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Six-hour Forecast RMS Error and Sprea

Observation Space for 500 hPa North America
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Sources of insufficient prior spre
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Prior model spread doesn’t account for errors
(including representativeness).

Result can be treated as lack of spread.
Models have too little error growth, too.

2. Ensemb1. Model error.

*
*
*

*

*

*

*
*
*

Posterior

Correct
Prior

Model
Prior

t1

t2

S
pread

E
xpected R

M
S



5/18/07

nflation

ariables unchanged.

te variable.
Raeder et al.: AGU Spring 2007 5

One Solution: Prior State Space I
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Spatially-varying temporally-adaptive inflation: Hi
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Adaptive Inflation Applied to DART/CAM J
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RMS Error Reduced in General: Number of O

Obs. Space North America ACARS Tempera
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Spatial and Temporal Structure of Adaptv

Zonal Wind Inflation, 266 hPa
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Why Does Inflation Get so BIG
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Conclusions (PLUSSEE OUR POSTER: 

1. Ensemble Assimilations have too little varian

2. Inflation can correct for this.

3. Hierarchical Bayesian algorithm automaticall

4. Applied to CAM, WRF, other large models wi

5. Error is reduced, spread increased.

6. Available as part of DART from www.image.u
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6-Hour Forecast and Analysis Observation Spa

Tropics Northern 
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:6-Hour Forecast and Analysis Observation S

Tropics Northern 
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Adding new models, new observations i

1. Incorporating existing model requires handfu
A. No need for linear tangents or adjoints.
B. Finite Volume CAM added in 1-month by 

2. Adding observations also straightforward.
A. Only need forward operator (map state to
B. No linear tangents or adjoints.
C. Several different GPS operators added in

GPS and other novel observations may help de

GPS provides soundings of temperature and w
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Assimilating GPS Radio Occultation O
Assimilated as refractivity along beam path.
Complicated function of T, Q, P and ionosph

Get a sounding as GPS satellite sets relative to
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DART compliant models (largest set ever with assi

1. Many low-order models (Lorenz63, L84, L96
2. Global 2-level PE model (from NOAA/CDC).
3. CGD’s CAM 2.0, 3.0, 3.1 (global spectral mode
3a.CGD’s CAM 3.1 FV (global finite volume mod
4. GFDL AM GCM (global grid point model).
5. MIT GCM (from Jim Hansen; configured for a
6. WRF model (regional prediction grid point).
6a. WRF column physics model.
7. NCEP GFS (operational global spectral; assis
8. GFDL MOM3/4 (global grid point ocean mod
9. ACD’s ROSE model (upper atmosphere with
10. Cane-Zebiak 5 (tropical ocean/atmosphere 

Also models from outside geophysics.
This allows for a hierarchical approach to filter d
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DART compliant Forward Operators and Datase

Many linear and non-linear forward operators for 

U, V, T, Ps, Q, dewpoint for realistic models.

Radar reflectivity, doppler velocity, GPS refractivit

Mopitt CO retrievals.

Can ingest observations from reanalysis or opera

Can create synthetic (perfect model) observations
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Additional enhancements available for Earth S

1. Smoother: uses observations in past and futur

2. High performance parallel implementations.
Filter algorithms are naturally scalable.
Run many copies of models.
Impact of observations on model variables c
Algorithm has natural reformulations for diffe

3. Parameter estimation in large models.
Use data to constrain parameters.
Implementation is trivial.
Interpretation is still VERY tricky.
Did this for gravity wave drag efficiency in C
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Climate Model Parameter Estimation via Ensemble
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