Institute for Mathematics Applied to Geosciences and the Theme of the Year

Douglas Nychka, Director and Senior Scientist

- What is IMAGe?
- Some things we do.
- Theme-of-the-Year: Past,Present, Future

Supported by the National Science Foundation

WEB infomercial, May 2007

Institute for Mathematics Applied to Geosciences

- Turbulence Numerics Team / Geophysical Turbulence Program
- Geophysical Statistics Project
- Data Assimilation Research Section
- Computational Mathematics Group

Vision:

IMAGe brings mathematical models and tools to bear on fundamental problems in the geosciences

and will be a center of activity for the mathematical and geophysical communities.

The Olive Tree and the Lexus

Note: We are a *team*, *program*, *project*, *section* and a *group*!

This reflects the independence among our science goals and different styles of research. But there are two main themes that organize IMAGe around its Vision.

Icons for IMAGe culture

Traditional scientific investigation at its best

- Curiousity and creativity
- Unexpected and independent
- Productive and collaborative

The Lexus

Tools and models for communities

- Deliberate and strategic
- Engaging and accessible
- Structured and predictable
- Productive and collaborative

Turbulence and multiscale processes Complexity and self organization in geophysical flows or astrophysical flows with magnetic fields.

Numerics for the direct simulation of turbulence

GASpAR: Geophysical Astrophysical Spectral elements Adaptive Refinement

Some TNT activities

Folding and rolling of GASPAR: Adaptive, high current sheets in idealized order numerics MHD

New methods for combining observations with numerical models for prediction and understanding physical processes

Data Assimilation Research Testbed(DART)

Some DAReS Activities

-60

0

80

40

Adaptive inflation to stabilize the Kalman filter vations of CO using CAM

2

Assimilating satelite obser-

degrees east

120 160 200 240 280 320

CAM copy 23 level 16 var T at 04-Jan-2003 18:00:00

New algorithms and representations for solving geophysical models

Contributions to High Order Methods Modeling Environment (HOMME)

Some CMG Activities

Numerics for a nonhydrostatic fluid, hot bubble test case

HOMME: Discontinuous Galerkin dynamical core on cube sphere geometry

Statistical theory and new statistical models for geophysical data

High level statistical software, Applied statistics at NCAR

Some GSP Activities

Uncertainty (boxplots) in the reconstructed decadal maxima for Northern Hemisphere Temperature

Packages in the R data analysis environment

Fields: Tools for spatial data

Globalization

Mathematics Centers and Institutes as partners

A year long focus on a particular topic that integates some mathematical science with an NCAR science topic.

Typically this is a series of workshops and schools along with additional visitors.

- $TOY\epsilon$ '05 Data Assimilation in the Geosciences J. Anderson
- TOY '06 Models for Multi-scale Geophysical Processes J.Tribba & A. Majda (Courant)
- TOY '07 Statistics for numerical models S.Sain, M. Fuentes (NCSU) & D. Bignham (Simon Fraser)
- TOY '08 Geophysical Turbulence: Observations, Computation and Theory
 A. Pouquet & K. Julien (CU)

TOY06: Emerging Mathematical Strategies for Multi-Scale and Stochastic Modeling of the Atmosphere and Climate

Four workshops:

- I. Multi-scale Interactions in the Tropics to Midlatitudes: Mathematical Theory, Observations and Numerical Models
- II. Multi-Scale Interactions in a GCM grid box: Mathematical Theory, Numerics and Parameterization
- III. Stochastic and Statistical Parameterization of Unresolved Features in the Atmosphere and Upper Ocean
- IV. Multi-Scale Processes for Low Frequency Variability, Climate, and Climate Change Response

Some follow through: IMAGe postdoc, Christian Franzke

Origin of nonlinear signatures in planetary wave dynamics

(with G. Branstator and A.Majda)

Goal

Engage statisticians at SAMSI and NCAR with several geophysical models that have substantial scientific import.

Some NCAR and related models:

- Upper atmosphere (TIEGCM) (A. Richmond), Magnetosphere (M. Wiltberger)
- Boundary layer column model (J Hacker)
- Turbulence (P. Mininni)
- Coupled global and regional climate models (NARCCAP and PRUDENCE groups)

- Kick off meeting at SAMSI,
 9/07 with formation of SAMSI and NCAR working groups.
- Geophysical Models at NCAR: Scoping and Synthesis. 13-14 November 2006.
- Application of Random Matrices Theory and Methods.
 7-9 May 2007
- Application of Statistics to Numerical Models: New Methods and Case Studies.
 21-24 May 2007
- Summer Graduate Workshop on Data Assimilation for the Carbon Cycle.
 8-13 July 2007

Prudence regional climate experiments

Cari Kaufman IMAGe/SAMSI postdoc

Functional analysis of variance for multi-model regional climate experiments.

• Healthy balance between science and broader community contributions.

- TOY has been successful and is growing in scope.
- Many growing connections to the NSF Math Centers.