A Boxcar Kernel Filter for Assimilation of
Discrete Structures (and Other Stuff)
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Background:
1. Most ensemble filters assume prior and likelihood are ~gaussian.
2. Patrticle filters do full non-gaussian, but don’t scale.

3. Assuming non-gaussian only in observation space is possible.

4. Gaussian kernel filters have been proposed but work poorly.
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Requirements for an obsaton space érnel filter:

1. Low information content obs. can't lead to large increments.
2. Want small increments for all cases.

3. Comparable to gaussian filters for ~gaussian cases.

4. Better than gaussian in non-gaussian cases.

4. Must be computationally cheap.
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Obsenation Space Boxcardfnel Filter

O
o))

>
045 R s S A -
c :
8 ?
S 0.2 I U T .
5
S 0 ;
O §
as §
-3 -2 -1 0 1 2 3

Apply forward operator to each ensemble member.
Get prior ensemble in observation space.
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Step 1: Get continuous prior distribution density.

Place (ens_size +1)mass between adjacent ensemble members.

Reminiscent of rank histogram evaluation method.
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Step 1: Get continuous prior distribution density.
Place (ens_size +1)mass between adjacent ensemble members.

Reminiscent of rank histogram evaluation method.
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Step 1: Get continuous prior distribution density.
Place (ens_size +1)mass between adjacent ensemble members.

Reminiscent of rank histogram evaluation method.
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Step 1: Get continuous prior distribution density.
Place (ens_size +1)mass between adjacent ensemble members.

Half-gaussian kernels on tails, N(Outer ensennlgs/2).
These prevent filter divergence in presence of model error.
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Step 2: Usdikelihood to compute weight for each ensemble member.

Analogous to classical particle filter.
Can be easily extended to non-gaussian obs. likelihoods.
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Step 3. Compute continuous posterior distribution.
1. Split each uniform box in half; multiply mass by adjacent likelihood.
(Outermost ensemble members have only one associated half box

This is just quadrature computation of posterior.
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Step 3. Compute continuous posterior distribution.
1. Split each uniform box in half; multiply mass by adjacent likelihood.
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Step 3. Compute continuous posterior distribution.
1. Split each uniform box in half; multiply mass by adjacent likelihood.
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Step 3. Compute continuous posterior distribution.
1. Split each uniform box in half; multiply mass by adjacent likelihood.
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Step 3. Compute continuous posterior distribution.
1. Split each uniform box in half; multiply mass by adjacent likelihood.
(Outermost ensemble members have only one associated half box
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Step 3. Compute continuous posterior distribution.
1. Split each uniform box in half; multiply mass by adjacent likelihood.
2. Product of prior gaussian kernel with likelihood for talls.

Easy for gaussian likelihood.

More quadrature if non-Gaussian likelihood.
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Step 4. Compute updated ensemble members:
(ens_size + 13 of posterior mass between each ensemble pair.
(ens_size + 13 in each wing.
Trivial to compute cumulative density if likelihood is gaussian.
Uninformative observation has no impact.
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Compare to standard Ensemble Adjustment Filter (EAKF).
In this nearly gaussian case, differences in increments are small.
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Outliers are a Challenge for Gaussian Filters

3b el i
2
@
CICJ o i E i -
o |
> _
5 1- ...........................................................................................
©
IS 5
a ° T
_1LEAKE Posteriof ; ; ; ; .
3 =25 -2 -15 -1  -05 0 0.5 1

Boxcar gets rid of outlier that is clearly inconsistent with obs.

EAKF can'’t get rid of outlier.

Large prior variance from outlier causes EAKF to shift all members
too much towards observation.
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Multimodal Prior Distrilutions
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Boxcar can deal with multimodal prior with a compelling observation.
EAKEF still bimodal; left mode is inconsistent with everything.
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Multimodal Prior Distrilutions
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Convective scale models have analogous behavior.
Convection may fire at ‘random’ locations.

Subset of ensembles will be in right place, rest in wrong place.
Want to aggressively eliminate convection in wrong place.
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Boxcar results compared to a@mtional EAKF and EnKF:

1. Lorenz-63, infrequent observations (ideally suited for boxcar).
Boxcar significantly better for all ensemble sizes.

2. Lorenz-96 (40 variable) with significant model error:
Boxcar slightly worse for 20 members.
Boxcar slightly better for 80 members.

3. T85L26 CAM within situ BUFR observations:
Boxcar somewhat worse for 20 members.
Still competitive with NCEP 2003 operational.
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Future vork:

1. Need to test in models with discrete structures.

2. Understand occurrence of outliers in ensemble assimilation.
3. Study enhancements for tails.

4. Non-gaussian likelihoods?

5. Bounded observed guantities like tracer concentration.
Appropriate priors/likelihoods may be log normal or beta.
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Want to try it out?
The boxcar and 6 other ensemble update variants are in DART.

www.image.ucar.edu/DAReS/DART.
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