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Ensemble Filter Overview.

Ensemble state
estimate after using
previous observation
(analysis).

Ensemble state at
time of next obser-
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Ensemble Filter Overview.

2. Get prior ensemble sample of observation, y
applying forward operator h to each ensemble m
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Ensemble Filter Overview.

3. Getobserved valueandobservational error distr
from observing system.
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Ensemble Filter Overview.

4. Findincrement for each prior observation ense
(this is a scalar problem for uncorrelated observ
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Ensemble Filter Overview.

5. Use ensemble samples of y and each state v
regress observation increments onto state varia
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Ensemble Filter Overview.

6. When all ensemble members for each state 
have a new analysis. Integrate to time of next o

y
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*
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Note: Consistent Color Scheme Th

Green = Prior

Red = Observation

Blue = Posterior
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Two most common observation space update a

1. EAKF: Ensemble Adjustment KF (determ

2. EnKF: Ensemble KF (Monte Carlo approx
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Bayes rule:

This product is closed for Gaussian distribution

Posterior = Likelihood * Prior / Normalization
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Bayes rule:

This product is closed for Gaussian distribution
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=
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dµ2 and
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

Ignore the weight for now; normalize products t
But it is used in the new algorithm...

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=

c
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2Π( )d 2⁄ Σ1 Σ2+ 1 2⁄--------------------------------------------------- 1
2
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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a continuous (Gaussian for now) distribution
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Bayes rule:

Observation likelihood usually continuous (often

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 
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Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Use deterministic algorithm to ‘adjust’ ensemble
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
Second, use linear contraction to have exac
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

    i = 1,..., ensemb

p is prior,      u is update (posterior),    overbar i
σ is standard deviation.
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

For linear, gaussian, large enough ensemble,this is 
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

‘Classical’ Monte Carlo Algorithm for Data Assi

Note: earliest refs have incorrect algorithm.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Generate a random draw from the obs. likelihoo
Associate it with the first sample of prior ensem
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.

Algorithm sometimes called ‘perturbed obs.’ en
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Adjusting the mean of obs. sample to be exact 
Adjusting the variance may further improve per
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

For each prior mean/obs. pair, find mean of pos
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Prior sample standard deviation still measures uncerta
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Prior sample standard deviation still measures uncerta

Obs. likelihood standard deviation measures uncert
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Take product of the prior/obs distributions for fir
This is standard Gaussian product.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Mean of product is random sample of posterior.
Product of random samples is random samp
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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 ‘exact’ for large samples.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Posterior sample mean and variance converge to
Sample is mixed by some introduced noise.
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A One-Variable Test Model

,

Assume ‘true’ trajectory is just x=0.
(Same as linearizing around an arbitrary tra

α = 0: linear model (exponential growth).

α > 0: have additional expansion.

Observe ‘truth’ with observational error variance
Observations are just draws from N(0, 1.0).

xt 1+ xt ∆t xt α xt xt+( )+= ∆t 0.05=
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Linear Model Results (α = 0): EAK
(All results throughout are for prior e

EAKF is just an algorithm for computing Kalma
Ensemble members don’t cross, identical spaci
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Linear Model Results (α = 0): EnK

EnKF is a Monte Carlo algorithm approximating
Ensemble members cross, moments (like kurto
Sampling error due to small ensembles is an is
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Linear Model Time-Mean RMS Error as Functi

EAKF exact for any ensemble size (>1).
EnKF has sampling error (smaller value at 40 is
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Nonlinear Model Results (α = 0.8): E

Model advance: furthest outlier pushed out fast
All members pulled in linearly by assimilation.
All members but outlier clump together; get hug
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Nonlinear Model Results (α = 0.8): E

Model advance: furthest outlier pushed out fast
Assimilation mixes members some.
Still get high kurtosis sometimes.
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 Increases (α = 0.2).

le size.
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EAKF Problem Gets Worse as Ensemble Size

RMS error as function of ensemb
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A Deterministic Non-Gaussian Observation S

1. Most ensemble filters assume prior and likeli

2. Particle filters do full non-gaussian, but may 

3. Assuming non-gaussian in observation space

4. Gaussian kernel filters have been proposed b
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Requirements for an observation space

1. Low information content obs. can’t lead to lar

2. Want smallest possible increments for all cas

3. Comparable to gaussian filters for ~gaussian

4. Better than gaussian in non-gaussian cases;

5. Computationally cheap.
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Observation Space Rank Histogram

Apply forward operator to each ensemble mem
Get prior ensemble in observation space.
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen
Partial gaussian kernels on tails, N(tail_mean, σ

tail_mean selected so that (ens_size + 1)-1 m
Performance is sensitive to the tail struct
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Observation Space Rank Histogram

Step 2: Get an approximation oflikelihood.

Could use full gaussian but this is expensive

−3 −2 −1 0 1

0

0.2

0.4

0.6

Prior

P
ro

ba
bi

lit
y 

D
en

si
ty



11/25/08

 Filter

le members.

2 3
Anderson: CAOS Workshop: 5 December 2008 56

Observation Space Rank Histogram

Step 2: Get an approximation oflikelihood.

Example: linear fit between value at ensemb
Keep exact gaussian form on tails.
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Observation Space Rank Histogram

Step 3: Computeprior* likelihood to getposterior.

Simple and cheap in interior.
(Displayed product normalized to make po
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Observation Space Rank Histogram

Step 3: Computeprior* likelihood to getposterior.

Product of gaussians on tails (we have to us
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Observation Space Rank Histogram

Step 4: Compute updated ensemble members:

(ens_size + 1)-1 of posterior mass between eac

(ens_size + 1)-1 in each tail.
Uninformative observation has no impact.
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Observation Space Rank Histogram

Compare to standard Ensemble Adjustment Fil

Nearly gaussian case, differences are small.
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ian Filters

 inconsistent with obs.

to shift all members
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Outliers are a Challenge for Gauss

Rank Histogram gets rid of outlier that is clearly
EAKF can’t get rid of outlier.
Large prior variance from outlier causes EAKF 

too much towards observation.
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Multimodal Prior Distributions

Rank Histogram handles multimodal prior and c
EAKF still bimodal; left mode is inconsistent wit

Lorenz_63 can have priors like this.
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Multimodal Prior Distributions

Convective scale models have analogous beha
Convection may fire at ‘random’ locations.
Subset of ensembles will be in right place, rest 
Want to aggressively eliminate convection in wr
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Results: Linear Model (α = 0), Time-Me

Rank Histogram Filter (RHF) fails for 10 membe
Competitive for >10 members.
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Results: Nonlinear Model RMS (α = 0.2), Tim

RHF best for all ensemble sizes.
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Results: Nonlinear Model Kurtosis (α 

RHF smallest for ensemble sizes > 10.
Doesn’t have outlier excursions (max is small).
EAKF has HUGE kurtosis (off the plot).
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Results: Lorenz63 RMS
All 3 state variables observed, error v

RHF and EnKF comparable.
EAKF gets progressively worse (but pretty good
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Results: Lorenz63 EAKF
All 3 state variables observed, error v

Wandering ensemble member can detach, hea
Happens less frequently and severely in EnKF.
Can reattach due to mixing from other variables
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Results: Lorenz63 Kurtosis
All 3 state variables observed, error v

Kurtosis is big in EAKF due to detached outliers
Happens less frequently and severely in EnKF.
Outliers quickly eliminated by RHF, kurtosis sta
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Results: Lorenz96 RMS
40 Observations, average of adjacent state v

Localization halfwidth 0.3 of domain, ada

EAKF RMS increases moderately with ensemb
EnKF and RHF comparable for larger ensemble
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Results: Lorenz96 Kurtosis
40 Observations, average of adjacent state v

Localization halfwidth 0.3 of domain, ada

EnKF has sporadic large kurtosis, increases wi
EAKF max kurtosis very large (off plot).
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Results: Dynamical Core of GFDL A

1. EAKF: sporadic spatially localized outlier beh

2. EnKF: similar behavior less frequently.
3. RHF:    no evidence this occurs.
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Results: Global NWP in Finite Volume

1. Limited evidence of outlier events in any filter

2. Prior fit to observations:
80-member EAKF and RHF virtually indistin

(Comparable to NCEP operational, bette
80-member EnKF significantly worse.
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Other ways to Approximate the Likeli

Results shown for linear interpolation in interior
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Other ways to Approximate the Likeli

Average likelihood at bounding ensemble mem
Computing posterior ensemble becomes ve
Expected spread of posterior increased. Thi
RMS errors mostly indistinguishable from ba
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Other ways to Approximate the Likeli

Likelihood on tails is constant value at outermo
Also tends to increase spread.
Likelihood on tails generally unimportant.
RMS still nearly the same.
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Call this a Non-parametric Rank Histogram

Only need value of likelihood computed for eac
Can handle arbitrary non-gaussian likelihoods.
Can help to keep bounded quantities bounded.
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A nonlinear, non-gaussian filte

Have state vector, x.
Sets of observations at discrete times, .

Complete history of observations is:

Go back to Bayes, assimilating observations at

ti

Yτ yi t;{=

p x tk Ytk
, 

 
p yk x( ) p x tk Ytk 1–

,( )

norm
--------------------------------------------------------=
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A nonlinear, non-gaussian filte

Update marginal for jth component of x indepen

Just use the NPRHF.

Under what conditions is the marginal update a

This works well in Lorenz-63.
Almost always better than EAKF and EnKF.
Significantly better for infrequent observatio

pj xj tk Ytk
, 

 
p yk x( ) pj xj tk Ytk 1–

,( )

norm
------------------------------------------------------------=
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A nonlinear, non-gaussian filte

Challenge for large models:
Likelihood from remote ‘unrelated’ obs. is ju

Solution: Compute a ‘localized’ likelihood for ea

Damp likelihood to ensemble mean, , as func

,   n=1,...,ens_size
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A nonlinear, non-gaussian filte

Algorithmic summary:
1. Compute forward operators for set of obs
2. Compute ensemble likelihoods for each o
3. Compute cumulative likelihood for each s

a. For each ensemble member, product 
b. Assumes independent observational e

4. For each state variable, use NPRHP to up
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A nonlinear, non-gaussian filte

Very efficient:
1. No computation of covariances between p
2. Only one application of RHF update per s
Assimilation is faster for standard atmosphe

(Same scaling but constant factor sm

Scalable algorithm:
1. Forward operators/likelihoods all indepen
2. Products of likelihoods independent for a
3. Can select subset of ‘best’ observations f
4. Parallel requires NO extra computations.
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But, does it work? Yes (and no).

For Lorenz-96, 80 member RMS about 20% gre
For GFDL dynamical core, PS observations, ab

Why is it worse?
1. Doesn’t know anything about likelihood o

This can hurt when everything is close to
2. Noise from unrelated observations.

Unrelated observations cause all ensem
Smoothing likelihoods in clever ways sho
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Want to try it out?

The Rank Histogram Filter and 7 other ense
are in DART.

www.image.ucar.edu/DAReS/DART.

The nonlinear non-gaussian filter is not yet in p


