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Roadmap to the talk

Overview of DART ∼ 2 minutes

Novel DART Results ∼ 4 minutes

Overview of Ensemble DA ∼ 4 minutes

DART DA Tutorial,Algorithms ∼ 6 years . . .

Questions ∼ closing

In this talk, a ’model’ is a numerical representation
of a physical process - NOT a statistical model.
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Data Assimilation Research Testbed – DART

• is an ensemble-based data assimilation facility,

• allows combinations of assimilation algorithms,
models, and observation sets, without being an
exercise in software engineering,

• can exploit parallel machines (”real-world” problems),

• has a suite of diagnostic tools for observations and
model output,

• supports DA R&D for NCAR, external partners,

• has an extensive ’hands-on’ tutorial,

• is available for download at

www.image.ucar.edu/DAReS/DART
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Data Assimilation Research Testbed – DART

A subset of the models in use:

• L63, 9var, L96, ikeda, a simple advection model, . . .

• GFDL: FMS B-grid, AM2 (atmosphere-only GCM)

• NCAR’s CAM (used for IPCC)

• WRF (regional/global) Hurricanes, Mars

• MIT ocean model, ...

Forward Operators and Datasets

• linear, non-linear forward operators for simple models

• U,V,T,Ps,Q for realistic models

• Radar reflectivity, GPS refractivity

• Observations from BUFR files

• Can create ’perfect model’ observations for all
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DART/CAM T85 GPH@500hPa

00Z 1 Feb 2003 contours 5320 to 5800 by 80
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Hurricane Katrina Sensitivity Analysis - WRF

The colors illustrate how a one standard deviation change
in the E-W wind will change the TC longitude.

contours are
ensemble mean

48h forecast

southerly jet
shifts TC east

credit to Ryan Torn

6



Schematic of Ensemble Data Assimilation

*** *posterior

prior

posterior

Model Integrations

Convert
a model state to an
expected observation

observation

EnKF, EAKF,
particle filter, ...
results in an
increment

The increment
and regression creates
a new model state

Model Integrations
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Ensemble Data Assimilation Error Sources

*** *

Model Error

h errors,
representativeness

Sampling error:
Gaussian assumption

’gross’
observation
errors

Sampling error:
Linearity

errors ⇒ systematic loss of variance in the prior
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Combating the loss of variance

M-dimensional state vector x, ensemble size of N

Traditional (covariance) inflation:

xinf
m,n =

√
λ (xm,n − x̄m) + x̄m

• λ is ’one-size fits all’, obtained by trial-and-error

Adaptive inflation:

xinf
m,n =

√
λm (xm,n − x̄m) + x̄m

• λm is improved by Bayes theorem, observations

• more on this later . . .
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observations more effective

Adaptive Inflation in CAM: NA 500 hPa T
Observation-Space Prior RMS, Spread
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mean w/adaptive inflation 1.2612
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Adaptive Inflation in CAM after 1 month of
assimilation: 266hPa U wind

 

 

U at 266 hPa, t = 01/01
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Damped Adaptive Inflation in CAM after 1
month of assimilation: 266hPa U wind

 

 

U at 266 hPa, t = 08/01
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DART tutorial

This is a ’hands-on’ tutorial.

The tutorial is distributed with DART; the best ap-
proach is to download DART, read the tutorial and fol-
low along! Barring that, the tutorial is available at:

www.image.ucar.edu/DAReS/DART/doc/tutorial

(browse tutorial section 12 for PROOF )
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Statistical rigor would be appreciated.

Ensemble Data Assimilation has Bayesian roots. It
is now time to get the application-driven portion of the
community back together with the theory-driven portion
of the community.

DART uses pragmatic algorithms that work.

Statistical properties are not fully known.
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