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1. Ensemble Data Assimilation

1.1 What is Data Assimilation?

Data Assimilation (DA) combines observations of a physical sys-
tem with predictions from a numerical forecast model. DA can be
used for many purposes, including:
• constructing initial conditions for forecasts,
• evaluating errors in the model and observations,
• finding appropriate values for model parameters,
• designing better observational systems.

The Data Assimilation Research Testbed (DART) is a commu-
nity software facility that can be used for all the above purposes.
DART provides a variety of ensemble filtering (EF) algorithms.
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1.3 Geophysical applications require extensions

The basic EF algorithm does not work well when applied to large
geophysical problems. Model error, sampling error from using
affordable ensemble sizes, and violation of linear and Gaussian
assumptions all lead to overconfidence in the ensemble priors.
This can result in poor performance or filter divergence. DART
has several self-tuning algorithms to address these problems that
work for a wide variety of models and observations without the
need for user expertise. Some of these are described in sections
3 and 4.

2. What’s in DART?

DART makes it easy to learn and apply EF data assimilation.

•Has an extensive tutorial and instruction set.
• Incorporating new models and new observation types requires

only minimal coding of a small set of interface routines.
• Scales linearly to hundreds of processors. Parallel performance

is independent of the forecast model. Even single-threaded
models can be run in parallel.

• Includes many flavors of ensemble filters:
1. EAKF; Ensemble Adjustment Kalman Filter,

2. EnKF; Ensemble Kalman Filter,
3. Kernal filter,
4. particle filter,
5. a fixed-lag ensemble Kalman smoother.

• Provides additional algorithms for improved performance:
1. prior and posterior inflation,

2. automatic adaptive inflation,
3. horizontal, vertical, multivariate localization,
4. hierarchical filter for adaptive localization,
5. dynamic adjustment of localization cutoff radius,
6. a priori sampling error correction.

•Output is in portable netCDF files and one custom-format ob-
servation file. Matlab c© scripts are provided to investigate:

1. rank histograms,

2. bias, error, and spread as a function of height or time,
3. ensemble trajectories,
4. innovations,
5. 3D plots of observation densities and rejection attributes.
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Figure 1: Examples of some diagnostic plots which can be gen-
erated for any DART experiment, any model. These are ‘perfect
model’ experiment results with the Lorenz 96 model. The top row
of plots is from an experiment that exhibited filter divergence. The
bottom row of plots used covariance inflation.

• It is freely available via a web download using subversion, which
provides for easy code upgrade paths and bug fixes.

Compliant Models and Observation Types

The distributed code includes a variety of low-order models and
the following geophysical model interfaces:

1. CAM; Community Atmosphere Model (spectral, FV cores),
2. WRF; Weather Research and Forecasting system,
3. MITgcm Ocean; general circulation model,
4. ROSE; Middle atmosphere dynamics and chemistry,
5. GFDL; grid point GCM dynamical core,
6. Two-layer primitive equation model (NOAA/CDC),
7. PBL 1d; Single column (WRF) model.

Observation types that have been used include:
1. upper air: radiosondes, ACARS, satellite drift winds,
2. surface: winds(10m), T and Q(2m), Psurf ,
3. scatterometer winds,
4. Doppler radial velocity and reflectivity,
5. GPS radio occultation, refractivity,
6. ground-based GPS.

3. Hierarchical Filter for Adaptive Localization

Sampling error from using small ensembles leads to spuriously
large correlations among weakly-related observations and state
variables. This results in systematic underestimation of posterior
variance and can lead to filter divergence. Localizing the impact
of an observation to nearby state variables has been the tradi-
tional solution. This requires expert knowledge and trial-and-error
to get appropriate localizations. DART provides an algorithm to
automatically compute localizations using a small group of en-
sembles.
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Figure 2: Adaptive localization for a surface pressure (PS) obser-
vation on the zonal wind (V) at 5 model levels as determined from
4 groups of 20 members. The location of the PS observation is
indicated by the crosshairs. Note the asymmetry! The model is
the GFDL dynamical core.

4. Adaptive Inflation

Model error and violation of linear and Gaussian assumptions are
additional sources of insufficient variance in the ensemble priors.
This can be ameliorated by ‘inflation’: where the ensemble spread
is increased while maintaining the mean and sample correlations
among all prior variables. Traditionally, all variables at all loca-
tions have been ‘inflated’ by a constant value, chosen by the user
to optimize performance in some region or timespan. This tuning
takes time and computer resources and can never be optimal for
the entire domain. Often, a value of inflation that works well in
one region will lead to uncontrolled growth of variance in another.
DART has an adaptive inflation algorithm that uses the set of ob-
servations affecting a state variable to determine the best value of
inflation for that variable.
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Figure 3: Illustration of the damped adaptive spatial inflation and
its evolution over time at a pair of locations. CAM T85 U winds
at level 15 (≈ 266 hPa) at the end of one month of assimilating
observations every 6 hours. The field started off with a uniform
value of 1.0.
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Figure 4: Six hour forecast ensemble mean RMS error and
spread of 500 hPa radiosonde temperature observations for CAM
T85 assimilations with no inflation and with damped adaptive in-
flation. The assimilation with adaptive inflation has reduced RMS
error and more consistent spread. The upper panel also shows
that fewer observations are being rejected by the assimilation us-
ing inflation.

5. New Observations

The impact of new observation types on predictions of high-impact
weather like tropical storms can be assessed using DA. Figure 5
shows forecasts of typhoon Shanshan (2006) initialized from two
assimilations that differ only in the use of the global positioning
system (GPS) radio occultation measurements from the Constel-
lation Observing System for Meteorology Ionosphere and Climate
(COSMIC) satellites. The WRF model in a regional configuration
was used for both the assimilations and the forecasts.

Figure 5: Forecasts of the probability that rainfall will exceed
60mm during the period of 12Z 14 September to 12Z 15 Septem-
ber 2007. Forecasts were initiated 36 hours before. The assimi-
lations producing the forecasts in panel B made use of COSMIC
GPS radio occultation observations while those in panel A did not.

The 32-member assimilations use a 45-km grid; the first 16 en-
semble analyses are interpolated to a 15-km grid to perform 72-
hour forecasts. The probability at each grid point is computed by
dividing the number of forecast members that predicted excessive
precipitation by 16, the total number of forecasts. Ensemble fore-
casts starting from analyses using COSMIC observations have
larger probabilities of excessive precipitation and are more con-
sistent with heavy rainfall generated by Shanshan.

6. Parallel Scaling

Scaling runs have been done with a state-of-the-art global atmo-
spheric climate model on architectures ranging from a commodity
Intel-based 32 CPU Linux cluster to Bluefire - an IBM Power 575
with 4064 POWER6TM processors running at 4.7GHz. The fol-
lowing results are from Bluefire, and are representative.
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Figure 6: Wall clock time required to assimilate 100,000 observa-
tions as a function of number of MPI tasks. The experiment used
80 ensemble members, each with 2,166,624 state variables. The
’perfect scaling’ line is based on the time for 16 MPI tasks.

The data is from the CAM FV core on a 1.9◦ x 2.5◦ grid with 26
vertical levels. In this case, the computational burden of assimila-
tion is about equal to the burden of advancing the model 6 hours.
The model advances scale independent of the assimilation; DART
can advance ensemble members simultaneously or sequentially.

7. Try this at home!

Our web site is: http://www.image.ucar.edu/DAReS/DART
There you will find information about how to download the latest
version of DART from our subversion server, information on a full
DART tutorial (included with the distribution), and contact informa-
tion for the DART development group.
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