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The Geoplgsical Data Assimilation Problem:

Given 1. A physical system (atmosphere, ocean, climate system...

2. Observations of the physical system

Often sparse and irregular in time and space.

Instruments have error of which we have a (poor) estimate.
Observations may be of quantities not found in model.
Many observations may have very low information content.

3. A model of the physical system

Usually approximates time evolution.

Truncated representation of ‘continuous’ physical system.
Often quasi-regular discretization in space and/or time.
Generally characterized by ‘large’ systematic errors.
Often ergodic with some sort of ‘attractor’.
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Assimilation increases information about all three pieces:

1. Get an improved estimate of state of physical system.

Initial conditions for forecasts.
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DART/CAM NWP Assimilation: Januar?2003

Model: CAM 3.1 T85L26.

Initialized from a climatological distribution (huge spread).

Observations Radiosondes, ACARS, Satellite Winds.

Subset of observations used in NCAR/NCEP reanalysis.

Compare to NCEP operational, T254L64, uses radiances.
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NCEP reanalyses, 500mb GPH, Jan 01 06Z Af ter 6 hOU [S.

Geopotential height agpm
90N PR NI R R RS T NI RS R S
NCEP - = S
5 s = e S
30N D ~ -
T T, <t
] . g [ G?% L
° ' N Nt [
30s - O g - >
i @
- = 3
60S — ) = L
1T_== [CONTOUR FROM 4800 TO 5920 BY 80[
920S —Tr T T T T
180 150W 120W 90W  60W  30W 0 30E 60E 90E 120E 150E 180
DART/CAM analyses, 500mb GPH
90N 1 [ IR IR NI RN IR R R ST S

—_— CAM
DART/ICAM = ~Z = f starts with

B L e =Eese——_ climatology!
s —— —— | Nearly zonal.

—_ “— [CONTOUR FROM 5120 TO 5840 BY 80}
90s e B A B e e B B RN B e e

180 150w  120W  90W 60W 30W o 30E 60E 90E 120E 150E 180

DART/CAM - NCEP

Difference.

Anderson: NCAR SEMINAR 5 3/19/07



NCEP reanalyses, 500mb GPH, Jan 02 00Z
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NCEP reanalyses, 500mb GPH, Jan 08 00Z Af ter 7 dayS .
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6-Hour ForecasDbservation Space Temperature RMS

6-Hour Forecast RMS Error: Tropics 6-Hour Forecast RMS Error: Northern Hemisphere
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DART/CAM competitve with operational NWP system.
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Assimilation increases information about all three pieces:

1. Get an improved estimate of state of physical system.

High quality analyses (re-analyses).
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High-quality analysis of CO in Finitedlume CAM-CHEM model.

Assimilate standard observations plus MOPITT CO observations.

Work by Ave Arellano and Peter Hess supported by Kevin Raeder.
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Impact of Assimilation in Modeled CO
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in providing better initial/boundary
conditions to regional CO forecasts.

Anderson: NCAR SEMINAR

SATEY

12

170

3/19/07



Assimilation increases information about all three pieces:

2. Get better estimates of observing system error characteristics.

Estimate value of existing or planned observations.
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Assimilating GPS Radio Occultation Obsatiens in WRF

Assimilated as refractivity along beam path.
Complicated function of T, Q, P and ionospheric electric field.

Get a sounding as GPS satellite sets relative to low earth satellite.
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Assimilating GPS Radio Occultation Obsatens in WRF

Weather Research and Forecasting Model.
Regional Weather Prediction model.
Configured for CONUS domain, 50 km grid.

Several hundred profiles available from CHAMP satellite.
GPS RO locations in CONUS domain, Jan 1-10, 2003
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Assimilating GPS Radio Occultation Obsatens in WRF
Evaluating Impact of GPS Observations.

Case 1. Assimilate radiosondes EXCEPT those close to GPS profiles
Case 2: Also assimilate GPS profiles.

Look at reduction in error from close (unused) radiosonde profiles.

NOTE: Identical code allows assimilation in CAM, GFDL, GFS...
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GPS Radio Occultation Impact on T and Q Errors in WRF
Each plot displays bias (left pair) and RMS (right pair).
Red curves include GPgduced bias and RMS.
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Assimilation increases information about all three pieces:

2. Get better estimates of observing system error characteristics.

Design observing systems that provide increased information.
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Assimilation increases information about all three pieces:

3. Improve model of physical system.

Evaluate model systematic errors.
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Example of lev-resolution assimilation comparisons.

CAM spectral vs. FV for January, 200Emperature Bias
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Assimilation increases information about all three pieces:

3. Improve model of physical system.

Forward/backward sensitivity analysis (adjoint/linear tangent proxy).
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Ensemble Sensiity Analysis

Can compute correlation (covariance) between ANY forecast or
analysis quantity and ALL other forecast and analysis quantities
or functions thereof at any time lag.

Can get same information as unlimited number of adjoint and
linear tangent integrations over arbitrary periods.

Explore relations between variables, observations, or functions thereo
Example 1 Base point is 500 hPa mid-latitude temperature.
Look at impact on evolution of 500hPa temperatures.

Similar to linear tangent integration.
Significant correlations from 20 member T85 ensemble.
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Forward in Time Sensitrity (Linear Tangent eqgwalent)
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 06 hours: 500 aPlemperature to 500 @Plemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 12 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 18 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 24 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 30 hours: 500 aPlemperature to 500 aPlemperature
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Ensemble Sensiity Analysis

Example 2 Base point is 500 hPa mid-latitude zonal velocity.
Look at impact of previous 500 hPa temperature.

Compare to an adjoint integration.
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Backward in Time Sensitrity (Adjoint equialent)
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -06 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -12 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -18 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -24 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -30 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Assimilation increases information about all three pieces:

3. Improve model of physical system.

Select appropriate values for model parameters.
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Climate Model Rrameter Estimation via Ensemble Data Assimilation.

T21 CAM assimilation of
gravity wave drag effi-
ciency parameter.

Oceanic values are noise
(should be 0).

(5 9|O 1éO 270 O< efficiency< ~4 sug-
H | D gested by modelers.
-10 -5 0 5 10

Positive values over NH land expected.
Problem: large negative values over tropical land near convection.
May reduce wind bias in tropical troposphere, but for ‘Wrong Reason’.

Assimilation tries to use free parameter to fix ALL model problems
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Requirements for a Community Assimilatioaddity

1. Assimilation that works with variety of models and obs. types.
2. Coding to add model must be easy (weeks max).

3. Coding to add observation type must be easy (weeks max).

4. Assimilations must be nearly as good as best available system.

5. Performance/scalability must be very good.

Adaptive ensemble filters with software engineering can do this...
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

1. Use model to advanessembl€3 members here)
to time at which next observation becomes available.

Ensemble state Ensemble state at
estimate after using time of next obser-
previous observation vation (orior).

(analysi3. /

/ *
N By
*
t i1
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.

y Theory: observations’

from instruments with
uncorrelated errors can
\be done sequentially.)

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

3. Getobserved valuandobservational error distribution

from observing system.

*
*e
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

N TN

- i | — - : — :

>y

Note: Difference between
different flavors of ensent-

h

* . . . . .

\ ble filters is primarily in
= |observation increment.

-
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

?
|

(Theory: impact of
observation increments on
each state variable can be
handled independently!

s 4 \_

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

truth ensemble
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

truth ensemble
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

truth ensemble
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

truth ensemble
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

truth ensemble
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.
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truth ensemble obs
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State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble obs
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State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Assimilate ‘obserations’ from 40 randomly located stations each step.

This isn’t working very well.
Ensemble spread is reduced, but...,
Ensemble is inconsistent with truth most places.

truth ensemble

5 10 15 20 25 30 35 40
State Variable

Confident and WRONG. Confident and right!
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. herrors; . 4. Sampling Error;
Representativeness ) .=~~~ 7" Gaussian Assumption
1 1 ’
\ r
| *4@
\ 1 1
' ' T y T - - Y

1. Model Error 5. Sampling Error;”
Assuming Linear
Statistical Relation
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Obsenations impact unrelated statariables through sampling error

Plot shows expected
absolute value of sample
: correlation vs. true
"""""""""""""""""""" o e correlation.

O
o

Unrelated obs. reduce
spread, increase error.
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Attack with localization.

Expected [Sample Correlation|

10 Members
0.2k Ff 20 Members § Don't let obs. impact
40 Members || unrelated state.
0 80 Members
0 0.5 1

True Correlation
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter

o
y \Y/}\ 4

5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter

truth ensemble obs
5 10 15 20 25 30 35 40

No Localization

5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 Assimilation with localization of obsatwon impact.
Ensemble is much more consistent with truth.

Localization from Hierarchical Filter

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable
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Localization computed by adayti hierarchical filter

A tuning run of 4, 20-member ensembles maximizes signal.

Localization from Hierarchical Filter

N AN

5 10 15 20 25 30 35 40
State Variable
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Localization in GCM can be very complex. Surface Pressure Obs. at 20N, 60E

u mean factor level 1 u mean factor level 2 u mean factor level 3

60 1 60

0.9

1 60 1
IO.9 50 I0.9
0.8 0.8 0.8
40 F10.7 40 @ 10,7 40 o7
30 @ i '06 30 @ i '06 30 @ i '06

50 50

10.5 10.5 10.5
20 10.4 20 lo.4 20 — L 10.4
10 10.3 10 10.3 10 10.3
0.2 0.2 0.2
0 0.1 0 0.1 0 0.1
-10 0o - 0 -10
20 40 60 80 100 20 40 80 100 20 40 60 80 100
PS to U
u mean factor level 4 u mean factor level 5 cross section at row 18
60 1 60 1 1 - - -
50 I0.9 50 IO.9
0.8 0.8 0.8}
40 - 10.7 40 - 10.7
30 10.6  3q 10.6 0.6}
+ 10.5 + 10.5
20 10.a 20 - - 10.4 0.4}
10 0.3 10 0.3
0.2 0.2 0.2}
0 0.1 0 0.1
-10 0 -10 0 0 : : :
20 40 60 80 100 20 40 60 80 100 20 40 80 100

MUST HAVE ADAPTIVE HELP FOR NON- EXPERT USERS.
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. herrors; . 4. Sampling Error;
Representativeness ) .=~~~ 7" Gaussian Assumption
1 1 ’
\ r
| *4@»
\ 1 1
' ' T y T - - Y

1. Model Error 5. Sampling Error;”
Assuming Linear
Statistical Relation
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

10

—5F vV F=8 vV k=90 i

model time (pseudo—days)

Time evolution for X1 shown.
Assimilating model quickly diverges from ‘true’ model.
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble

5 10 15 20 25 30 35 40
State Variable
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs
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State Variable
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs
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State Variable
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs
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State Variable
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

v/ \' ‘
¥

truth ensemble obs
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State Variable
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs
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State Variable
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs

5 10 15 20 25 30 35 40
State Variable

This isn’t working again!
It will just keep getting worse.
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance

Variance Deficient PDE ™,
b 1- ............................... SR ’ll‘\‘ ....................................................... -
3 "TRUE" Prior PDF ]
O
OAnclL Y N i
g 0.5
5_.* * *. * ;*L
94 -3 -1 0

3. Naive solution is Variance mflatlon. just increase spread of prior
4. For ensemble memberirh,flate(>ﬁ) = JX(Xi —X) + X
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.6

5 10 15 20 25 30 35 40
Adaptive State Space Inflation

5 10 15 20 25 30 35 40
No Inflation

5 10 15 20 25 30 35 40
State Variable
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.6
1-2
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.6
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.4 inflation

5 10 15 20 25 30 35 40
Adaptive State Space Inflation

. diouth . epnsemble
5 10 15 20 25 30 35 40
No Inflation

* >

. douth . epnsemble
5 10 15 20 25 30 35 40
State Variable
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.6
1_4
1.2
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Anderson: NCAR SEMINAR 107

3/19/07



Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

It can work, even in presence of severe model error.

1.4 inflation

5 10 15 20 25 30 35 40
Adaptive State Space Inflation

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40
State Variable
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Adaptie Inflation from CAM ‘Operational’ Assimilation

Mean inflation (range 1 to 3) for 500mb Temperature

This field is very complicated, depends on model details and obs.
Adaptive inflation tool automatically produces this.
Allows filter to work well with significant model (and other) errors.
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Adaptie Inflation for Ensemble Filtering

1. For observed variable, have estimate of prior-observed inconsistenc

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod
060 /NN
3 Actual 4.714 SDs :
S04F ) : — L -
DE_’ Expected Sepaypation
0.2 ) SiDr— \ o — S.Do\ :
94 - o 0 2 4

. . 2 2
2. Expected(prior mean - obs.ervatlon)/erprior + Ogps

Assumes that prior and observation are supposed to be unbiased.
Is it model error or random chance?
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Adaptie Inflation for Ensemble Filtering

1. For observed variable, have estimate of prior-observed inconsistenc

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\ .
3 : Actual 3?.698 SDs
804 e e -
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D.. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2
2. Expected(prior mean - observatlon)/gpnor + O0,ps
3. Inflating increases expected separation.
Increases ‘apparent’ consistency between prior and observation.
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Adaptie Inflation for Ensemble Filtering

1. For observed variable, have estimate of prior-observed inconsistenc

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\
= A Actual 3.698 SDs
804 P B
O ' Expected Sef ratlon
o 0.2} Inﬂa.t.l.S.D._ ............... ' e —_— S Do\ -

94 o R 0 - 2 4

2
Distance, D, from prior mean y to obsnig, Jmp”or 0o pe = N(O, )

Prob. y, is observed giveh: p(yo‘)\) = (2I'I6 ) exp(—D /292)
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

Prior PDF.___ Obs. Likelihood

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

Assume prior is gaussian;p(A[Y ., = N(Ap, 0f 0)
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

Prior PDF.___ ;
0.6 e S N S - We've assumed a

0.4 ............ S ................ .................... ...................... ~ gaussian for prior
| ' ' ' P(AY

prev)

Recall thatp(yo‘)\)

can be evaluated
- from normal PDF.

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

PAALY prew yo) = p(yo‘)\)p()\Yprev)/normalization
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

Obs leellhood :
X N\ D G et p(Y,|A= 0.75

‘e "

0.6fnflated P-rlor- A =0.75,

Q.4F i from normal PDF.
0.2k S 2
ol . ;1 Multiply by
Observation: y p(?\ — 0-75Yprev)
T PiorapoF - - o get
| P(A = 0.75Y e\ V)
0, : > 3 4 5 :

Obs. Space Inflation Factor: A

PAALY prew yO) = p(yo‘)\)p()\Yprev)/normalization.
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

.. Obs. Likelihood
0.6fInflated Prior A =1.5 5% *« N SR . Get p(yo‘)\: 1.5)

from normal PDF.

;1 Multiply by
D R NS I e ~ p(A=1.5Y

prev)
-~ to get

% 20 W S S R N SO
T\ POTMprevYo)
% 3 4 5 :

Obs. Space Inflation Factor: A

PALY prew yO) = p(yo‘)\)p()\Yprev)/normalization.
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

.. Obs. Likelihood ;
0.6} Inflated Prior A =2.25 57" N S ~ Get p(y,|A= 2.2)

4

from normal PDF.

;1 Multiply by

2 R I e S e 5 p()\ - 2'2‘Yprev)

to get

b\ e
% y 5 :

Obs. Space Inflation Factor: A

PALY prew yO) = p(yo‘)\)p()\Yprev)/normalization.
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

; .. Obs. Likelihood
0.6 SR P N S - Repeat for a range
0.4} 5 | 5 5 ~ of values of\.
0.2}
0 ; Now must get pos-
-1 0 1 2 3 4 terior in same form
Observation: y _ _
2p G S e e R ~as prior (gaussian).
: Prior A PDF : : :
1 Y A N S S

Likelihood y observed giiven A

1 2 3 4 5 6
Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo| M) P(AY ye)/ NOFMalization.

Anderson: NCAR SEMINAR 121 3/19/07



Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

.. Obs. Likelihood o
0.6 S SRR I b N S ~ Very little informa-
0.4f e i fld NE RN NN SR - tion aboutA in a
ook TR A v AN N single observation.
0 ' ' ' ' i . .
-1 4 Posterior and prior

Observation: y

D T ~are very similar.
Prior A PDF :

Normalized poste-

1o A L N S T .
Posterior ~ rior Indistinguish-
O1 2

Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo| M) P(AY ye)/ NOFMalization.
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

: S Obs leellhood :

Q.6 A SRV N Very little informa-
Q.4F s ------------ P --------------- “ ---------------------- ; tion aboufA in a
0.2t S AN single observation.

O e ' i | |

-1 0 1 2 3 4 Posterior and prior

Observation: y ..
~are very similar.

).OLf A Posterior — Prior TS

- Difference shows

= slight shift to larger
JOLp o T Max density shifted to right - yvalues of\.

Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo|M)P(A Y e,)/ nOrMalization.
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

| S Obs. leellhood :
0.6F R ST TN TN S - One option is to use
0.4f it f ST N AP - Gaussian prior for
ozb S e A
O H‘—'; : p : .
-1 0 1 2 3 4 Select max (mode)
Observation: y
D ~ of posterior as
Prior A PDF :

Find Max by search mean of updated

~ Gaussian.

Max is new A mean

/ ' \ Do a fit for updated

1 2 standard deviation.
Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo| M) P(AY ye)/ NOFMalization.
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Adaptie Inflation for Ensemble Filtering

A. Computing updated inflation meak,

Mode ofp(yo‘)\) P(ATY 5rey) €an be found analytically!
Solving a[p(yo‘)\)p()\Yprev)}/a)\: O leads to 6th order poly éh

This can be reduced to a cubic equation and solved to give mode.
New A, is set to the mode.

This is relatively cheap compared to computing regressions.
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Adaptie Inflation for Ensemble Filtering

A. Computing updated inflation varianar;ﬁ’ y

1. Evaluate numerator at mekn  and second point) @0, )
2. Findo? , soN(Ay, 0y ,) goes through(Ay)  amdh, + 0y, o)

3. Compute asy = -0 o/2Inr - where= p(Ay+ 0y )/ P(Au)
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State Space Adapg Inflation

Computations so far adapt inflation for observation space.
What is relation between observation and state space inflation?

Have to use prior ensemble observation/state joint distribution.

- Regress changes in
: - > y Inflation onto state vari-

able inflation.

tk+2
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Spatially \arying adaptie inflation algorithm:

Have a distribution fok at each time for each state variablg;

Use prior correlation from ensemble to determine impa&t pbn
prior variance for given observation.

If vis correlation between state variable | and observation then

2

2 2
B = J[1+V(A/AS, —1)] Oprior ¥ Opbs

Equation for finding mode of posterior is now full 12th order:
Analytic solution appears unlikely.
Can do Taylor expansion 6faroundAg ;

Retaining linear term is normally quite accurate.
There Is an analytic solution to find mode of product in this case!
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Hierarchical Bayesian Methods for AdaggtiFilters: Summary

1. Localization:
Run an ensemble of ensembles.
Use regression coefficient signal-to-noise ratio to minimize error.

2. Inflation:
Use each observation twice.
Once to adjust parameter (inflation) of filter system.
Second time to adjust mean and variance of estimate.
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Speed is of the Essence: ArBllel Sequential Filter

2. h for each ensemble is independg[. Designated process computes incremefts.
All done in parallel. Broadcasts increments to all processes.

N T N

- i | - : | :
—_— —

- »y
h
h \ lk+2
>
DY
N >
= -

1. Advances Embarrassingly Parallel4. State variables randomly assigned to procgsses.
Each is completely independent. Each process does regression for its state.
Completely independent.

>y

A
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Speed is of the Essence: ArBllel Sequential Filter

Lar ! ! ! ! !
Lk xR g

0.8—

1.4

IR T T

0gl. T42 ; ; ; * ;

14' f f f f :
o
. T T
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Simple for Users to Get Started witiART

1. Incorporating existing model requires handful of interfaces.
A. No need for linear tangents or adjoints.
B. Finite Volume CAM added in 1-month by postdoc.
C. Recently received unsolicited low-order model.

2. Adding observations also straightforward.
A. Only need forward operator (map state to expected observation)
B. No linear tangents or adjoints.
C. Several different GPS operators added in weeks.
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DART compliant models (lgiest setwer with assim system)

1. Many low-order models (Lorenz63, L84, L96, L2004,...).
2. Global 2-level PE model (from NOAA/CDC).
3. CGD’s CAM 2.0, 3.0, 3.1 (global spectral model).
3a. CGD’s CAM 3.1 FV (global finite volume model) with chemistry.
4. GFDL AM GCM (global grid point model).
5. MIT GCM (from Jim Hansen MIT; configured for annulus).
6. WRF model (regional prediction grid point, MMM).
6a. WRF column physics model (Josh Hacker RAL).
7. NCEP GFS (operational global spectral; assisted by NOAA/CDC).
8. GFDL MOM3/4 (global grid point ocean model).
9. ACD’s ROSE model (upper atmosphere with chemistry).
10. Cane-Zebiak 5 (tropical ocean/atmosphere, Alicia Karspeck CGD)
11. EPAs CMAQ dispersion model (U. Chicago).
Also models from outside geophysics.
This allows for a hierarchical approach to filter development.
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DART compliant erward Operators and Datasets

Many linear and non-linear forward operators for low-order models.
U, V, T, Ps, Q, dewpoint for realistic models.

Radar reflectivity, doppler velocity, GPS refractivity for realistic models.
Mopitt CO retrievals.

Can ingest observations from reanalysis or operational BUFR files.

Can create synthetic (perfect model) observations for any of these.
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Ensemble Assimilation Research Challenges

1. Assimilating when gaussian assumption breaks down.
Discrete structures (thunderstorms).
Bounded quantities (mixing ratio).
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Ensemble Assimilation Research Challenges

2. Parameter estimation.
How to incorporate additional ‘soft’ constraints.
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Ensemble Assimilation Research Challenges

3. Appropriate handling of representativeness errors.
Model can’t represent scales/phenomena that impact observations

Anderson: NCAR SEMINAR 137 3/19/07



Ensemble Assimilation Research Challenges

4. Distinguishing model, observation, and assimilation system error.
Is the model bad, or are the observations biased?
Direct assimilation of satellite radiances.
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Ensemble Assimilation Research Challenges

5. Other challenges raised by an increasingly diverse user community
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Ensemble Assimilation Research Challenges

1. Assimilating when gaussian assumption breaks down.
Discrete structures (thunderstorms).
Bounded quantities (mixing ratio).

2. Parameter estimation.
How to incorporate additional ‘soft’ constraints.

3. Appropriate handling of representativeness errors.
Model can’t represent scales/phenomena that impact observations

4. Distinguishing model, observation, and assimilation system error.
Is the model bad, or are the observations biased?
Direct assimilation of satellite radiances.

5. Other challenges raised by an increasingly diverse user community

Anderson: NCAR SEMINAR 140 3/19/07



References on Filter Algorithms:

1. Deterministic ensemble filters:
Anderson, J., “An ensemble adjustment Kalman filter for data assimilatomthly Weather
Review129, 2884-2903, 2001.

2. Sequential filter algorithms:
Anderson, J., “A local least squares framework for ensemble filteNagythly Weather
Review131, 634-642, 2003.

3. Inflation:
Anderson, J., and S. L. Anderson, “A Monte Carlo implementation of the non-linear filtering
problem to produce ensemble assimilations and forecsthly Weather Review27,
2741-2758, 1999.
Anderson, J., “An adaptive covariance inflation error correction algorithm for ensemble filters”,
To appear iMellus A 2007.

4. Adaptive localization:
Anderson, J., “Exploring the need for localization in ensemble data assimilation using an hier-
archical ensemble filter”, to appearRhysica D 2007.

5. Parallel algorithm:
Anderson, J. L., and N. Collins, “Scalable implementations of ensemble filter algorithms for
data assimilation. To appeardnAtmos. Ocean. Tech.,R007.

Anderson: NCAR SEMINAR 141 3/19/07



