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How an Ensemble Filter Wks for Geopiasical Data Assimilation

1. Use model to advanessembl€3 members here)
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

3. Getobserved valuandobservational error distribution

from observing system.
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).
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(Note: Difference between
different flavors of ensent-
ble filters is primarily in

@bservation Increment. y

*
*

Anderson: Joint Stats Meeting, Denver, 4 August, 2008 5 7/17/08



How an Ensemble Filter Wks for Geopiasical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

?
|

(Theory: impact of
observation increments on
each state variable can be
handled independently!
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
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Ensemble Filter for Lorenz-96 40axable Model

40 state variables: X X,,..., X40
dXj/ dt = (X1 - Xi2)Xjp - X+ F.
Acts ‘something’ like synoptic weather around a latitude band.

10

—-10

5 10 15 20 25 30 35 40
State Variable

Anderson: Joint Stats Meeting, Denver, 4 August, 2008 17 7/17/08



Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

truth ensemble
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.

\/Aoé\\ }

‘ \
e
\’/A '\\}‘ 0 \

\

\\»‘
(e
A N
\ /;‘{ Y, //.\
) 7 IR
X N N
N ra\! /// \ S
\V 7 ¥

truth ensemble

5 10 15 20 25 30 35 40
State Variable

Anderson: Joint Stats Meeting, Denver, 4 August, 2008 23

7/17/08



Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Lorenz-96 is sensiute to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each Xi at time 100.
Refer to unperturbed control integration as ‘truth’.
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.
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Assimilate ‘obserations’ from 40 randomly located stations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 1) to each.
Start from ‘climatological’ 20-member ensemble.
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Assimilate ‘obserations’ from 40 randomly located stations each step.

This isn’t working very well.
Ensemble spread is reduced, but...,
Ensemble is inconsistent with truth most places.

truth ensemble
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State Variable

Confident and WRONG. Confident and right!
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. herrors; . 4. Sampling Error;
Representativeness ) .=~~~ 7" Gaussian Assumption
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Assuming Linear
Statistical Relation
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Obsenations impact unrelated statariables through sampling error

Plot shows expected
absolute value of sample
: correlation vs. true
"""""""""""""""""""" o e correlation.
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||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

O
o))

=
~

Attack with localization.

Expected [Sample Correlation|

10 Members
0.2k Ff 20 Members § Don't let obs. impact
40 Members || unrelated state.
0 80 Members
0 0.5 1

True Correlation

Anderson: Joint Stats Meeting, Denver, 4 August, 2008 39 7/17/08



Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter

truth ensemble obs
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Lorenz-96 Assimilation with localization of obsatwon impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of obsatwon impact.
Ensemble is much more consistent with truth.

Localization from Hierarchical Filter

truth ensemble obs
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Localization computed by adayti hierarchical filter

A tuning run of 4, 20-member ensembles maximizes signal.

Localization from Hierarchical Filter
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Localization in GCM can be very complex. Surface Pressure Obs. at 20N, 60E

u mean factor level 1 u mean factor level 2 u mean factor level 3

60 1 60

0.9

1 60 1
IO.9 50 I0.9
0.8 0.8 0.8
40 F10.7 40 @ 10,7 40 o7
30 @ i '06 30 @ i '06 30 @ i '06

50 50

10.5 10.5 10.5
20 10.4 20 lo.4 20 — L 10.4
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0.2 0.2 0.2
0 0.1 0 0.1 0 0.1
-10 0o - 0 -10
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PS to U
u mean factor level 4 u mean factor level 5 cross section at row 18
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0.8 0.8 0.8}
40 - 10.7 40 - 10.7
30 10.6  3q 10.6 0.6}
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10 0.3 10 0.3
0.2 0.2 0.2}
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20 40 60 80 100 20 40 60 80 100 20 40 80 100

MUST HAVE ADAPTIVE HELP FOR NON- EXPERT USERS.
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

10

—5F vV F=8 vV k=90 i

model time (pseudo—days)

Time evolution for X1 shown.
Assimilating model quickly diverges from ‘true’ model.
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error
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Assimilating in the presence of simulated model error
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error

dXj/ dt = (X1 - Xi2)Xjp - X+ F.
For truth, use F = 8.
In assimilating model, use F = 6.

truth ensemble obs
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This isn’t working again!
It will just keep getting worse.
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance

1 1 1
: N :

Variance Deficient PDE

> Lo RS R -
3 "TRUE" Prior PDF ]
O
OAnclL Y N i
g 0.5

% -3 -1 0

3. Naive solution is Variance mflatlon. just increase spread of prior
4. For ensemble memberirh,flate(>ﬁ) = JX(Xi —X) + X
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.6
1-2

5 10 15 20 25 30 35 40
Adaptive State Space Inflation

5 10 15 20 25 30 35 40
No Inflation

5 10 15 20 25 30 35 40
State Variable

Anderson: Joint Stats Meeting, Denver, 4 August, 2008 66

7/17/08



Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.4 inflation
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Adaptive State Space Inflation

5 10 15 20 25 30 35 40
No Inflation

5 10 15 20 25 30 35 40
State Variable

Anderson: Joint Stats Meeting, Denver, 4 August, 2008 71

7/17/08



Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error
Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

It can work, even in presence of severe model error.

1.4 inflation

5 10 15 20 25 30 35 40
Adaptive State Space Inflation

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40
State Variable
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Adaptie Inflation for Ensemble Filtering

1. For observed variable, have estimate of prior-observed inconsistenc
0.8 1 1 1

Prior PDF _ ~ Obs. Likelihgod
2080 /NN :
S Actual 4.714 SDs /
B Q.4f _ e :
£ | Expected Separation
1Y SN - ;L VRSN S— —sSD.\ :
% 2 0 2 4

. . 2 2
2. Expected(prior mean - obs.ervatlon)/erprior + Ogps

Assumes that prior and observation are supposed to be unbiased.
Is it model error or random chance?
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Adaptie Inflation for Ensemble Filtering

1. For observed variable, have estimate of prior-observed inconsistenc

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\ .
3 : Actual 3?.698 SDs
804 e e -
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D.. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2
2. Expected(prior mean - observatlon)/gpnor + O0,ps
3. Inflating increases expected separation.
Increases ‘apparent’ consistency between prior and observation.
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Adaptie Inflation for Ensemble Filtering

1. For observed variable, have estimate of prior-observed inconsistenc

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\
= A Actual 3.698 SDs
804 P B
O ' Expected Sef ratlon
o 0.2} Inﬂa.t.l.S.D._ ............... ' e —_— S Do\ -

94 o R 0 - 2 4

2
Distance, D, from prior mean y to obsnig, Jmp”or 0o pe = N(O, )

Prob. y, is observed giveh: p(yo‘)\) = (2I'I6 ) exp(—D /292)
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

Prior PDF.___ Obs. Likelihood

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

Assume prior is gaussian;p(A[Y ., = N(Ap, 0f 0)
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

------------ g e TN

. Prior PDF.__

------------ T TN We've assumed a

gaussian for prior
P(A[Y

prev)

Recall thatp(yo‘)\)

can be evaluated
- from normal PDF.

2 3 4 5 6
Obs. Space Inflation Factor: A

PAALY prew yo) = p(yo‘)\)p()\Yprev)/normalization
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

; Obs. Likelihood
0.6Inflated Prior A = 0.75/4% ™ N\ N A . Get p(yo‘ A= 0.75)

from normal PDF.

3 Multiply by
p(A = 0.73Y
-~ to get

prev)

PO = 0.75Y o1, Vo)

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

PAALY prew yO) = p(yo‘)\)p()\Yprev)/normalization.
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

. Obs. Likelihood :
0.6fInflated Prlor-9\--"-1"5""»"'g"""""s' """"" PN S G et p(yo‘)\ 1. 5)

from normal PDF.

0.2 |
o ;1 Multiply by

2p S o e e SRS S 5 p(A = 1'5‘Yprev)
| | | to get

b Y S W S— J— S— o0n =
T\ PRSI ey

% 5 4 5 ¢

Obs. Space Inflation Factor: A

PALY prew yO) = p(yo‘)\)p()\Yprev)/normalization.
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

. Obs. Likelihood '
0.6fInflated Prlor-9\--"-2"2'5"rg""""’\' """"" PN S G et p(yo‘)\ 2. 2)

from normal PDF.

0.2 |
o ;1 Multiply by

2 e R S e o e 5 p(A = 2'2‘Yprev)
| | | to get

T """" . """"""""" """""""""" """"""""" """"""""" P(A =2.2Y hrev Yo)

% 3 X ; .

Obs. Space Inflation Factor: A

PALY prew yO) = p(yo‘)\)p()\Yprev)/normalization.
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

| _ Obs. Likelihood
e SR TN TN S ~ Repeat for a range

0.4f - of values of\.
0.2}
0 ; Now must get pos-
B 0 L 2 3 4 terior in same form
Observation: y _ _
2p G S e e R ~as prior (gaussian).
: Prior A PDF : : :

Likelihood y observed giiven A

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo| M) P(AY ye)/ NOFMalization.
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Adaptie Inflation for Ensemble Filtering
Use Bayesian statistics to get estimate of inflation faktor,

.. Obs. Likelihood o
0.6 S SRR I b N S ~ Very little informa-
0.4f e i fld NE RN NN SR - tion aboutA in a
ook TR A v AN N single observation.
0 ' ' ' ' i . .
-1 4 Posterior and prior

Observation: y

D T ~are very similar.
Prior A PDF :

Normalized poste-

1o A L N S T .
Posterior ~ rior Indistinguish-
O1 2

Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo| M) P(AY ye)/ NOFMalization.
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

: S Obs leellhood :

Q.6 A SRV N Very little informa-
Q.4F s ------------ P --------------- “ ---------------------- ; tion aboufA in a
0.2t S AN single observation.

O e ' i | |

-1 0 1 2 3 4 Posterior and prior

Observation: y ..
~are very similar.

).OLf A Posterior — Prior TS

- Difference shows

= slight shift to larger
JOLp o T Max density shifted to right - yvalues of\.

Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo|M)P(A Y e,)/ nOrMalization.
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Adaptie Inflation for Ensemble Filtering

Use Bayesian statistics to get estimate of inflation faktor,

| S Obs. leellhood :
0.6F R ST TN TN S - One option is to use
0.4f it f ST N AP - Gaussian prior for
ozb S e A
O H‘—'; : p : .
-1 0 1 2 3 4 Select max (mode)
Observation: y
D ~ of posterior as
Prior A PDF :

Find Max by search mean of updated

~ Gaussian.

Max is new A mean

/ ' \ Do a fit for updated

1 2 standard deviation.
Obs. Space Inflation Factor: A

PANY prev Vo) = P(Yo| M) P(AY ye)/ NOFMalization.
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Adaptie Inflation for Ensemble Filtering

A. Computing updated inflation meak,

Mode ofp(yo‘)\) P(ATY 5rey) €an be found analytically!
Solving a[p(yo‘)\)p()\Yprev)}/a)\: O leads to 6th order poly éh

This can be reduced to a cubic equation and solved to give mode.
New A, is set to the mode.

This is relatively cheap compared to computing regressions.
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Adaptie Inflation for Ensemble Filtering

A. Computing updated inflation varianar;ﬁ’ y

1. Evaluate numerator at mekn  and second point) @0, )
2. Findo? , soN(Ay, 0y ,) goes through(Ay)  amdh, + 0y, o)

3. Compute asy = -0 o/2Inr - where= p(Ay+ 0y )/ P(Au)
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State Space Adapg Inflation

Computations so far adapt inflation for observation space.
What is relation between observation and state space inflation?

Have to use prior ensemble observation/state joint distribution.

- Regress changes in
: - > y Inflation onto state vari-

able inflation.

tk+2
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Spatially \arying adaptie inflation algorithm:

Have a distribution fok at each time for each state variablg;

Use prior correlation from ensemble to determine impa&t pbn
prior variance for given observation.

If vis correlation between state variable | and observation then

2

2 2
B = J[1+V(A/AS, —1)] Oprior ¥ Opbs

Equation for finding mode of posterior is now full 12th order:
Analytic solution appears unlikely.
Can do Taylor expansion 6faroundAg ;

Retaining linear term is normally quite accurate.
There Is an analytic solution to find mode of product in this case!
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Adaptie Inflation in Global NWP

Model: CAM 3.1 T85L26.
Several million model variables: winds, temperature, moisture.

Initialized from a climatological distribution (huge spread).

Observations: Radiosondes, ACARS, Satellite Winds.
Subset of observations used in NCAR/NCEP reanalysis.

Several hundred thousand observations per day.
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Adaptive Inflation in CAM; 500 hPa T Obs. Space Prior RMS, Spread

2500
ocbservation count
2000 =
.i i i { A 1 i [
1500 / [ ,ﬁ A 4 ! H | ’j
1000 | / ‘ [ ' f ‘ '@
. NN g '
] LM
500 | -; f | '
0 L | | L | | L |
- mean w/adaptive inflation 1.2612
2.5 ; — mean w/o inflation 1.5791 1
I
25 =
I
|
E RMSE
15 * -
1 A" | YW "
: \./ |
] -
1 ] L1 ¥
] :: A
[ ]
b 3 . Ao
Iye - | L] % "™
e - A, L s N ;':‘" K 'ﬂ.u ““: 4 "n,'ﬂ o b |
II. Spread - ) r"';"-'t‘r" "‘1.""" ‘t' "’ ' : .
\\:q.:;‘-:::'-:::n"---J":“_,~_.:..._-l_‘__#1’_‘1____‘_:_____..‘\‘-' _____
01/04 01/09 01/14 01/19 01/24 01/29
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Adaptive Inflation in CAM after 1-Month; 266 hPa U
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Adaptie Inflation for Numerical \Wather Prediction in CAM

1. Largest inflation caused by model error in densely observed region:
2. RMS reduced, spread increased.

3. Fewer observations rejected.

Combinedwith localization.allows 80 membernsembldéo work well!
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Hierarchical Bayesian Methods for AdaggtiFilters: Summary

1. Localization:
Run an ensemble of ensembles.
Use regression coefficient signal-to-noise ratio to minimize error.

2. Inflation:
Use each observation twice.
Once to adjust parameter (inflation) of filter system.
Second time to adjust mean and variance of estimate.
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Conclusions

Lots of cool statistics being done poorly.
Work in small models can give insight.

Applications in large models are important.

Looking for collaborations with interested statisticians.
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