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Six-hour Forecast RMS Error and Spread: No Inflation

Observation Space for 500 hPa North America ACARS Temperatures
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Sources of institient prior spread.

1. Model error. 2. Ensemble sampling error.
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Prior model spread doesn’t account for errors Expected value of [sample correlation| vs.

(including representativeness). true correlation is too large for small
ensemble sizes.

Result can be treated as lack of spread.

Models have too little error growth, too. Observations systematically reduce spread
of state variables too much.

Raeder et al.: AGU Spring 2007 4 5/18/07



One Solution: Prior State Space Inflation

Prior Mean
State | x |
Ensemble / / / \ \ \
Inflated
Prior -
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(Linearly expand around mean. )

Spread is increased.
Meanis unchanged.
kCorreIation with other inflated state variables uncha)\ged.

Applied independently to each state variable.
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Spatially-varying temporally-adapte inflation: Hierarchical Bayesian
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Observed Value and
Likelihood from Instrument

(Is spread smaller than expecte§l?
Yes: increase inflation.

No: decrease inflation.

\

Use joint prior of obs. and
each state variable to regrgss
inflation increment.

Each state variable has it
own inflation distribution
(Gaussian).
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Observation Space for 500 hPa North America ACARS Temperature:
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Fewer observations

| rejected.
1 (If prior error is more
| than 3 times expected,

obs. are rejected).

1 RMS Error is
Reduced.

1 RMS does not

Increase with time.

Spread is increased.
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RMS Error Reduced in General: Number of Obs. Rejected Reduced
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Spatial and @mporal Structure of Adap® Inflation
Zonal Wind Inflation, 266 hPa
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Why Does Inflation Get so BIG?

/Spread still small
after advance. Big

Assimilating Dense Obs. inflation needed to
Leaves Tiny Spread. __handle model erroy.
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Conclusions (PLUSEE OUR POSTERA31B-06)

1. Ensemble Assimilations have too little variance.
2. Inflation can correct for this.

3. Hierarchical Bayesian algorithm automatically gives good inflation.
4. Applied to CAM, WREF, other large models without tuning.
5. Error is reduced, spread increased.

6. Available as part of DART from www.image.ucar.edu/DAReS/.
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After 6 hours.

NCEP reanalyses, 500mb GPH, Jan 01 06Z
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NCEP reanalyses, 500mb GPH, Jan 02 00Z
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NCEP

DART/CAM

Difference.
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NCEP reanalyses, 500mb GPH, Jan 08 00Z Af ter 7 dayS .

Geopotential height gpm
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6-Hour Forecasand Analysis Observation Space Temperature RMS

RMS Error: Tropics
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RMS Error: Northern Hemisphere
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6-Hour Forecasand Analysis Observation Space Wind RMS
RMS Error: Tropics
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Adding nev models, n& obserations is simple.

1. Incorporating existing model requires handful of interfaces.
A. No need for linear tangents or adjoints.
B. Finite Volume CAM added in 1-month by postdoc.

2. Adding observations also straightforward.
A. Only need forward operator (map state to expected observation)
B. No linear tangents or adjoints.
C. Several different GPS operators added in weeks.

GPS and other novel observations may help detect climate model bia:

GPS provides soundings of temperature and water world-wide.
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Assimilating GPS Radio Occultation Obsation

Assimilated as refractivity along beam path.
Complicated function of T, Q, P and ionospheric electric field.

Get a sounding as GPS satellite sets relative to low earth satellite.
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DART compliant models (lgest setwer with assim system?)

1. Many low-order models (Lorenz63, L84, L96, L2004,...).

2. Global 2-level PE model (from NOAA/CDC).

3.CGD’s CAM 2.0, 3.0, 3.1global spectral model)

3a.CGD’s CAM 3.1 FV(global finite volume model) with chemistry.
4. GFDL AM GCM (global grid point model).

5. MIT GCM (from Jim Hansen; configured for annulus).

6. WRF model (regional prediction grid point).

6a. WRF column physics model.

7. NCEP GFYoperational global spectral; assisted by NOAA/CDC).
8. GFDL MOM3/4 (global grid point ocean model).

9. ACD’s ROSE model (upper atmosphere with chemistry).
10. Cane-Zebiak 5 (tropical ocean/atmosphere model).

Also models from outside geophysics.
This allows for a hierarchical approach to filter development.
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DART compliant erward Operators and Datasets

Many linear and non-linear forward operators for low-order models.
U, V, T, Ps, Q, dewpoint for realistic models.

Radar reflectivity, doppler velocity, GPS refractivity for realistic models.
Mopitt CO retrievals.

Can ingest observations from reanalysis or operational BUFR files.

Can create synthetic (perfect model) observations for any of these.
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Additional enhancementsalable for Earth System Analysis

1. Smootheruses observations in past and future to estimate state.

2. High performance parallel implementations.
Filter algorithms are naturally scalable.
Run many copies of models.

Impact of observations on model variables can be done in parallel.
Algorithm has natural reformulations for different platforms.

3. Parameter estimation in large models.
Use data to constrain parameters.
Implementation is trivial.
Interpretation is still VERY tricky.
Did this for gravity wave drag efficiency in CAM.
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Climate Model Rrameter Estimation via Ensemble Data Assimilation

T21 CAM assimilation of
gravity wave drag effi-
ciency parameter.

Oceanic values are noise
(should be 0).

(5 9|O 1éO 270 O< efficiency< ~4 sug-
H | D gested by modelers.
-10 -5 0 5 10

Positive values over NH land expected.
Problem: large negative values over tropical land near convection.
May reduce wind bias in tropical troposphere, but for ‘Wrong Reason’.

Assimilation tries to use free parameter to fix ALL model problems
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