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Global Climate Modelsare Global Weather P

1. Some models are used for both purposes.

2. Others have been developed independently.

3. Should a good climate model be a good wea

4. And vice versa?
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NWP models are great at predicting mid-tropo
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Not so good at surface temperature, precip., fr
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Have LARGE biases, too. NWS forecasters m
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Biases are corrected for by statistics and foreca

Challenges:
1. Correct bias in a perturbed (unknown) clim
2. Correct for small spatial scales.
3. Correct for precipitation.
4. Correct for frozen precipitation.
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Climate Model Bias Challeng

The smaller the scale,
the nearer the surface,

the more moisture is involved,
the more the climate has c

the closer to the free
the harder th

Need to test and improve climate models’ weathe

At least there are some observations available.

Do this via (ensemble) data assimilation.
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The Geophysical Data Assimilation P

Given: 1. A physical system (atmosphere, oc
_______________________________________

2. Observations of the physical syste

Often sparse and irregular in time and space
Instruments have error of which we have a (p
Observations may be of quantities not found 
Many observations may have very low inform

_______________________________________

3. A model of the physical system

Usually approximates time evolution.
Truncated representation of ‘continuous’ phy
Often quasi-regular discretization in space an
Generally characterized by ‘large’ systematic
Often ergodic with some sort of ‘attractor’.
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line
Select appropriate values for model parameters.
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Bayes rule:
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Bayes rule:
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Consistent Color Scheme Througho

Green = Prior

Red = Observation

Blue = Posterior
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Bayes rule:

This product is closed for Gaussian distribution
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Bayes rule:

This product is closed for Gaussian distribution
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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a Gaussian distribution to sample.
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Bayes rule:

Observation likelihood usually continuous (near

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 
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Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be u
Trial and error still best way to see how they pe
Will interact with properties of prediction models
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Ensemble Adjustment (Kalman) 
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Ensemble Adjustment (Kalman) 

Again, fit a Gaussian to sample.
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Ensemble Adjustment Kalman F

Compute posterior PDF.
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Ensemble Adjustment (Kalman) 

Use deterministic algorithm to ‘adjust’ ensemble
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Ensemble Adjustment (Kalman) 

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
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Ensemble Adjustment (Kalman) 

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
Second, use linear contraction to have exac

−4 −2 0
0

0.2

0.4

0.6
P

ro
ba

bi
lit

y

Posterior PDF

Mean Shifted

Variance Adjusted



4/10/07

bserved variable

ngle variable.

ditional variable.

itional variables.
Anderson: Ensemble Tutorial 29

Phase 2: Single observed variable, single uno

So far, have known observation likelihood for si

Now, suppose prior has an additional variable.

Will examine how ensemble methods update ad

Basic method generalizes to any number of add
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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If unobserved variable is part of model state...
This can work fine.

Have time-varying model-generated sample cov

Example: Correlation of east-west wind at point
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Can make a model parameter the unobserved quan

Use observations to ‘tune’ model parameter

Climate models have MANY real-valued par

Generally adjusted via physical intuition, tria
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 wave drag effi-
 parameter.

ic values are noise
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LL model problems
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Climate Model Parameter Estimation via Ensemble

T21 C
gravity
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0< effi
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Positive values over NH land expected.
Problem: large negative values over tropical land ne
May reduce wind bias in tropical troposphere, but fo

Assimilation tries to use free parameter to fix A
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Parameter ‘Assimilation’ Challenges for m

1. Distribution for parameters is only changed b
a. Variance will disappear.
b. Initial correlation ‘spatial’ structure remain
c. Can add some ‘system noise’, but how?

2. How should the initial covariance structure be
a. Randomly at each gridpoint (noisy!)?
b. Globally (smooth)?

3. What about just using covariance from a mod
a. This works for adaptively adjusting assim
b. For gravity wave drag example, which mo

4. What if signal is weak or non-linear (time to g
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DART)

 DART.

RT.
Anderson: Ensemble Tutorial 59

Data Assimilation Research Testbed (

Software to do everything here (and more) is in

Requires F90 compiler, Matlab.

Available from www.image.ucar.edu/DAReS/DA
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Phase 4: Quick look at real atmospheric applica

Results from CAM Assimilation: Janu
Model:

CAM 3.1 T85L26
U,V, T, Q and PS state variables impacted b
Land model (CLM 2.0) not impacted by obs
Climatological SSTs.

Assimilation / Prediction Experiments:
80 member ensemble divided into 4 equal g
Adaptive error correction algorithm.
Initialized from a climatological distribution (
Uses most observations used in reanalysis
(Radiosondes, ACARS, Sat. Winds...,no surfac
Assimilated every 6 hours; +/- 1.5 hour wind
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Af ter 6 hours.
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NCEP

DART/CAM

Difference.
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Af ter 1 day.
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NCEP

DART/CAM

Difference.
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Af ter 3 days.
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NCEP

DART/CAM

Difference.
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Af ter 7 days.
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NCEP

DART/CAM

Difference.
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6-Hour Forecast and Analysis Observation Spa

Tropics Northern 
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6-Hour Forecast and Analysis Observation S

Tropics Northern 
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