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Ensemble Filter Overview.

Ensemble state
estimate after using
previous observation
(analysis).

Ensemble state at
time of next obser-
vation (prior).

tk tk+1

1. Use model to advanceensemble (3 members he
to time at which next observation becomes ava
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Ensemble Filter Overview.

2. Get prior ensemble sample of observation, y
applying forward operator h to each ensemble m

Theory: ob
from instru
uncorrelat
be done s
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Ensemble Filter Overview.

3. Getobserved valueandobservational error distr
from observing system.
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Ensemble Filter Overview.

4. Findincrement for each prior observation ense
(this is a scalar problem for uncorrelated observ

y

*
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*
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h Note: Today’s

focus exclusiv
part of the alg
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Ensemble Filter Overview.

5. Use ensemble samples of y and each state v
regress observation increments onto state varia

y

*
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*
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Theory:
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each sta
handled
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Ensemble Filter Overview.

6. When all ensemble members for each state 
have a new analysis. Integrate to time of next o

y

*
*
*
*
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h

tk
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Begin with two most common observation spac

1. EAKF: Ensemble Adjustment KF (determ

2. EnKF: Ensemble KF (Monte Carlo approx

Note: Consistent Color Scheme Th

Green = Prior

Red = Observation

Blue = Posterior
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Bayes rule:

This product is closed for Gaussian distribution
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Bayes rule:

This product is closed for Gaussian distribution

p A BC( )
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=
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dµ2 and
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=
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dµ2 and

o be PDFs.
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

Ignore the weight for now; normalize products t
But it is used in the new algorithm...

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=

c
1

2Π( )d 2⁄ Σ1 Σ2+ 1 2⁄--------------------------------------------------- 1
2
--- µ2 µ1–( )T Σ([–





exp=
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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a continuous (Gaussian for now) distribution
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Bayes rule:

Observation likelihood usually continuous (near

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 
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Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be un
Trial and error still best way to see how they pe
Will interact with properties of prediction models
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y



7/18/08

are root filter).

2 4
Anderson: U. Maryland: July 25, 2008 20

Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Compute posterior PDF.
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Use deterministic algorithm to ‘adjust’ ensemble
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
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t variance of posterior.
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
Second, use linear contraction to have exac
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Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

    i = 1,..., ensemb

p is prior,      u is update (posterior),    overbar i
σ is standard deviation.
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 is EXACTLY KF.

2 4
Anderson: U. Maryland: July 25, 2008 26

Ensemble Filter Algorithms:

Ensemble Adjustment Filter (a deterministic squ

Bimodality maintained, but not appropriately po
No problem with random outliers.
For linear, gaussian, large enough ensemble, this
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

‘Classical’ Monte Carlo Algorithm for Data Assi

Note: earliest refs have incorrect algorithm.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Generate a random draw from the obs. likelihoo
Associate it with the first sample of prior ensem
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 with each prior sample.

semble Kalman filter.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.
This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.’ en
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.
This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.’ en

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y O

Random D



7/18/08

 with each prior sample.
elihood with each prior
rior.

2 4

bs. Likelihood

raws from Obs.
Anderson: U. Maryland: July 25, 2008 33

Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.
Earliest publications associated mean of obs. lik

This resulted in insufficient variance in poste
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Adjusting the mean of obs. sample to be exact 
Adjusting the variance may further improve per
Outliers are potential problem, but can be remo
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

For each prior mean/obs. pair, find mean of pos
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Prior sample standard deviation still measures uncerta
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Prior sample standard deviation still measures uncerta

Obs. likelihood standard deviation measures uncert
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Take product of the prior/obs distributions for fir
This is standard Gaussian product.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Mean of product is random sample of posterior.
Product of random samples is random samp
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)

Repeat this operation for each joint prior pair.
−4 −2 0
0

0.2

0.4

0.6

P
ro

ba
bi

lit
y



7/18/08

2 4
Anderson: U. Maryland: July 25, 2008 43

Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF).

Posterior sample maintains much of prior samp
(This is more apparent for larger ensemble s

Posterior sample mean and variance converge to
Sample is mixed by some introduced noise.
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A One-Variable Test Model

Assume ‘true’ trajectory is just x=0.
(Same as linearizing around an arbitrary tra

α = 0: linear model (exponential growth).

α > 0: have additional expansion.

td
dx

x α x x+=
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Linear Model Results (α = 0): EAK
(All results throughout are for prior e

EAKF is just an algorithm for computing Kalma
Ensemble members don’t cross, keep identical 
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Linear Model Results (α = 0): EnK

EnKF is a Monte Carlo algorithm approximating
Ensemble members cross, moments (like kurto
Sampling error due to small ensembles is an is
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Ensemble Size

 an ‘accident’).
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Linear Model RMS Error as Function of 

EAKF exact for any ensemble size (>1).
EnKF has sampling error (smaller value at 40 is
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Nonlinear Model Results (α = 0.8): E

Model advance: furthest outlier pushed out fast
All members pulled in linearly by assimilation.
All members but outlier clump together; get hug
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Nonlinear Model Results (α = 0.8): E

Model advance: furthest outlier pushed out fast
Assimilation mixes members some.
Still get high kurtosis sometimes.
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 Increases (α = 0.2).

le size.
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EAKF Problem Gets Worse as Ensemble Size

RMS error as function of ensemb
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A Deterministic Non-Gaussian Observation S

1. Most ensemble filters assume prior and likeli

2. Particle filters do full non-gaussian, but don’t

3. Assuming non-gaussian in observation space

4. Gaussian kernel filters have been proposed b
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ge increments;

es;

 cases;
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Requirements for an observation space

1. Low information content obs. can’t lead to lar

2. Want smallest possible increments for all cas

3. Comparable to gaussian filters for ~gaussian

4. Better than gaussian in non-gaussian cases;

5. Computationally cheap.
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Observation Space Rank Histogram

Apply forward operator to each ensemble mem
Get prior ensemble in observation space.
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m
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Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen

Reminiscent of rank histogram evaluation m

−3 −2 −1 0 1

0

0.2

0.4

0.6

Prior

P
ro

ba
bi

lit
y 

D
en

si
ty



7/18/08

 Filter

.

t ensemble members.

ens).

ass is in tail.
ure.

2 3
Anderson: U. Maryland: July 25, 2008 59

Observation Space Rank Histogram

Step 1: Get continuous prior distribution density

Place (ens_size + 1)-1 mass between adjacen
Partial gaussian kernels on tails, N(tail_mean, σ

tail_mean selected so that (ens_size + 1)-1 m
Performance is sensitive to the tail struct
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Observation Space Rank Histogram

Step 2: Uselikelihood to compute weight for each

Analogous to classical particle filter.
Can be extended to non-gaussian obs. likeli
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Observation Space Rank Histogram

Step 2: Uselikelihood to compute weight for each

Approximate interior likelihood with linear fit
Can be extended to non-gaussian obs. likeli
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Observation Space Rank Histogram

Step 3: Compute continuous posterior distributi
1. Approximate likelihood with trapezoidal quad

(Displayed product normalized to make po
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Observation Space Rank Histogram

Step 3: Compute continuous posterior distributi
1. Approximate likelihood with trapezoidal quad

(Displayed product normalized to make po

−3 −2 −1 0 1

0

0.2

0.4

0.6

Prior

P
ro

ba
bi

lit
y 

D
en

si
ty



7/18/08

 Filter

on.
rature, take product.
sterior a PDF).

2 3
Anderson: U. Maryland: July 25, 2008 64

Observation Space Rank Histogram

Step 3: Compute continuous posterior distributi
1. Approximate likelihood with trapezoidal quad

(Displayed product normalized to make po
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Observation Space Rank Histogram

Step 3: Compute continuous posterior distributi
1. Approximate likelihood with trapezoidal quad

(Displayed product normalized to make po
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Observation Space Rank Histogram

Step 3: Compute continuous posterior distributi
1. Approximate likelihood with trapezoidal quad
2. Product of prior gaussian kernel with likelihoo

Easy for gaussian likelihood.
More quadrature if non-Gaussian likelihood.
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Observation Space Rank Histogram

Step 4: Compute updated ensemble members:

(ens_size + 1)-1 of posterior mass between eac

(ens_size + 1)-1 in each tail.
Uninformative observation has no impact.
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Observation Space Rank Histogram

Compare to standard Ensemble Adjustment Fil
Nearly gaussian case, differences are small.
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 inconsistent with obs.

to shift all members
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Outliers are a Challenge for Gauss

Rank Histogram gets rid of outlier that is clearly
EAKF can’t get rid of outlier.
Large prior variance from outlier causes EAKF 

too much towards observation.
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Multimodal Prior Distributions

Rank Histogram handles multimodal prior and c
EAKF still bimodal; left mode is inconsistent wit

Lorenz_63 can have priors like this.
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Multimodal Prior Distributions

Convective scale models have analogous beha
Convection may fire at ‘random’ locations.
Subset of ensembles will be in right place, rest 
Want to aggressively eliminate convection in wr
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Results: Linear Model (α = 0)

Rank Histogram Filter (RHF) fails for 10 membe
Competitive for >20 members.
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Results: Nonlinear Model RMS (α =

RHF best for all ensemble sizes.
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Results: Nonlinear Model Kurtosis (α 

RHF smallest for ensemble sizes > 10.
Doesn’t have outlier excursions (max is small).
EAKF has HUGE kurtosis (off the plot).
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Results: Lorenz63 RMS
All 3 state variables observed, error v

RHF and EnKF comparable.
EAKF gets progressively worse (but pretty good
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Results: Lorenz63 EAKF
All 3 state variables observed, error v

Wandering ensemble member can detach, hea
Happens less frequently and severely in EnKF.
Can reattach due to mixing from other variables
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Results: Lorenz63 Kurtosis
All 3 state variables observed, error v

Wandering ensemble member can detach, hea
Happens less frequently and severely in EnKF.
Can reattach due to mixing from other variables
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Results: Lorenz96 RMS
40 Observations, average of adjacent state v

Localization halfwidth 0.3 of domain, ada

EAKF RMS increases moderately with ensemb
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Results: Lorenz96 Kurtosis
40 Observations, average of adjacent state v

Localization halfwidth 0.3 of domain, ada

EnKF has sporadic large kurtosis, increases wi
EAKF max kurtosis very large (off plot).
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Lowest level T
30W, 50N.

300 radiosonde
profiles every
12 hours.

No inflation.

0.2 radian
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Anderson: U. Maryland: July 25, 2008 80

Results: Dynamical Core of GFDL A

1. EAKF: sporadic spatially localized outlier beh

2. EnKF: similar behavior less frequently.
3. RHF:    no evidence this occurs.
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Results: Global NWP in Finite Volume

1. Limited evidence of outlier events in any filter

2. Prior fit to observations:
80-member EAKF and RHF virtually indistin

(Comparable to NCEP operational, bette
80-member EnKF significantly worse.
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Additional Capabilities of RHF

1. Observations with highly non-gaussian obser
Bounded quantities like RH, precip., or refle
Just need to evaluate likelihood at prior loca

2. Priors that are highly non-gaussian:
Non-linear forward operators like radiances.

3. Ability to deal with discrete structure priors:
Example: Convective scale.

Subset of priors may have convection in 
Posterior should be either yes or no, not
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RHF and particle filters

1. The RHF is nearly a particle filter with resam
Given likelihood weights can do everything e

2. Is there a way to make an effective filter that 

3. If so, could get rid of regression and just use

4. It’s known that particle filters don’t scale to hi

5. With localization, this idea might scale.
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Want to try it out?

The Rank Histogram Filter and 7 other ense
are in DART.

www.image.ucar.edu/DAReS/DART.


