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Global Climate Modelare Global Weather Prediction Models

1. Some models are used for both purposes.
2. Others have been developed independently.

3. Should a good climate model be a good weather prediction model?

4. And vice versa?

Anderson: Ensemble Tutorial 2 4/10/07



GF3040z S500mb Z,vort thr=84

GFs300z mm 54-84h
pmal, 222:? (l:em{{ ) fhr=84

Forecasts from
00Z 09 APR 2007 =—1 I e

=1
1
[

ot 17 / i %
T A e e .7 "';(\

7 -‘,‘E.. =L Al = s \ :‘ . 3 -,..J i -
g ) = v

SN “.
160E 180 LBOW 1400 120W 100W BOW £0W 40W 0 20E 40K
= | e -
40 a5 -0 28 -0 -15 -10 & O & 10 15 £ #  yerif time: Thu 12 APR 200% 127

NWP models are great at predicting mid-tropospheric heights.
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Not so good at surface temperature, precip., freezing precip., wind...
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Have LARGE biases, too. NWS forecasters make a living off this.
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Biases are corrected for by statistics and forecasters (and users).

Challenges:
1. Correct bias in a perturbed (unknown) climate.
2. Correct for small spatial scales.
3. Correct for precipitation.
4. Correct for frozen precipitation.
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Climate Model Bias Challenges

The smaller the scale,
the nearer the surface,
the more moisture is involved,
the more the climate has changed,
the closer to the freezing point,
the harder things get.

Need to test and impve climate models’ weather prediction skill.

At least there are some observations available.

Do this via (ensemble) data assimilation.
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The Geoplgsical Data Assimilation Problem:

Given 1. A physical system (atmosphere, ocean, climate system...

2. Observations of the physical system

Often sparse and irregular in time and space.

Instruments have error of which we have a (poor) estimate.
Observations may be of quantities not found in model.
Many observations may have very low information content.

3. A model of the physical system

Usually approximates time evolution.

Truncated representation of ‘continuous’ physical system.
Often quasi-regular discretization in space and/or time.
Generally characterized by ‘large’ systematic errors.
Often ergodic with some sort of ‘attractor’.
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Assimilation increases information about all three pieces:

1. Get an improved estimate of state of physical system.

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

2. Get better estimates of observing system error characteristics.

Estimate value of existing or planned observations.
Design observing systems that provide increased information,

3. Improve model of physical system.
Evaluate model systematic errors.

Forward and backward sensitivity analysis (adjoint and linear tangent replacement).
Select appropriate values for model parameters.
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A:. Prior estimate based on all greus information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional obsetion.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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Consistent Color Scheme Throughoutdrial

Green = Prior

Red = Obsewation

Blue = Rosterior
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P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)

Bayes rulep(A/ BC) =

p(B| C) [P(B[x)p(x| C)dx
Ensemble filtersPrior is aailable as finite sample.
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Don’t know much about properties of this sample.

May naively assume it is random draw from ‘truth’.
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How can we take product of sample with continuous likelihood?
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Fit a Gaussian distribution to sample.
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Observation likelihood usually continuous (nearly always Gaussian).
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If Obs. Likelihood isn’'t Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.
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Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.
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Ensemble Adjustment (Kalman) Filter:
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Ensemble Adjustment (Kalman) Filter:
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Again, fit a Gaussian to sample.

Anderson: Ensemble Tutorial 24 4/10/07



Ensemble Adjustment Kalman Filter:
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Compute posterior PDF.
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Ensemble Adjustment (Kalman) Filter:
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Use deterministic algorithm to ‘adjust’ ensemble.
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Ensemble Adjustment (Kalman) Filter:
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.



Ensemble Adjustment (Kalman) Filter:
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
Second, use linear contraction to have exact variance of posterior.
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Phase 2: Single obs@&w \ariable, single unobsezd \ariable

So far, have known observation likelihood for single variable.
Now, suppose prior has an additional variable.
Will examine how ensemble methods update additional variable.

Basic method generalizes to any number of additional variables.
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable
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Assume that all we know
IS prior joint distribution.

One variable is observed
(SFO temperature).

What should happen to

unobserved variable

(S. CA. Gridpoint wind)?
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Ensemble filters: Updating additional prior state variables

Assume that all we know
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O -4 I 7 * 7 7 o 7 7 * * VVVVVVVV .
S35 ~ o
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| Update observed
variable with ensemble
1 adjustment filter.
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.
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Ensemble filters: Updating additional prior state variables
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
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| Compute increments for
prior ensemble members
{ of observed variable.
Increments
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Observed Variable
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Ensemble filters: Updating additional prior state variables
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0 4% | | * | is prior joint distribution
O 4 e T
| | One variable Is observed.
*xk *  *
| Compute increments for
, | prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable

Anderson: Ensemble Tutorial 37 4/10/07



Ensemble filters: Updating additional prior state variables
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Ensemble filters: Updating additional prior state variables

Assume that all we know
IS prior joint distribution.
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable
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Assume that all we know
IS prior joint distribution.

How should the
unobserved variable be
Impacted?

First choice: least squares

Equivalent to linear
regression.

| Same as assuming

binormal prior.
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Ensemble filters: Updating additional prior state variables

5— . | Have joint prior
distribution of two
variables.

How should the
unobserved variable be
Impacted?

First choice: least squares

Unobserved State Variable
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Begin by findingeast
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables
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Ensemble filters: Updating additional prior state variables
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Ensemble filters: Updating additional prior state variables
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) O* 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable

Anderson: Ensemble Tutorial 49 4/10/07



Ensemble filters: Updating additional prior state variables
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.
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Ensemble filters: Updating additional prior state variables

Now have an updated
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Ensemble filters: Updating additional prior state variables

Now have an updated
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Ensemble filters: Updating additional prior state variables

| | Now have an updated
Posterior Fit | | (posterior) ensemble for
| the unobserved variable.
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If unobserved variable is part of model state...
This can work fine.

Have time-varying model-generated sample covariance.

70

D
o

degrees north

degrees east
Example: Correlation of east-west wind at point with temperature.
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Can mak a model parameter the unobserguantity

Use observations to ‘tune’ model parameters.
Climate models have MANY real-valued parameters.

Generally adjusted via physical intuition, trial and error, or...
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Climate Model Rrameter Estimation via Ensemble Data Assimilation.

T21 CAM assimilation of
gravity wave drag effi-
ciency parameter.

Oceanic values are noise
(should be 0).

(5 9|O 1éO 270 O< efficiency< ~4 sug-
H | D gested by modelers.
-10 -5 0 5 10

Positive values over NH land expected.
Problem: large negative values over tropical land near convection.
May reduce wind bias in tropical troposphere, but for ‘Wrong Reason’.

Assimilation tries to use free parameter to fix ALL model problems
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ParameterAssimilation’ Challenges for math/stats folks!

1. Distribution for parameters is only changed by observations:
a. Variance will disappear.
b. Initial correlation ‘spatial’ structure remains.
c. Can add some ‘system noise’, but how?

2. How should the initial covariance structure be picked?
a. Randomly at each gridpoint (noisy!)?
b. Globally (smooth)?

r

3. What about just using covariance from a model variable (say winds)’
a. This works for adaptively adjusting assimilation system params.
b. For gravity wave drag example, which model variable to use?

4. What if signal is weak or non-linear (time to give up and go home)?
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Data Assimilation Researcle3tbed (ART)

Data
Assimilation

Research
Testbed

Software to do everything here (and more) is in DART.
Requires F90 compiler, Matlab.

Avallable from www.image.ucar.edu/DAReS/DART.
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Phase 4. Quick look at real atmospheric applications...

Results from CAM Assimilation: Januar2003

Model:
CAM 3.1 T85L26
U,V, T, Q and PS state variables impacted by observations.
Land model (CLM 2.0) not impacted by observations.
Climatological SSTs.

Assimilation / Prediction Experiments:
80 member ensemble divided into 4 equal groups.
Adaptive error correction algorithm.
Initialized from a climatological distribution (huge spread).
Uses most observations used in reanalysis
(Radiosondes, ACARS, Sat. Windsno, surface obs. or retrievals
Assimilated every 6 hours; +/- 1.5 hour window for obs.
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NCEP

DART/CAM

Difference.
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NCEP

DART/CAM

Difference.
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NCEP reanalyses, 500mb GPH, Jan 08 00Z Af ter 7 dayS .

Geopotential height gpm
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6-Hour Forecasand Analysis Observation Space Temperature RMS
RMS Error: Tropics
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6-Hour Forecasand Analysis Observation Space Wind RMS

RMS Error: Tropics RMS Error: Northern Hemisphere
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