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1. Introduction

A long-term goal of this work is to find an efficient
system for probabilistic PBL nowcasting that can be em-
ployed wherever surface observations are present. One
can also view it as a probabilistic PBL profile retrieval ap-
proach, given a background ensemble and surface obser-
vations. We are motivated to pursue this by the relative
density of high-quality, inexpensive surface observations
in local and regional networks worldwide, the fundamen-
tal difficulties associated with forecasting details of the
PBL at lead times greater than a few hours, and the com-
plexity and expense involved with current NWP models.
One approach showing promise is the use of a single col-
umn model (SCM) and ensemble filter data assimilation
techniques.

Hacker and Rostkier-Edelstein (2007) showed that sur-
face observations can be an important source of infor-
mation with an SCM and an ensemble filter. Compar-
isons in that work were against free-running simulations,
representing a “climatological” distribution, to obtain a di-
rect measure of the impact for surface observations. The
results showed that without additional sources of infor-
mation, it is possible to obtain error levels that approach
observation-error levels in the lowest few-hundred meters
of the atmosphere.

Here we extend that work to quantify the probabilistic
skill of the same SCM, and the SCM with added com-
plexity. We also use a relevant 3D forecast to center the
ensemble on each day, rather than using a climatological
ensemble as before, to generate an ensemble that is valid
for a particular time.

Although it is appealing to add additional physics and
dynamics to the SCM model, with the expectation that it
will make solutions more realistic, it is not immediately
clear that additional complexity will improve the perfor-
mance of a PBL nowcasting system based on a simple
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model. We address this question with regard to treat-
ment of radiation in the column, and also advection to
account for realistic 3D dynamics. The cost of these,
when running with tens to hundreds of ensemble mem-
bers (and possibly at many surface observation sites si-
multaneously) can be significant. Thus it behooves us to
quantify the role of the added complexity in a probabilistic
sense.

2. Model and Data

The SCM used in this study contains vertical turbu-
lence, atmospheric surface layer, and land-surface pa-
rameterizations identical to those in the Advanced Re-
search WRF (ARW) version 2.2. Resolved dynamics are
integrated in time with a Crank-Nicholson time step of
10 s on a vertically-stretched column with 61 levels and a
model top at approximately 8 km. It is described in detail
in Hacker et al. (2007), where the model was forced with
prescribed surface radiation and geostrophic winds from
a sample of 3D WRF solutions. Here we summarize the
components considered for improving probabilistic analy-
ses and nowcasts.

Advection is now an option in the SCM, to allow for
the effects of 3D dynamics. Ghan et al. (1999) described
an approach for upstream advection of temperature (T),
water vapor mixing ratio (Qv), and wind (U and V com-
ponents) in SCMs. It acts to relax the SCM state toward
a prescribed 3D state (which may be time-dependent) on
the advective time scale. In the absence of any other
forcing terms, the SCM would track the prescribed time-
dependent state.

The RRTM long-wave (Mlawer et al. 1997) and Dudhia
short-wave Dudhia (1989) radiation schemes are also an
option. These are included particularly to improve sim-
ulations during the night, when radiative cooling can be
important in the PBL.

Ensemble-filter assimilation of surface observations is
the third model component examined here. It is consid-
ered alone, as was described in Hacker and Rostkier-
Edelstein (2007), and also in combination with the ad-



vection and radiation described above.
The experiment period is 3 May – 15 July 2003, cor-

responding to the Bow Echo and Mesoscale Convective
Vortices Experiment (BAMEX), and the SCM is config-
ured to run over the Atmospheric Radiation Measurement
(ARM) Central Facility near Lamont, Oklahoma, which of-
fers high-quality surface data and balloon-borne sound-
ings. We use 30-minute average surface observations of
winds, T, and Qv for both assimilation and verification.
Independent soundings are used for verifying profiles.

Archived runs of the ARW version 2.1, coinciding with
the experiment period are used for both ensemble initial-
ization and to provide advection terms in the SCM. Each
member of the ensemble is initialized by starting with the
12-h WRF forecast column closest to Lamont for a given
day, then perturbing it with the scaled difference between
that forecast and another forecast from the archive. The
additional member to compute the difference is selected
randomly from the experiment period, and the scaling of
the difference is drawn randomly from N (0,1). With this
approach, arbitrarily large ensembles can be generated,
and we use 100 members in these experiments.

When ensemble filter assimilation is used, all simula-
tions assimilate the surface observations every 30 min-
utes from 1200 – 1700 UTC, and then the 30-minute fore-
casts valid at 1730 UTC (1230 LDT) are verified against
the surface observations valid at that time.

3. Analysis Methods

We seek a probabilistic PBL nowcasting system to use
with available surface observations, and thus choose for
initial evaluation metrics the mean absolute error (MAE),
and the Brier Skill Score (BS; Wilks 1995). The MAE is
a deterministic metric used on the ensemble mean, and
quantifies systematic error in that mean. The BSS is eas-
ily decomposed into both a reliability and resolution term
(Murphy 1973) to understand the trade-offs in different
components of probabilistic skill. The metrics are exam-
ined for all possible combinations of advection, radiation
physics, and assimilation of surface observations.

Direct examination in this instance is cumbersome,
and we instead seek a framework for simpler interpreta-
tion. One framework is factor separation (Stein and Alpert
1993), where our factors are advection, radiation, and
data assimilation. Factor separation conveniently quanti-
fies the individual contribution of each model component
to reducing the error in the simulations, as well as any
beneficial or detrimental interactions between the differ-
ent factors in the 23 possible model configurations.

Each set of simulations over the BAMEX period can be
summarized with an error or skill ei , where ecan be one of
mean absolute error (MAE), Brier Skill Score (BSS), relia-
bility, or resolution, and the subscript i denotes the binary

Table 1: Key to all possible combinations of the model
components considered here.

Label Advection Radiation Assimilation
000 NO NO NO
100 YES NO NO
010 NO YES NO
001 NO NO YES
110 YES YES NO
101 YES NO YES
011 NO YES YES
111 YES YES YES

state of each factor group. For example, e111 is the error
or skill when advection, radiation, and data assimilation
are all switched on. The separated factor associated with
each individual component or each combination of com-
ponents is denoted fi . For example, f111 is the contribu-
tion to the error that is not simply the linear combination of
all the components individually or the effects of combin-
ing two of the three factors. The possible combinations
of advection, radiation, and data assimilation are listed in
Table 1 for reference.

Factor separation equations are derived by a Taylor ex-
pansion of the effect of each component, and as shown in
Stein and Alpert (1993) the resulting equations for three
components are:

f000 = e000

f100 = e100−e000

f010 = e010−e000

f001 = e001−e000

f110 = e110− (e100+e010)+e000

f101 = e101− (e100+e001)+e000

f011 = e011− (e010+e001)+e000

f111 = e111− (e110+e101+e011)
+(e100+e010+e001)−e000 .

Manipulation of the equations above shows clearly that
the higher-order factors ( fi ) are the pure interactions be-
tween the different possible combinations of factors at
lower order, and describe the nonlinear and synergistic
effect of putting the components together. Factor sepa-
ration is helpful in the present experiments because the
synergistic effects are not always obvious from direct ex-
amination of the errors.

In the next section, we plot factor separation results
and interpret them. In each plot, the error itself is shown
for the base case (000) and the case when all model com-
ponents are included (total). On the same plots, the fac-
tors fi are shown for each level of synergism. The analy-



sis here is for surface variables only (observation space),
and profiles will be considered in the future.

4. Results and Interpretation

4.1 Mean absolute error

The MAE of a perfect forecast verified with error-free
observations is zero, and a factor that reduces the MAE
will be negative. Figure 1 shows the factor separation
for the MAE of surface forecasts. The factor f000 (red
filled square) corresponds to an MAE that is the same
as the factor value. When all the model components are
included, the result is a reduced MAE denoted by the red
square with a dot, which shows values near the assigned
observation error variance. The factors for each level of
synergism are shown by the colored + symbols.

When model components are invoked individually, the
effects are mostly positive (negative contribution to MAE)
but some exceptions are apparent. Radiation has a slight
worsening effect on Qv and no effect, as expected, on
U . In general the effect of a radiation parameterization is
expected to be small during this daytime verification, be-
cause the 000 case has prescribed radiation at the sur-
face, and direct heating of the column by the parameter-
ized radiation is small. These effects may not be statisti-
cally significant (not yet tested).

Advection and assimilation individually result in clear
error reduction equal to the single factors shown in the
second column of the plots. Assimilation of the surface
data has the most positive effect for all variables.

The combined factors require further interpretation. A
value of zero for two factors means that the positive ef-
fect of each of the two factors combined linearly. A pos-
itive value indicates that combination of the two actually
degrades the MAE. The black + shows that combining
advection with assimilation does not continue to improve
the forecasts, and rather that some of the benefit of the
assimilation is lost as the advection sweeps out the in-
fluence of the observations during the 30-minute fore-
cast period. Another way to see this is to consider that
if the advection and assimilation reduced errors when
they were combined in the same way that they did when
they were alone, the total MAE reduction would be the
sum of the values denoted by the + and +, or approxi-
mately -2.4◦C for temperature. The synergistic effect of
the two factors cancels approximately 1.2◦C of that ex-
pected reduction, and the error would then be between
that of the two factors used independently. The assimila-
tion is clearly the most important factor, and relaxation of
the ensemble mean to a 3D WRF solution via advection
erases some of the benefit.

Radiation, when combined with the assimilation (+),
appears to have an additional positive effect for Qv and
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Figure 1: Factors contributing to MAE in surface fore-
casts of (a) T, (b) Qv, and (c) U . The MAE of the basic
model configuration (000) and the complete model con-
figuration (total) are denoted by the red squares. The
factors associated with each combination of model com-
ponents, showing the synergistic contribution to the MAE
corresponding to the model configurations in Table 1, are
shown by the colored + symbols.

a negligible effect for U . For T, the positive effect of the
radiation in isolation is almost perfectly canceled by the
assimilation, which apparently overwhelms it. Because
the absolute value of the advection-radiation synergism
(+) approximately the same as the absolute value of the
improvement by radiation (+), the benefit of radiation is
also entirely overwhelmed by advection of T. But the
slight degradation in MAE of Qv, caused by radiation, is
partially eliminated by advection. These effects are gen-
erally small and may not be statistically significant.

The effect of combining all three factors is generally
neutral, as shown by the + symbols. The damage caused
by the advection remains. We conclude that advection
has a negative affect on the the MAE at the surface when
assimilating surface data. It is caused by advecting im-
perfect atmospheric conditions, from a 3D forecast, into
the column. Ensemble filter assimilation of the surface
observations corrects for some of the error. A 30-minute
forecast with a simple model assimilating surface obser-
vations with an ensemble filter is superior to an 18-h WRF
forecast, from which advection is derived. This result is
not likely to generalize to shorter 3D forecasts.

4.2 Brier skill score

The BSS is a convenient metric for probabilistic veri-
fication because it can be easily decomposed into relia-
bility and resolution terms, thereby enabling meaningful
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Figure 2: Factors contributing to the Brier Skill Score for
the 75th percentile of the observations.

interpretation. It verifies events, and we define an “event”
here to be a forecast value exceeding the 75th percentile
of the observations at the ARM central facility during the
experiment. The BSS is positively oriented so that higher
values indicate more skill, a perfect forecasting system
gives BSS = 1, and BSS≤ 0 indicates no skill or less skill
than the reference. A reference forecast is needed for a
skill score, and we use the mean of the sample of obser-
vations from the ARM site during the experiment period.

BSS factors show qualitatively similar overall impacts
(reversed in sign because of the score orientation) as
they do on the MAE (Fig. 2) for T and U , but different im-
pacts for Qv. Probabilistic skill as measured by the BSS is
hardly affected by any factor except the assimilation indi-
vidually (+). The advection destroys the positive impact,
resulting in an overall worse BSS when all components
are included (red square with dot). Again statistical sig-
nificance tests are needed.

Examination of the reliability and resolution terms
individually enable further interpretation. The result is:

BSS = (resolution-reliability)/uncertainty.

Uncertainty here is purely a function of the distribution of
observations and is therefore a constant. A system with
no skill can occur if the resolution is less than or equal
to the reliability, and the resolution is equal to the sum
of the reliability and the uncertainty in a perfect system.
In general, the BSS is improved by maximizing the reso-
lution (upper bound reliability plus uncertainty) and mini-
mizing the reliability term (lower bound 0). It is important
to remember that resolution and reliability are indepen-
dent because they result from different distributions.

Differences between the factors for reliability (Fig. 3)
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Figure 3: Factors contributing to the reliability term of the
Brier Score for the 75th percentile of the observations.

and resolution (Fig. 4) show the benefit of BSS decom-
position. In several instances the reliability and resolution
are both improved, with trends qualitatively similar to the
MAE and BSS. In particular, individual components lead
to improvement in both T resolution and reliability, but the
synergistic effects of two factors are all detrimental. This
result is consistent with both the MAE and obviously the
BSS factors. The Qv factors are small, but also broadly
consistent with the earlier analysis.

Factors for U resolution and reliability show opposing
affects in some cases. Reliability is improved for all single
components (Fig. 3c), but resolution deteriorates slightly
when parameterized radiation is used (+ in Fig. 4c). The
BSS and MAE show negligible change, which is perhaps
the expected result, but the BSS does not change be-
cause the improvement in reliability is offset by a reduc-
tion in resolution. One possible explanation is that bias is
reduced, which improves the reliability but also shifts the
forecast distribution toward climatology; climatology has
by definition no resolution.

Dual factors show that synergistic effects are all detri-
mental to reliability, but can improve resolution. Radiation
combined with assimilation (+ in Fig. 4c) provides added
benefit. At this point we can only hypothesize an explana-
tion, but one possibility is that the parameterized radiation
improves forward operators in the assimilation of, say, T,
which then has a positive impact on the U state through
multivariate covariances.

The results of this section are summarized in Tables 2
(T), 3 (Qv), and 4 (U ), where a ‘+’ indicates an improve-
ment and a ‘-’ indicates a deterioration. A missing entry
denotes a factor that is less than 10% of the metric be-
fore additional components are added (red filled squares
in figures). A 10% threshold is a proxy for real signifi-
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Figure 4: Factors contributing to the resolution term of the
Brier Score for the 75th percentile of the observations.

Table 2: Summary of BSS factor separation results for
temperature. The ‘+’ denotes improvement and the ‘-’ de-
notes deterioration. A blank entry means the factors is
less than 10% of the total metric before improvement.

Label Skill Resolution Reliability
100 + + +
010 + +
001 + + +
110 - -
101 - - -
011 - -
111 + + +

Table 3: Same as table 2 but for mixing ratio.

Label Skill Resolution Reliability
100 - -
010 - +
001 + + +
110 + -
101 - -
011 + -
111 - +

Table 4: Same as table 2 but for U -wind.
Label Skill Resolution Reliability
100 + + +
010 - +
001 + + +
110 + -
101 + + -
011 + -
111 - +

cance tests, which we have not yet completed.

5. Summary

A primary goal of this work is to develop an efficient
and skillful probabilistic nowcast system for local PBL
profiles. Efficiency includes not only computational cost,
but also the cost of maintenance and re-tuning when de-
ployed in new environments. Thus efficiency can often
be maximized with a simple system, and we seek the
simplest system that can provide a high level of proba-
bilistic skill. A simple system is also easier to understand,
may be used in process studies, and exposes errors more
easily.

An ensemble of simple single column model (SCM) re-
alizations is the basic system. The basic model uses
land-surface, surface-layer, and PBL parameterizations
from the WRF model, and it is forced with prescribed sur-
face radiation and geostrophic winds drawn from a history
of 3D WRF forecasts during May-June 2003. We con-
sider the change in deterministic and probabilistic skill
from the addition of surface data assimilation, parame-
terized radiation, and advection with tendencies from the
same 3D WRF forecasts. Factor separation is a conve-
nient way to evaluate the 23 possible configurations with
these three additions. It quantifies the synergistic effects
of multiple model components, which are non-zero when
the effect of the components do not combine linearly.
Metrics include mean absolute error (MAE), the Brier Skill
Score (BSS), and the reliability and resolution terms from
the decomposed BSS. Here we examine 30-minute fore-
casts of surface temperature, water vapor mixing ratio,
and winds valid at 1730 UTC (1230 LDT) during the ex-
periment period.

Results show that the added complexity of including
all three new model components improves the forecasts
under all skill metrics. The factor separation shows sim-
ilar synergistic effects for many of the combinations and
metrics, suggesting few situations where one skill metric
improves and another deteriorates under a specific model
configuration.

Factor separation shows that assimilation of surface
observations is the most important contributor to im-
proved skill. Advection can also substantially improve skill
when assimilation is not included, but when it is combined
with other components it dominates to cancel gains pro-
vided by the other individual factors. Most importantly, it
eliminates a lot of the improvement from the assimilation
by rapidly sweeping it out of the column.

Advection relaxes the SCM toward the WRF solution
for the same time period, leading to behavior that is fun-
damentally different from a 3D forecast and assimilation
system. In a 3D forecast and assimilation system the sur-
rounding grid points are updated by an observation. For



a time period, defined by the advective time scale and the
spatial scale of the analysis increment, the advection from
those surrounding grid points accounts for that observa-
tion. In our case that time is only the time it takes for the
atmosphere to advect one grid cell in the forcing model
(4 km here). Ongoing work addresses this deficiency.

Including parameterized radiation, which adds signifi-
cant complexity to the model, has little effect on the skill.
This may change during the night, when radiative cooling
near the surface can be important.

Some of the results show a clear and repeatable trend,
but the smaller effects should be viewed with the caveat
that they may not be statistically significant. That work is
ongoing.
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