These results are representative of all 22 regions.

With regard to the other parameters of interest in the model,
we show in Figures 4 and 5 the posterior distribution of the
hyperparameters c, al, and bl. As previously discussed, the
tuning parameter c reflects the degree of interaction among the
variances in different climate models and regions. For all four
datasets analyzed, the median values of c are larger than 10,
suggesting a significant interaction effect (and highlighting the
advantage of the multivariate model).

The convergence of the MCMC algorithm to its underlying
stationary distribution was tested through standard diagnostics
available in CODA, which is available as a downloadable pack-
age within R (R Development Core Team (2008)). All the
individual components of the Markov chain for the univariate
model pass the convergence tests. We show in Figures 6 and 7
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the traces of three easily interpretable and relevant parameters
(temperature change, future and current temperature) for two
regions, ALA and NAS, representative of the entire set of 22
regions. The stationarity in mean and variance of the time
series is evident by eye and confirmed by CODA.

For some of the individual model parameters in the multi-
variate approach, the traces of the sampled values show non-
stationary behavior and significant auto- and cross-correlation.
The high auto-correlation (within a single parameter chain)
was addressed by running the MCMC simulation for a large
number of iterations (125,000) and saving only one out of every
100 samples, after discarding the first 25,000. The nonsta-
tionary behavior and large cross-correlation across parameters
is attributable to the structure of the statistical model, where
some parameters are tightly coupled, but never affects the in-
terpretable quantities of interest, which result from aggregating
the individual parameters (e.g., DTi [ n0 � m0 þ z9i � zi ). For
all quantities of interest, traces appear stationary and the
diagnostic tests confirm it. In the right columns of Figures 6
and 7, we show traces of the quantities from the multivariate
model corresponding to the parameters of the univariate model
in the left columns.

We have also run the cross-validation exercise for the mul-
tivariate model. Figure 8 is a graphical representation of the U
statistics values determined for the four sets of estimates (DJF
and JJA under SRES A2, DJF and JJA under SRES B2). Here,
as in Figure 3, a good model fit would generate values across
each of the 22 horizontal bands in every panel, not significantly
different from a random draw of nine variates from a uniform
distribution on (0, 1). The results again seem to show a pattern
consistent with what would be expected from the climate
sensitivities—in fact, this pattern is more consistent than the
one in Figure 3 (for example, with model MRI, which has the
lowest climate sensitivity, the Uij statistics are consistently
small).

6. COMPARISONS OF UNIVARIATE AND
MULTIVARIATE APPROACHES

In this section, we make some direct comparisons of the
univariate and multivariate approaches, focusing on three
issues: (1) goodness of fit, (2) width of the posterior densities,
and (3) robustness.

Goodness of fit is assessed using the cross-validatory sta-
tistics discussed in Sections 4.1 and 5.1. If the statistical model
is correct, these statistics Uij should be consistent with a uni-
form distribution on (0, 1). It is evident from Figures 3 and 8
that these are not independent from region to region (for
example, a model with low climate sensitivity tends to produce
low values of Uij across all regions). However, the values of Uij,
j ¼ 1, . . ., 9, should be approximately independent for each
region i. This hypothesis is assessed using four common
goodness-of-fit statistics: Kolmogorov–Smirnov (henceforth,
K-S), Cramér–von Mises (C-vM), Anderson–Darling (A-D)
and a correlation test (Cor) in which the test statistic is 1 minus
the correlation coefficient of the ordered {Uij, j ¼ 1, . . ., 9}
with the values 0.1, 0.2,. . .,0.9. The latter is analogous to
the Shapiro–Wilk test often used with normally distributed
data; we subtract the correlation coefficient from 1 so that

(as with the other tests) small values correspond to a very
close fit between the empirical and theoretical distribution
functions.

For each of the four tests and each of the season/scenario
combinations, Table 2 computes the number of regions (out of
22) on which the univariate model resulted in a smaller (better)
test statistic than the multivariate model. Overall, this happened
in about one-third of the possible cases, implying a clear
though not overwhelming superiority for the multivariate
model.

We can also perform formal goodness-of-fit tests by simu-
lation. For each i, 50,000 simulated independent samples of Uij,
j ¼ 1, . . ., 9, were drawn from the uniform distribution, and the
same test statistics were calculated. These were used to cal-
culate empirical p values. Table 3 shows the number of regions
(out of 22) in which this procedure led to a rejection of the null
hypothesis of uniformity, for each of the univariate and mul-
tivariate procedures, for all four goodness-of-fit tests and for
each season/scenario combination. A two-sided 0.05-level test
was used. This analysis showed more rejections for the mul-
tivariate analysis than for the univariate analysis. However,
with only one exception, all the rejections occurred in the lower
tail of the test statistic, implying that the agreement between
the empirical and theoretical distributions was better than
would be obtained by random sampling.

This conclusion was unexpected, but we are inclined not to
overinterpret it. The calculation of p values assumes inde-
pendence across different climate models for each region, but it
is evident that such an assumption cannot be literally correct.
(For example, the Uij statistics for climate model j depend on
parameter estimates computed from the other eight models.)
Therefore, our p values can only be regarded as approximate.
We regard Table 3 as confirming the overall fit of our
statistical model, in either its univariate or multivariate mani-
festation.

We next turn to the question of whether the multivariate
approach leads to tighter predictive densities than the uni-
variate approach; to the extent that ‘‘shrinkage’’ reduces the
variance of posterior densities, we would expect this to be the
case. An obvious tool for comparison is the interquartile range,
defined as the difference between the 75th and 25th percentiles
of the empirical predictive distribution obtained from the
MCMC output. Analogously to the IQR but giving more empha-
sis to the tails, we also consider test statistics that we call I15R
(difference between the 85th and 15th percentiles) and I5R
(difference between the 95th and 5th percentiles). We prefer
robust statistics such as these to moment-based measures of

Table 2. Results of four goodness-of-fit statistics calculated from the
Uij values. For each statistic and each season/scenario combination,

the number of regions (out of 22) in which the univariate procedure of
Section 4 produced a smaller (better) test statistic than the multivariate

procedure of Sec. 5 is tabulated

Test K-S C-vM A-D Cor

DJFA2 7 5 8 9
DJFB2 7 6 7 13
JJAA2 6 6 7 10
JJAB2 4 4 5 6
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scale such as standard deviation, because the latter are more
likely to be influenced by a few outliers in the MCMC sample.

The results of this comparison are summarized in Table 4. In
each cell, we compute the mean ratio of IQR, I15R, or I5R in
the predictive distribution obtained from the univariate method
(numerator) to that of the multivariate method (denominator).
We also show (in parentheses) the number of regions (out of
22) in which the multivariate method resulted in a smaller IQR,
I15R, or I5R than the univariate method. Consistently, the
multivariate method performed better in more than half the
regions and the average ratio of scale parameters was greater
than one, indicating the multivariate method should be pre-
ferred.

However, examination of results for individual regions (not
tabulated) shows a less clear-cut picture. The ratios of IQR,
I15R, and I5R for individual regions show a wide variability,
with many values less than one, and in three regions (SAU,
SAH, SEA), the univariate method always beats the multi-
variate method when assessed by IQR, I15R, and I5R for both
seasons and both emissions scenarios. In contrast, for nine
regions (AMZ, WNA, CNA, ENA, NEU, EAS, CAS, TIB,
NAS), the multivariate method is always better.

In summary, the overall comparison favors the multivariate
method as producing tighter predictive distributions, but this
result is not uniform over all regions, so the comparison is not
completely clear-cut.

Finally, we compare the univariate and multivariate
approaches from a robustness viewpoint, focusing on one
specific region (WAF in JJA/A2), though we believe the dis-
cussion applies generally in cases where (as here) several cli-
mate models produced nearly identical predictions in the

original data. We artificially perturbed one of those models by
adding 0.5, 1, 1.5, and 2 K to the value of its future projection
and by performing the univariate and multivariate versions of
the statistical analysis over both the original and the perturbed
datasets (a total of 10 analyses). We also applied this procedure
to the original version of the univariate analysis as proposed by
Tebaldi et al. (2005). The results, in Figure 9, show that the
Tebaldi et al. (2005) model displays a high degree of sensitivity
of the posterior density to the perturbations. This sensitivity is
greatly reduced for the present article’s univariate approach and
reduced still further for the multivariate approach. Based on
that comparison, we believe that there are robustness advan-
tages to either of the approaches of the present article, com-
pared with that of Tebaldi et al. (2005).

7. SUMMARY AND CONCLUSIONS

In this article, we have presented two approaches (univariate
and multivariate) to the calculation of posterior distributions
for future climate change based on an ensemble of GCMs.

A feature of our approach is the use of cross-validation sta-
tistics to develop goodness-of-fit tests. This feature was miss-
ing from the approach of Tebaldi et al. (2005), and we view that
as a significant advantage of the present method. Calculations
of test statistics based on the cross-validations generally con-
firm that the univariate and multivariate approaches both lead
to adequate fits, with the multivariate model showing a slightly
better fit. Comparisons of the predictive distributions them-
selves, as assessed through the robust scale measures IQR,
I15R, and I5R, also show slight superiority of the multivariate
model, though there is substantial variability from region to
region and in some regions the univariate approach leads to
tighter predictive distributions.

In Figure 10, we use a color-coded map to summarize the
actual predictive distributions (in terms of the mean and several
quantiles for the projected temperature change) for each com-
bination of region, season, and scenario, using our multivariate
approach. As examples of the interpretation of these figures,
consider the results for DJF under the A2 scenario. The largest
projected increases in mean temperature change are for the
three northernmost regions (Alaska, Greenland, North Asia)
with posterior means of 7.0, 6.9, and 6.4 K respectively,
compared with means in the range 2.9–5.0 K for the other 19
regions. We also calculate 95% posterior intervals for ALA,
GRL, and NAS, respectively, as (5.0,9.2), (5.6,8.3), and
(4.6,8.1). When compared with the corresponding intervals for
the other regions, these results seem to confirm rather deci-
sively that these three regions will warm substantially more

Table 3. Formal tests applied to the goodness-of-fit statistics. In each case, the number of rejections of the test, at level 0.05 in a two-sided test,
over 22 regions is tabulated. All rejections are in the lower tail of the test statistic except for one in the box marked *

Test
K-S

UNIV
K-S

MULTIV
C-vM
UNIV

C-vM
MULTIV

A-D
UNIV

A-D
MULTIV

Cor
UNIV

Cor
MULTIV

DJFA2 1 2 3 2 3 3 0 3
DJFB2 2 3 1 3 3 3 1 1
JJAA2 0 3 0 4 1 3 0 2*
JJAB2 1 3 2 4 2 5 0 1

Table 4. Comparisons of the IQR, I15R, and I5R scale statistics
applied to the posterior distributions of projected temperature changes
for the univariate and multivariate approaches. The main entry in each
cell of the table is the ratio of statistics calculated for the univariate
(numerator) and multivariate (denominator) approaches, a value >1

implying that the multivariate approach resulted in a tighter posterior
distribution overall. Also shown in parentheses is the number of times
(out of 22 regions) that the multivariate approach led to a smaller scale

statistic than the univariate approach

IQR I15R I5R

DJFA2 1.11 (13) 1.09 (12) 1.12 (15)
DJFB2 1.04 (13) 1.04 (14) 1.05 (12)
JJAA2 1.05 (13) 1.04 (14) 1.00 (14)
JJAB2 1.10 (15) 1.08 (16) 1.08 (14)
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than the overall global average, a conclusion that cannot be
drawn from the posterior means alone. These are the same
regions as were identified for significant warmings in the
previous studies by Giorgi et al. (2001) and Tebaldi et al.
(2005), but the current study provides superior calculations of
the posterior distribution and hence more precise summaries of
uncertainty. The corresponding results for JJA do not appear to
show nearly such a strong polar region effect, confirming that
this phenomenon of strong polar warming is primarily a
northern hemisphere winter phenomenon. The results for the
B2 scenario are qualitatively similar, but generally show less
warming over all regions, as would be expected from the

fact that B2 represents a smaller increase in greenhouse gas
emissions compared with A2. Note, however, that for all
region/season/scenario combinations, the 95% posterior inter-
val excludes 0, implying a clear warming effect over all
regions.

There are, of course, some limitations to what these proce-
dures can achieve. Although the different climate modeling
groups are independent in the sense that they consist of disjoint
groups of people, each developing their own computer code, all
the GCMs are based on similar physical assumptions, and if
there were systematic errors affecting future projections in
all the GCMs, our procedures could not detect that. On the

Figure 9. Sensitivity plots for Western Africa (WAF), season JJA, scenario A2. One model projection (gray dots) shifted in 0.5-K increments
to assess the sensitivity of predictive density to changes in original data. The original data value is given by the leftmost gray dot and the
associated predictive density is the solid curve; the remaining curves on each plot represent the new predictive density after each shift. Top to
bottom: method of Tebaldi et al. (2005), this article’s univariate approach, and this article’s multivariate approach. The top panel shows that the
Tebaldi et al. (2005) model is extremely sensitive to changes in the relative position of the nine GCM values. However, the corresponding plots
for the current univariate version of the model (second panel) and the multivariate version (third panel) show that both models’ performance is
largely insensitive to changes in a single data point, even for increasingly large perturbations. Additionally, a comparison of the two sets of PDFs
for the current models indicates that the multivariate model’s estimates are relatively more robust to the perturbations, shifting less to the right
with the movement of the gray mark than the set of PDFs from the univariate model.
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other hand, another argument sometimes raised by so-called
climate skeptics is that disagreements among existing GCMs
are sufficient reason to doubt the correctness of any of their
conclusions. The methods presented in this article provide
some counter to that argument, because we have shown that, by
making reasonable statistical assumptions, we can calculate a
posterior density that captures the variability among all the
models, but that still results in posterior-predictive intervals
that are narrow enough to draw meaningful conclusions about
probabilities of future climate change.

Future work will apply these methods to a wider range of
climate models, including models from the Fourth Assessment
Report of IPCC (2007) and to regional climate models. There is
a large archive of Fourth Assessment model output available
through the Program for Climate Model Diagnosis and Inter-
comparison (http://www-pcmdi.llnl.gov), and results from
these model runs will be presented in future articles. At this
time, the website http://www.rcpm.ucar.edu provides regional
analyses upon user’s specification of latitude/longitude boun-
daries using the modified version of the univariate method that
is described in Tebaldi et al. (2004), with large u. These
regional results are based on the latest suite of models/sce-
narios runs from the PCMDI archive. Work is in progress on
implementing the method described in the current article.

APPENDIX: DERIVATION OF GIBBS–METROPOLIS
UPDATING EQUATIONS FOR THE

MULTIVARIATE MODEL

We assume the statistical model defined by (21)—(29).
Omitting unnecessary constants, the joint density of all the
parameters and random variables is
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Figure 10. Predictive distribution for mean temperature change under the multivariate model. Color-coded projections for each region
represent (L-R) the 5% and 25% quantiles, the mean, the 75% and 95% quantiles of the predictive distribution for two seasons (DJF, JJA), and
two emission scenarios (A2, B2).
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The conditional distributions required for the Gibbs sampler
are as follows:
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Where al, bl, and c are fixed, as in the univariate analysis,
the iterations (A.10)–(A.23) could be repeated many times to
generate a random sample from the joint posterior distribution.
Having added a layer by making the three parameters random
variates, two Metropolis steps are added to the iteration
(A.10)–(A.23), as follows.

For the sampling of al and bl jointly, define U1 and U2 as
two independent random variables distributed uniformly over
the interval (0, 1), and the two candidate values a0l ¼ al

edðU1�1
2Þ and b0l ¼ bledðu2�1

2Þ , where d is an arbitrary incre-
ment, chosen as d¼ 1 in our implementation. We then compute
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In (A.24) and (A.25), we are computing the log-likelihoods of
(al, bl) and (a9l, b9l), allowing for the prior densities and
including a Jacobian term, allowing for the fact that the
updating is taking place on a logarithmic scale. Then, within
each iteration of the Gibbs–Metropolis simulation, the pro-
posed values (a9l, b9l) are accepted with probability e‘2�‘1 if ‘2 <
‘1, or 1 if ‘2 $ ‘1.

Similarly, the updating of c takes place by proposing c0 ¼
cedðU3�1

2Þ, where U3 is a draw from a uniform distribution on (0,
1), and computing
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Then, within each iteration of the Gibbs–Metropolis simulation,
the proposed value c9 is accepted with probability e‘2�‘1 if ‘2 <
‘1, or 1 if ‘2 $ ‘1.

The iteration is repeated many times to generate a Monte
Carlo sample from the posterior distribution.

[Received July 2006. Revised February 2008.]
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